PERIPLASMIC EXPRESSION, RECOVERY AND QUANTIFICATION OF RECOMBINANT HUMAN INTERFERON-A2B IN FERMENTATION BY ESCHERICHIA COLI

R. NAGASUNDARA RAMANAN

IB 2009 13
PERIPLASMIC EXPRESSION, RECOVERY AND QUANTIFICATION OF RECOMBINANT HUMAN INTERFERON-A2B IN FERMENTATION BY ESCHERICHIA COLI

By

R. NAGASUNDARA RAMANAN

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfilment of the Requirements for the Degree of Doctor of Philosophy

2009
DEDICATION

Dedicated to my beloved mother, family, friends and well wishers for their love, interest and encouragement
Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfilment of the requirement for the degree of Doctor of Philosophy

Periplasmic Expression, Recovery and Quantification of Recombinant Human Interferon-A2b in Fermentation by Escherichia coli

By

R. NAGASUNDARA RAMANAN

October 2009

Chairman: Arbakariya B. Ariff, PhD

Faculty: Institute of Bioscience

Human interferon-α2b (IFN-α2b) is one of the biopharmaceuticals used to cure diseases such as hairy cell leukemia, malignant melanoma, and chronic hepatitis (B and C). Several areas related to the industrial problems, in the development of soluble IFN-α2b from recombinant *Escherichia coli* were explored in this study, which include enhancement of expression in periplasm, cell disruption techniques, quantification method and purification.

The use of pET 26b(+) plasmid enhanced the periplasmic expression of IFN-α2b (300 ng/mL) by about 3000 times in *E. coli* RG 2(DE3) as compared to that obtained in the previous recombinant strain (0.1 ng/mL) using pFLAG-ATS plasmid. Difference in the expression level was attributed to the difference in the promoters and the signal sequences. *In silico* analysis suggested that the enhancement was mainly due to the difference in the translation initiation caused by mRNA secondary structure of the plasmid.
The disruption of *E. coli* cells were investigated using glass bead shaking and homogenizer for small and large scale purpose, respectively. The optimum conditions for glass bead shaking were 30 min shaking at 300 rpm with 1.5 g/mL of glass beads (0.5 mm diameter). This technique was particularly useful for handling many samples at one time. The operating pressure range in a homogenizer was classified as low, transition and high pressures based on the characteristics of cell disintegrates. At low pressures, the protein release was mainly due to point break, which lead to high selectivity of IFN-α2b release. At higher pressures, the maximum release of total protein and IFN-α2b with a drastic reduction in cell size was observed after the first pass. Statistical optimization was used for osmotic shock process to release IFN-α2b at high concentration, with less process waste. Optimal process was achieved at cell concentration of 0.05 g/mL in hypertonic and 0.2 g/mL in hypotonic solutions.

A rapid immunoassay method for quantification of IFN-α2b was developed using surface plasmon resonance technique. Anti-interferon monoclonal antibody (anti-IFN) was immobilized onto the CM5 chip using an amine coupling method. The perfect linearity was observed between 10 and 200 ng/mL. The anti-IFN chip was found to be useful for more than 1000 cycles and could also be used in continuous running environment.

The efficacy of two activation methods using N-Hydroxysuccinimide in organic solvent (M I) and aqueous solution (M II) was assessed on CM Sepharose FF beads by immobilizing BSA onto it at various pH and ionic strengths. M I activation gave better immobilization efficiency than M II. Similar binding capacity was obtained
with beads immobilized at pH 5 and 8 using anti-IFN; and with crude IFN-α2b as ligand and ligate.

Knowledge gained from the molecular work gave better understanding of the expression pathway for future improvement of periplasmic IFN-α2b production by *E. coli*. Information and data obtained from this study were very useful for the development of efficient downstream and purification methods of IFN-α2b from *E. coli* fermentation at reduced cost, as well as simple and cheap quantification method for quality control and process monitoring.
Pengekspresan Periplasmik, Pemulihan dan Pengiraan Rekombinan Interferon Manusia-A2b di dalam Fermentasi oleh *Escherichia coli*

By

R. NAGASUNDARA RAMANAN

Oktober 2009

Pengerusi: Arbakariya B. Ariff, PhD
Fakulti: Institut Biosains

Interferon manusia-α2b (IFN-α2b) adalah satu daripada produk biofarmaseutikal yang digunakan untuk merawat pelbagai penyakit seperti leukemia sel berumbai, kanser kulit malignan, dan hepatitis B dan C yang kronik. Beberapa masalah berkaitan industri dalam penghasilan IFN-α2b dalam bentuk larut di dalam kawasan periplasmik *Escherichia coli* telah dikaji di dalam projek ini, termasuklah meningkatkan pengekspresan di dalam periplasmik, kaedah pemecahan sel, pengiraan dan proses penulenan.

Pemilihan pET 26b(+) sebagai plasmid meningkatkan pengekpresan IFN-α2b sebanyak 3000 kali ganda iaitu 300 ng/mL di dalam *E. coli* RG 2(DE3) berbanding 0.1 ng/mL yang diperolehi oleh strain rekombinan yang menggunakan plasmid pFLAG-ATS sebelum ini. Nilai pengekpresan yang berbeza ini telah disebabkan oleh perbezaan di antara promoter dan jujukan penanda. Hasil dari analisa *in silico*, perbezaan semasa permulaan penterjemahan yang menyebabkan peningkatan pengekspresan IFN-α2b adalah disebabkan oleh perbezaan struktur sekunder mRNA plasmid.
Pretasi pelbagai teknik, seperti goncangan butiran kaca, penghomogen dan kejutan osmotic, untuk pemecahan sel *E. coli* bagi melepaskan IFN-α2b daripada periplasmik dalam skala kecil dan besar juga telah dikaji. Keadaan yang paling optimum bagi teknik goncangan butiran kaca adalah menggunakan 1.5 g/mL butiran kaca (berdiameter 0.5mm) pada kelajuan 300 rpm selama 30 minit. Teknik ini adalah sangat berguna dalam skala kecil bagi mengendalikan sampel yang banyak pada masa yang sama. Kitaran bagi operasi tekanan penghomogen boleh dikelaskan kepada tekanan rendah, peralihan dan tinggi berdasarkan sifat-sifat pemecahan sel. Pada tekanan rendah, kebanyakan protein yang dilepaskan adalah disebabkan oleh pemecahan tunjuk yang menghasilkan pelepasan IFN-α2b dengan pemilihan yang tinggi. Pada tekanan tinggi, pembebasan yang maksima bagi kesemua protein dan IFN-α2b dengan pengurangan yang ketara dalam saiz sel adalah dilihat selepas laluan yang pertama. Keputusan yang optimum bagi teknik ini adalah sama dengan keputusan yang diperolehi daripada teknik ultrasonikasi dan gegaran butiran kaca. Purata kos dan masa untuk pemprosesan juga dinilaikan bagi semua tekanan. Pengoptimuman menggunakan kaedah statistik telah digunakan untuk proses kejutan osmotik untuk melepaskan IFN-α2b pada kepekatan yang tinggi, dengan sisa proses yang kurang. Daripada proses ini sebanyak 0.05 g/mL sel di dalam larutan hipertonik dan 0.2 g/mL di dalam larutan hipotonik adalah yang paling optimum.

Kaedah immunoesei untuk menentukan kuantiti IFN-α2b telah dihasilkan menggunakan teknik ”surface plasmon resonance” (SPR). Antibodi monoklonal anti interferon (anti-IFN) adalah dipegun ke atas cip CM5 menggunakan kaedah pengikatan amina. Keselarian sempurna telah diperhatikan di antara 10 dan 200
ng/mL. Cip anti IFN ini dapat bertahan untuk lebih daripada 1000 kitaran dan juga penggunaan secara berterusan.

Ketepatan dua kaedah pengaktifan menggunakan N-Hydroxysuccinimide dalam pelarut organik (M I) dan larutan (M II) telah dikaji pada manik CM Sepharose FF dengan menahan BSA ke atasnya pada pH dan kekuatan ion yang berbeza. Pengaktifan MI telah menghasilkan ketepatan penahanan yang lebih baik berbanding M II. Manik pegun pada pH 5 dan 8 menggunakan anti-IFN dan standard IFN-α2b sebagai ligan dan ligat menunjukkan keupayaan pengikatan yang serupa.

Pengetahuan yang diperolehi daripada kajian sel biomolekul memberikan kefahaman berkaitan pengekspresan untuk peningkatan hasil IFN-α2b dalam periplasmik daripada *E. coli*. Maklumat dan data yang diperolehi daripada kajian ini adalah berguna dalam pembangunan pemprosesan hiliran dan kaedah yang efektif untuk menulenkan IFN-α2b daripada proses fermentasi *E. coli* dengan kos yang rendah, dan juga cara penentuan kuantiti yang mudah dan murah untuk pengawalan mutu dan pemantauan proses.
ACKNOWLEDGEMENTS

First and foremost, I would like to show great gratitude to my Supervisor, Professor Dr. Arbakariya B. Ariff who accepted me as his graduate student, in spite of my decade long break from full time studies. I would also like to acknowledge his generous guidance, kindness, thoughtfulness and helpful and valuable support shown to me throughout the second part of my study path. Without him, it may not have been possible to upgrade from my MSc level to a PhD. Further, I would like to extend my gratitude to my co-supervisors; Associate Professor Dr. Ling Tau Chuan and Associate Professor Dr. Tey Beng Ti for their professional guidance, moral support and helpfulness throughout my research. Special thanks are also due to all of them for giving me full freedom to pursue my research in my own work style and for bearing up with my behavior especially during stressful periods before a deadline. Even during such difficult periods, they never gave any negative reply. This was very motivating and became my driving force which in turn helped me spend quality time in the laboratory and on the laptop. Thank you all once again.

Next, I would like to thank all my fellow researchers cum friends in Laboratory of Immunotherapeutics and Vaccines (LIVES) (Kelvin, Faizal, Tam, Lo, Caryn, Rajif, Fathimeh and others), Biotech 3 (Shamzi, Azlan, Palie and others) and UPM for their help and support. Also, I extend my full appreciation to Dr. Varma who helped me settle down in the initial part of my stay in Malaysia- making it a home away from home. I cannot forget to give my heartiest thanks to my research group brothers and sisters (Fadzli, Hamid, Joo Shun, Ani, Chien Wei, Hor Shee, Amira, Kiat and others) for their continuous support, knowledge sharing and great assistance during my stay.
in Malaysia. Special thanks are also due to all the staff of LIVES, Institute of Bioscience (IBS) and Biotech 3 for their kind assistance in all the matters.

At this juncture, I would like to thank lecturers and professors of Universiti Putra Malaysia (UPM) who assisted, motivated and encouraged me during my course of study; particularly, Professor Dr. Abdul Rahman Omar (Deputy Director, IBS) for assisting me during the conversion of MSc to PhD, Senior Lecturer Dr. Vijay Kumar Mallan (Faculty of Modern Language and Communication) for his valuable workshop regarding Publishing for Postgraduates and Professor Dato’ Dr. Sheikh Omar Abdul Rahman (Faculty of Veterinary Medicine) for his motivation talk.

I am indebted to my beloved mother and family for their tolerance, sacrifices and patience as they were unable to see me at all during this PhD career.

I am grateful to my mentors and well wishers especially, Professor S.V. Raman who helped me build a strong foundation in Chemical Engineering, and Mrs. Rohini Rajagopalan for helping polish my language during this study.

Last but not the least, I would like to acknowledge the Ministry of Science, Technology and Innovation, (MOSTI) Malaysia for funding this study under the SR IRPA research grant (Project Number: 03-02-04 SR2010 SR0008/05) and UPM for providing me with the graduate research fellowship.
I certify that a Thesis Examination Committee has met on 27.10.2009 to conduct the final examination of R. Nagasundara Ramanan on his thesis entitled “Periplasmic Expression, Recovery and Quantification of Recombinant Human Interferon-Α2b in Fermentation by Escherichia coli” in accordance with the Universities and University Colleges Act 1971 and the Constitution of the Universiti Putra Malaysia [P.U.(A) 106] 15 March 1998. The Committee recommends that the student be awarded the Doctor of Philosophy.

Members of the Thesis Examination Committee were as follows:

Umi Kalsom Md Shah, PhD
Associate Professor
Faculty of Biotechnology and Biomolecular Sciences
Universiti Putra Malaysia
(Chairman)

Raha Abdul Rahim, PhD
Professor
Faculty of Biotechnology and Biomolecular Sciences
Universiti Putra Malaysia
(Internal Examiner)

Rosfarizan Mohamad, PhD
Associate Professor
Faculty of Biotechnology and Biomolecular Sciences
Universiti Putra Malaysia
(Internal Examiner)

Ruey-Shin Juang, PhD
Professor
Department of Chemical Engineering and Materials Science
Yuan Ze University
Taiwan
(External Examiner)

Bujang Kim Huat, PhD
Professor and Deputy Dean
School of Graduate Studies
Universiti Putra Malaysia

Date: 24 December 2009
This thesis was submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfilment of the requirement for the degree of Doctor of Philosophy. The members of the Supervisory Committee were as follows:

Arbakariya B. Ariff, PhD
Professor
Faculty of Biotechnology and Biomolecular Sciences
Universiti Putra Malaysia
(Chairman)

Ling Tau Chuan, PhD
Associate Professor
Faculty of Engineering
Universiti Putra Malaysia
(Member)

Tey Beng Ti, PhD
Associate Professor
Faculty of Engineering
Universiti Putra Malaysia
(Member)

HASANAH MOHD GHAZALI, PhD
Professor and Dean
School of Graduate Studies
Universiti Putra Malaysia

Date: 14 January 2010
DECLARATION

I declare that the thesis is my original work except for quotation and citations which have been duly acknowledged. I also declare that it has not been previously, and is not concurrently, submitted for any other degree at Universiti Putra Malaysia or at any other institution.

R. NAGASUNDARA RAMANAN

Date:
TABLE OF CONTENTS

DEDICATION ii
ABSTRACT iii
ABSTRAK vi
ACKNOWLEDGEMENTS ix
APPROVAL SHEETS xi
DECLARATION FORM xiii
LIST OF TABLES xix
LIST OF FIGURES xxi
LIST OF APPENDICES xxv
LIST OF ABBREVIATIONS xxvi

CHAPTER

1 **INTRODUCTION** 1
1.1 Background 1
1.2 Objectives 3

2 **LITERATURE REVIEW** 6
2.1 Interferons (IFNs) 6
2.1.1 Discovery of IFN 6
2.1.2 Mechanism of IFN against foreign constituents 6
2.1.3 Classification of IFNs 7
2.1.4 Uses of IFN-α2b 8
2.2 Platforms for recombinant expression 9
2.3 Structure of *E. coli* and pathway of protein transfer to periplasm 11
2.4 Expression in periplasmic space of *E. coli* 13
2.4.1 Genetic strategies 13
2.4.2 Commercial plasmids 19
2.5 Cell disruption 21
2.5.1 Classification of cell disruption 21
2.5.2 Selection of cell disruption techniques 23
2.5.3 Techniques used at laboratory scale 23
2.5.4 Techniques used for periplasmic product release 28
2.6 Quantification of IFN-α2b 30
2.6.1 Different methods of quantification 30
2.6.2 Principle of surface plasmon resonance (SPR) 34
2.6.3 Choice of sensor chip surface for ligand immobilization 36
2.6.4 Uses of SPR 37
2.7 Purification of IFN-α2b 37
2.7.1 Chromatography techniques 37
9.3.2 Immobilization kinetics onto the CM beads using M I activation
9.3.3 Immobilization kinetics onto the CM beads using M II activation
9.3.4 Stability of ligand linkage on different buffers
9.3.5 Effect of immobilization method on binding capacity
9.4 Conclusion

10 GENERAL CONCLUSIONS AND RECOMMENDATIONS FOR FUTURE WORK
10.1 General conclusions
10.2 Recommendations for future work

REFERENCES
APPENDIX A: DATA
APPENDIX B: CALCULATION
APPENDIX C: PROTOCOLS
APPENDIX D: STANDARD CURVES
APPENDIX E: PROGRAM
BIODATA
LIST OF PUBLICATIONS
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Difference in amino acid residues at two positions of IFN-α2 subvariants</td>
<td>8</td>
</tr>
<tr>
<td>2.2</td>
<td>Commercial production of IFN-α2b from different organism either available in market or in clinical trial</td>
<td>10</td>
</tr>
<tr>
<td>2.3</td>
<td>Characteristics of the commercial plasmids</td>
<td>20</td>
</tr>
<tr>
<td>2.4</td>
<td>Selection of disruption technique by comparative study of different disruption techniques</td>
<td>24</td>
</tr>
<tr>
<td>2.5</td>
<td>Patent activities regarding soluble expression, recovery and purification, and detection and quantification of IFN</td>
<td>42</td>
</tr>
<tr>
<td>3.1</td>
<td>Comparison of IFN-α2b expression between pET-IFN and pFLAG –IFN</td>
<td>58</td>
</tr>
<tr>
<td>4.1</td>
<td>Studies conducted using different ways of glass bead disruption</td>
<td>68</td>
</tr>
<tr>
<td>4.2</td>
<td>Protein release kinetics at different glass beads ratio at three different shaking speeds</td>
<td>78</td>
</tr>
<tr>
<td>4.3</td>
<td>Average total protein and average IFN-α2b released using different disruption methods and different media with the glass bead shaking method</td>
<td>81</td>
</tr>
<tr>
<td>5.1</td>
<td>Characteristics of different cell disruption methods</td>
<td>95</td>
</tr>
<tr>
<td>6.1</td>
<td>Plackett Burman design and its response</td>
<td>121</td>
</tr>
<tr>
<td>6.2</td>
<td>ANOVA for IFN-α2b release in Plackett Burman design</td>
<td>122</td>
</tr>
<tr>
<td>6.3</td>
<td>ANOVA for selective product release in Plackett Burman design</td>
<td>123</td>
</tr>
<tr>
<td>6.4</td>
<td>CCD and its response</td>
<td>125</td>
</tr>
<tr>
<td>6.5</td>
<td>ANOVA for IFN-α2b release in CCD</td>
<td>127</td>
</tr>
<tr>
<td>6.6</td>
<td>ANOVA for selective product release in CCD</td>
<td>127</td>
</tr>
<tr>
<td>6.7</td>
<td>Constraints targeting only for IFN-α2b release and its solutions according to the model</td>
<td>136</td>
</tr>
</tbody>
</table>
6.8 Constraints targeting for both cell concentration to hypotonic solution and IFN-α2b release and its solutions according to the model

6.9 Comparison of IFN-α2b release and selective product release for different cell concentration ratio and volume of sample

7.1 Calculation of binding rate, end point response and binding ratio of both ligand densities for different IFN-α2b concentrations

7.2 Quantification of unknown samples using binding rate and endpoint response standard curves from HLD (Figure 7.6)

8.1 Specificity test for IFN-α2b

8.2 Statistical parameters for repeatability test

8.3 Summary for accuracy and intermediate precision analysis

8.4 Standard curve values for chip 2

8.5 Parameters of standard curves

8.6 Stability test for continuous run

8.7 Sample stability test in holder for 90 cycles

8.8 Assessment of dilution paradox

9.1 Immobilization efficiency of CM beads prepared using M I and M II activation

9.2 Percentage of immobilized protein intact after NaOH treatment for CM beads prepared using M I and M II activation

9.3 Batch binding of IFN-α2b on anti-FN beads

9.4 Effect of excessive ligate loading on anti-IFN beads
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Flow of work</td>
<td>5</td>
</tr>
<tr>
<td>2.1</td>
<td>Production and action of IFN</td>
<td>7</td>
</tr>
<tr>
<td>2.2</td>
<td>Simplified diagram showing cell structure of E. coli and pathway of protein transfer to periplasm</td>
<td>12</td>
</tr>
<tr>
<td>2.3</td>
<td>Domain structure of the signal sequence fused with the target gene</td>
<td>17</td>
</tr>
<tr>
<td>2.4</td>
<td>Classification of Cell disruption</td>
<td>22</td>
</tr>
<tr>
<td>2.5</td>
<td>Methods of Quantification for IFNs</td>
<td>31</td>
</tr>
<tr>
<td>2.6</td>
<td>Detection principle of SPR</td>
<td>35</td>
</tr>
<tr>
<td>3.1</td>
<td>Plasmid maps of pFLAG-ATS (A) and pET-26b(+) (B)</td>
<td>49</td>
</tr>
<tr>
<td>3.2</td>
<td>Construct of pFLAG-IFN (A) and pET-IFN (B)</td>
<td>51</td>
</tr>
<tr>
<td>3.3</td>
<td>Sequencing result of the Clone pET-IFN transformed in RG 2(DE3) with T7 promoter primer</td>
<td>52</td>
</tr>
<tr>
<td>3.4</td>
<td>Sequencing result of the Clone pET-IFN transformed in RG 2(DE3) with T7 terminator primer</td>
<td>53</td>
</tr>
<tr>
<td>3.5</td>
<td>Western blot for pET-IFN</td>
<td>57</td>
</tr>
<tr>
<td>3.6</td>
<td>Secondary structure diagram for pFLAG-IFN taken from Vienna RNA package</td>
<td>60</td>
</tr>
<tr>
<td>3.7</td>
<td>Secondary structure diagram for pET-IFN taken from Vienna RNA package</td>
<td>61</td>
</tr>
<tr>
<td>3.8</td>
<td>Sequence of pFLAG-IFN and pET-IFN numbered in 10s which was used to run the secondary structure prediction and corresponding minimum free energy plots</td>
<td>62</td>
</tr>
<tr>
<td>3.9</td>
<td>Minimum free energy plot for pFLAG-IFN (A) and pET-IFN (B) taken from Vienna RNA package</td>
<td>63</td>
</tr>
</tbody>
</table>
4.1 Effect of glass beads ratio at 225 rpm for total protein release 76
4.2 Effect of glass beads ratio for total protein release at 300 and 350 rpm 77
4.3 Effect of different shaking speeds for total protein release 79
4.4 Effect of three different media for total protein release 80
4.5 Effect of different cell suspension volumes and different containers for total protein release 82
4.6 Comparison of different method of disruption for total protein release 84
4.7 SDS-PAGE of different methods of cell disruption 85
5.1 Cumulative distribution of before disruption, osmotic shock and low pressure range after each number of passes for 27.8 g/L of cell concentration 98
5.2 Density distribution of before disruption, osmotic shock and low pressure range after each number of passes for 27.8 g/L of cell concentration 99
5.3 Cumulative distribution of before disruption and high pressure range after each number of passes for 27.8 g/L of cell concentration 101
5.4 Density distribution of before disruption and high pressure range after each number of passes for 27.8 g/L of cell concentration 102
5.5 Cumulative distribution of before disruption and transition pressure after each number of passes for 27.8 g/L of cell concentration 104
5.6 Density distribution of before disruption and transition pressure after each number of passes for 27.8 g/L of cell concentration 105
5.7 Protein release for different cell concentrations 107
5.8 Reduction of cell viability for different cell concentrations 108
5.9 Cumulative distribution of different pressure ranges for
different cell concentrations after three passes and before
disruption

5.10 SDS-PAGE of different cell disruption methods

6.1 Three dimensional plot described by the model for IFN-α2b release (ng/g) with respect to sucrose concentration (%) (A) and cell concentration to hypertonic solution (g/mL) (B) at 0.2 g of cell/mL of hypotonic solution

6.2 Three dimensional plot described by the model for IFN-α2b release (ng/g) with respect to sucrose concentration (%) (A) and cell concentration to hypotonic solution (g/mL) (C) at 0.05 g of cell/mL of hypertonic solution

6.3 Three dimensional plot described by the model for IFN-α2b release (ng/g) with respect to cell concentration to hypertonic solution (g/mL) (B) and cell concentration to hypotonic solution (g/mL) (C) at 18% sucrose concentration

6.4 Three dimensional plot described by the model for selective product release (ng/mg) with respect to sucrose concentration (%) (A) and cell concentration to hypertonic solution (g/mL) (B) at 0.2 g of cell/mL of hypotonic solution

6.5 Three dimensional plot described by the model for selective product release (ng/mg) with respect to sucrose concentration (%) (A) and cell concentration to hypotonic solution (g/mL) (C) at 0.05 g of cell/mL of hypertonic solution

6.6 Three dimensional plot described by the model for selective product release (ng/mg) with respect to cell concentration to hypertonic solution (g/mL) (B) and cell concentration to hypotonic solution (g/mL) (C) at 18% sucrose concentration

6.7 Percentage of IFN-α2b release and total protein release
during the reuse of hypertonic solution

7.1 pH scouting at different flow rates and different concentrations of anti-IFN

7.2 Comparison of immobilization and pH scouting of anti-IFN

7.3 Total cycle of immobilization for LLD (A) and HLD (B)
<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.4</td>
<td>Baseline level and Response level for 5 consecutive cycles</td>
<td>153</td>
</tr>
<tr>
<td>7.5</td>
<td>Difference in the IFN-α2b response of LLD and HLD</td>
<td>155</td>
</tr>
<tr>
<td>7.6</td>
<td>Standard curves using endpoint response and binding rate for both ligand densities</td>
<td>158</td>
</tr>
<tr>
<td>8.1</td>
<td>Sensogram (FC2) of standards passed onto the chip 2</td>
<td>163</td>
</tr>
<tr>
<td>8.2</td>
<td>Analyte response and baseline response for repeatability test</td>
<td>165</td>
</tr>
<tr>
<td>8.3</td>
<td>Standard curve for chip 1</td>
<td>171</td>
</tr>
<tr>
<td>8.4</td>
<td>Standard curve for chip 2</td>
<td>171</td>
</tr>
<tr>
<td>9.1</td>
<td>Time course for adsorption of BSA onto the CM beads</td>
<td>185</td>
</tr>
<tr>
<td>9.2</td>
<td>Time course for immobilization of BSA onto the CM beads using M I activation</td>
<td>187</td>
</tr>
<tr>
<td>9.3</td>
<td>Time course for immobilization of BSA onto the CM beads using M II activation</td>
<td>189</td>
</tr>
<tr>
<td>9.4</td>
<td>SDS-PAGE for batch binding experiment conducted with anti-IFN immobilized onto the CMB1 beads</td>
<td>194</td>
</tr>
<tr>
<td>9.5</td>
<td>SDS-PAGE for batch binding experiment conducted with anti-IFN immobilized onto the CMB3 beads</td>
<td>195</td>
</tr>
</tbody>
</table>