QUANTIFICATION OF CIRCULATING EPSTEIN-BARR VIRUS LATENT MEMBRANE PROTEIN 1 GENE AND ANALYSIS OF 30-BP DELETION AND XHOI-LOSS VARIANTS IN NASOPHARYNGEAL CARCINOMA

SEE HUI SHIEN

FPSK(M) 2007 12
QUANTIFICATION OF CIRCULATING EPSTEIN-BARR VIRUS LATENT MEMBRANE PROTEIN 1 GENE AND ANALYSIS OF 30-BP DELETION AND XHOI-LOSS VARIANTS IN NASOPHARYNGEAL CARCINOMA

By

SEE HUI SHIEN

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfilment of the Requirements for the Degree of Master of Science

October 2007
Specially dedicated to,

My parents, sisters and brother,

For their invaluable love, understanding, encouragement and moral support
Nasopharyngeal carcinoma (NPC) is a human epithelial tumour with a high prevalence in Southern Chinese population. In Malaysia, NPC has become the second most frequent cancers among males and fifth most frequent cancers in females. Genetics, immunologic factors, preserved foods, excessive salts, smoking, various infecting factors are relevant with NPC. A unique feature of NPC is its strong association with Epstein-Barr virus (EBV). Previous studies have shown that EBV-encoded latent membrane protein 1 (LMP1) gene was considered to be associated with the tumourigenesis of NPC. The presence of EBV LMP1 gene variants were shown to be more oncogenic than the LMP1 gene from the prototype virus, B95-8. Free EBV DNA can be detected in serum or plasma from NPC patients and it has been shown to be derived from tumours. This raises the possibility that an easy and non-invasive method may be developed for diagnostic
and disease monitoring purposes in NPC. Thus, the aim of the study is to determine the prevalence of these variants, based mainly on the XhoI restriction site polymorphism and the 30bp deletion of LMP1 gene, and to evaluate the potential role of circulating EBV LMP1 as a molecular marker for diagnosis and disease monitoring in NPC patients.

By employing Polymerase Chain Reaction method (PCR), the presence of 30bp deletion and the loss of XhoI restriction site of LMP1 gene in 42 and 10 archival formalin fixed, paraffin-embedded tissues of NPC and non-malignant nasopharyngeal biopsy specimens, respectively, and 35 plasma samples from nasopharyngeal carcinoma were studied. The wild type EBV strain from B95.8 was used as negative control and DNA from 2 NPC tissues as confirmed by DNA sequencing for the presence of 30-bp deletion was used as the positive control in this study. In the quantification of circulating EBV DNA load analysis, 41 plasma samples from NPC patients were used. Standard curve generated by using quantitative Real-Time PCR method against EBV LMP1 was used to quantify the circulating EBV DNA in 18 NPC subjects at the time of the initial diagnosis, 14 in the middle of treatment and 9 after radiotherapy or chemotherapy. The EBV DNA copy number in 19 apparently healthy adults was also evaluated.

The results showed that: 1) The presence of 30-bp deletion and loss of XhoI restriction site can be found in both nasopharyngeal biopsy tissues and also in plasma samples. However, the frequency detected in plasma was lower compared to
primary tumor site. The 30-bp deletion was detected in 55.9% of NPC tissues and 24.1% NPC plasma. Interestingly, 17.2% of plasma samples harbored both the deleted and non-deleted variants, thus, suggestive of dual infections in these patients. The loss of XhoI restriction site in LMP1 gene was found in 87.2% of the NPC tissues and 36.7% of plasma samples. There was no 30-bp deletion and XhoI-loss in non-malignant nasopharyngeal tissues. Majority of our samples (59.4% of NPC tissues and 26.9% of plasma samples) showed the presence of both of the 30-bp deletion and the loss of XhoI restriction site, which resembles the CAO, C1510, China 1 and DV2 isolated from high endemic area for NPC. 2) The 30-bp deletion and loss of XhoI restriction site have been found to be more prevalent in Chinese compared to Malay (30bp-deletion, \(p=0.000 \); XhoI-loss, \(p=0.046 \)), and its percentage were higher in type III (undifferentiated carcinoma) than in type I (squamous cell carcinoma) NPC biopsy tissues (30bp-deletion, \(p=0.011 \); XhoI-loss, \(p=0.006 \)). 3) The EBV DNA detection rate in the plasma of NPC patients (94.4%) was significantly higher than in apparently healthy adults (AHAs) (15.8%). According to the receiver-operating characteristic (ROC) curve analysis, plasma EBV DNA levels at the cut-off of 0 copy/ml combined a sensitivity of 94.4% (C.I.95%=72.6-99.1) with a specificity of 84.2% (C.I.95%=60.4-96.4) for detection of NPC, and a ROC AUC of 0.904 (C.I.95%: from 0.760-0.975). The mean circulating EBV DNA load in the plasma of untreated NPC patients (median=2471 copies/ml copies/ml) was higher than AHAs (median=0 copy/ml). A significant decrease in EBV load was observed in patients who had undergone radiotherapy (median=0 copy/ml) while three patients had remaining EBV load. The mean of the
post-treatment EBV DNA levels were not statistically different with the AHAs samples. 4) None of the clinicopathological features were associated with the pre-treatment plasma EBV DNA load including tumour histological type and clinical stage.

The important findings in this study are: 1) High frequency of 30-bp deletion and \textit{XhoI}-loss in the LMP1 gene is present in Malaysian NPC population. The distribution of higher level of 30-bp deletion and \textit{XhoI}-loss in Chinese and Type III NPC may be associated with geographical/ethnic and clinical background. It suggested that these variants may have unique functional properties, which determine disease association or development. 2) The circulating EBV \textit{LMP1} was detectable in NPC patients and it was shown to be proportionally related to the presence of malignant disease, suggested that the \textit{LMP1} may serve as a molecular marker for diagnosis and disease monitoring in NPC.

In conclusion, a high prevalence of 30-bp deletion and \textit{XhoI}-loss in \textit{LMP1} were present in Malaysian NPC. By using the sensitive, accurate and robust real-time PCR technique, we have showed the clinical significance of detecting the EBV \textit{LMP1} in the plasma where the quantification of EBV \textit{LMP1} may be a useful indicator for screening, diagnosis and disease monitoring in NPC.
KUANTIFIKASI PEREDARAN GEN LATENT MEMBRANE PROTEIN 1 VIRUS EPSTEIN-BARR DAN ANALISIS VARIAN PEMOTONGAN 30-BP SERTA KEHILANGAN XHOI DALAM KANSER NASOFARINKS

Oleh

SEE HUI SHIEN

Oktober 2007

Pengerusi: Profesor Seow Heng Fong, PhD
Fakulti: Perubatan dan Sains Kesihatan

Kanser nasofarinks (NPC) merupakan sejenis tumor epitelia manusia yang tersebar luas dalam populasi Cina Selatan. NPC merupakan barah yang kedua paling kerap di kalangan lelaki dan kelima paling kerap di kalangan wanita. Genetik, faktor imunologi, makanan pengawet, kelebihan garam, merokok dan pelbagai faktor infeksi adalah berkaitan dengan NPC. Salah satu sifat unik NPC adalah perkaitannya yang kuat dengan virus Epstein-Barr (EBV). Kajian terdahulu telah membuktikan gen latent membrane protein 1 (LMP1) yang dikodkan oleh EBV adalah berkaitan dengan asal usul genesis tumor NPC. Kehadiran varian gen LMP1 EBV telah dibuktikan lebih onkogenik berbanding dengan gen LMP1 dari virus prototaip, B95-8. DNA bebas EBV boleh dikesan di serum atau plasma dari pesakit NPC dan ia telah ditunjukkan berasal dari tumor. Ini telah membangkitkan kemungkinan bahawa sejenis cara yang mudah dan tidak invasif boleh dimajukan...
untuk tujuan diagnosis dan pemantauan penyakit dalam NPC. Maka, tujuan kajian kami adalah untuk menentukan penyebaran jenis varian, berdasarkan kepelbagaian dalam tempat pemotongan $XhoI$ dan juga pembuangan 30-bp daripada gen LMP1 serta menilai peranan potensi daripada peredaran EBV $LMP1$ sebagai tanda molekular untuk diagnosis dan pemantauan penyakit dalam pesakit NPC.

Dengan menggunakan teknik Polymerase Chain Reaction (PCR), kehadiran pembuangan 30-bp dan kehilangan tempat pemotongan $XhoI$ dalam gen LMP1 dari 42 dan 10 spesimen biopsi NPC dan nasofarinks yang tak malignan, masing masing serta 35 sampel plasma dari NPC telah dikaji. Dalam kajian ini, EBV jenis liar, B95.8 telah digunakan sebagai kontrol negatif dan NPC 1 serta 2 yang dikaji oleh penjujukan DNA untuk kehadiran pembuangan 30-bp telah digunakan sebagai kontrol positif. Empat puluh satu sampel plasma dari pesakit NPC telah digunakan dalam analisis kuantifikasi peredaran DNA EBV. Lengkung piawai yang dihasilkan dengan menggunakan cara kuantitasi Real-Time PCR tentang EBV $LMP1$ telah digunakan untuk kuantitasi peredaran DNA EBV dalam 18 subjek NPC pada masa diagnosis, 14 pada pertengahan rawatan dan 9 selepas radioterapi atau kemoterapi. Bilangan DNA dalam 19 dewasa nampak sihat (AHA) telah dinilai.

dikesan dalam 55.9% tisu NPC dan 24.1% plasma NPC. Dengan menariknya, 17.2% sampel plasma mempunyai kedua-dua varian pembuangan dan tanpa pembuangan, mencadangkan infeksi dua kali dalam pesakit ini. Kehilangan tempat pemotongan \textit{XhoI} dalam gen LMP1 telah dijumpai dalam 87.2% tisu NPC dan 36.7% sampel plasma. Tiada pembuangan 30-bp dan kehilangan tempat pemotongan \textit{XhoI} dijumpai dalam tisu nasofarinks tak malignan. Kebanyakan sampel kami (59.4% tisu NPC dan 26.9% sampel plasma) menunjukkan kehadiran kedua-dua pembuangan 30-bp dan kehilangan tempat pemotongan \textit{XhoI} yang mirip CAO, C1510, China 1 dan DV2 yang diasinkan dari kawasan endemik tinggi untuk NPC. 2) Pembuangan 30-bp dan kehilangan tempat pemotongan \textit{XhoI} telah dikesan lebih tersebar di kalangan kaum Cina berbanding dengan Melayu. (pemotongan 30-bp, \(p=0.000\); kehilangan \textit{XhoI}, \(p=0.046\)), dan peratusnya adalah lebih tinggi dalam Jenis III (karsinoma tak membeza) berbanding dengan Jenis I (karsinoma sel skuamus) tisu biopsi NPC (pembuangan 30-bp, \(p=0.011\); kehilangan \textit{XhoI}, \(p=0.006\)). 3) Kadar pengesan DNA EBV dalam plasma pesakit NPC (94.4%) adalah lebih tinggi berbanding dengan AHA (15.8%). Menurut analisis lengkung receiver-operating characteristic (ROC), tahap DNA EBV plasma pada titik pemotongan 0 copy/ml bergabung dengan 94.4% sensitiviti (C.I.95%=72.6-99.1) dan 84.2% spesifisiti (C.I.95%=60.4-96.4) untuk pengesan NPC, dengan 0.904 ROC AUC (C.I.95%: dari 0.760-0.975). Min peredaran beban DNA EBV dalam plasma pesakit NPC yang belum terima rawatan (median=2471 copies/ml copies/ml) adalah lebih tinggi berbanding dengan AHA (median=0 copy/ml). Pengurangan yang ketara dalam beban EBV telah diperhatikan dalam pesakit yang
menjalani radioterapi (median=0 copy/ml) manakala tiga orang pesakit masih mempunyai beban EBV. Min tahap EBV selepas rawatan adalah tidak berbeza secara statistik dengan sampel AHA. 4) Tiada kaitan antara ciri-ciri klinikopatologi dengan beban DNA EBV pada plasma sebelum rawatan termasuk jenis histologi barah dan peringkat klinikal.

Penemuan yang penting dalam kajian ini adalah: 1) Frekuensi yang tinggi dalam pembuangan 30-bp dan kehilangan $XhoI$ dalam gen LMP1 hadir di kalangan populasi NPC Malaysia. Pembahagian tahap yang tinggi untuk pembuangan 30-bp dan kehilangan $XhoI$ di kalangan Cina dan Jenis III NPC mungkin berkaitan dengan geografi/etnik dan latar belakang klinikal. Ia telah mencadangkan varian-varian ini mungkin memiliki fungsi yang unik dalam menentukan kehadiran atau pembangunan penyakit. 2) Peredaran EBV $LMP1$ telah dikesan di kalangan pesakit NPC dan ia telah ditunjukkan berkaitan secara setimpal dengan kehadiran penyakit malignan, mencadangkan bahawa $LMP1$ mungkin berpotensi sebagai tanda molekular untuk diagnosis dan pemantauan penyakit dalam NPC.

Kesimpulannya, penyebaran luas pembuangan 30-bp dan kehilangan $XhoI$ hadir di NPC Malaysia. Dengan menggunakan teknik real-time PCR yang sensitive, tepat, dan kuat, kami telah menunjukkan kepentingan klinikal dengan mengesan EBV $LMP1$ dalam plasma di mana kuantifikasi EBV $LMP1$ boleh dijadikan indikasi yang berguna untuk penyaringan, diagnosis dan pemantauan penyakit dalam NPC.
ACKNOWLEDGEMENTS

First and foremost, I would like to take this opportunity to express my greatest gratitude and appreciation to my supervisor, Prof. Dr. Seow Heng Fong for her valuable guidance, advice, suggestions and endless help during the time I carried out this project. Her careful reviews and constructive criticism have been crucially important for the success of this project as well as the writing of this thesis.

My sincere gratitude is also accorded to my co-supervisor, Dr. Yap Yoke Yeow, for his ever willing to lend his advice and support. His kindness and guidance is very much appreciated.

My sincere thanks go to Dr. Maha Abdullah, Leong Pooi Pooi, Lim Pei Ching, Cheah Hween Yee, Loh Hui Woon and Yip Wai Kien for their valuable guidance and advice. Thank you for being caring and always ready to assist me when I need it most.

Not forgetting also a million thanks to all the members of the Immunology laboratory, Dr. Sharmili, Dr. Rajesh, Choo Chee Wei, Jee Jap Meng, Masriana Hassan, Ooi Suek Chin, Leslie Than, Vincent Leong, Lim Chooi Ling, Koh Rhun Yian, Siti Aishah, Siti Hasrizan, Jervis Chow, Jasmine Lim, Mahathir, and Mr. Anthonysamy for their collaboration, endless support, understanding, and
friendship. I am also grateful to Low Lee Yean, Crystal Lim and Phelim Yong for their generous assistance.

Last but not least, to my parents, sisters and brother, thank you for your endless prayer and support. Collectively, you are my inspiration.

Thank you.
I certify that an Examination Committee has met on 22nd October 2007 to conduct the final examination of See Hui Shien on her Master of Science thesis entitled “Quantification of Circulating Epstein-Barr Virus Latent Membrane Protein 1 Gene and Analysis of 30-BP Deletion and XhoI-Loss Variants in Nasopharyngeal Carcinoma” in accordance with Universiti Pertanian Malaysia (Higher Degree) Act 1980 and Universiti Pertanian Malaysia (Higher Degree) Regulations 1981. The Committee recommends that the student be awarded the degree of Master of Science.

Members of the Examination Committee were as follows:

Mirnalini Kandiah, PhD
Associate Professor
Faculty of Medicine and Health Sciences
Universiti Putra Malaysia
(Chairman)

Zamberi Sekawi, PhD
Associate Professor
Faculty of Medicine and Health Sciences
Universiti Putra Malaysia
(Internal Examiner)

Fauziah Othman, PhD
Professor
Faculty of Medicine and Health Sciences
Universiti Putra Malaysia
(Internal Examiner)

Sam Choon Kook, PhD
Lecturer
National Institute of Education
Nanyang Technological University
(External Examiner)

HASANAH MOHD. GHAZALI, PhD
Professor and Deputy Dean
School of Graduate Studies
Universiti Putra Malaysia

Date: 17 December 2007
This thesis was submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfilment of the requirement for the degree of Master of Science. The members of the Supervisory Committee were as follows:

Seow Heng Fong, PhD
Professor
Faculty of Medicine and Health Sciences
Universiti Putra Malaysia
(Chairman)

Yap Yoke Yeow, M.Med.
Lecturer and Otorhinolaryngologist
Faculty of Medicine and Health Sciences
Universiti Putra Malaysia
(Member)

AINI IDERIS, PhD
Professor and Dean
School of Graduate Studies
Universiti Putra Malaysia

Date: 22 January 2008
DECLARATION

I hereby declare that the thesis is based on my original work except for quotations and citations which have been duly acknowledged. I also declare that it has not been previously or concurrently submitted for any other degree at UPM or other institutions.

SEE HUI SHIEN

Date:
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>DEDICATION</td>
<td></td>
<td>ii</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td></td>
<td>iii</td>
</tr>
<tr>
<td>ABSTRAK</td>
<td></td>
<td>vii</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td></td>
<td>xi</td>
</tr>
<tr>
<td>APPROVAL</td>
<td></td>
<td>xiii</td>
</tr>
<tr>
<td>DECLARATION</td>
<td></td>
<td>xv</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td></td>
<td>xix</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td></td>
<td>xx</td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
<td></td>
<td>xxiv</td>
</tr>
</tbody>
</table>

CHAPTER

1 INTRODUCTION

2 LITERATURE REVIEW

2.1 Nasopharyngeal carcinoma (NPC)
2.1.1 Anatomy of the nasopharynx
2.1.2 Pathology of NPC
2.1.3 Epidemiology
2.1.4 Risk factor and etiology
2.1.5 Clinical presentation, diagnosis and staging
2.1.6 Treatment
2.1.7 Difficulties in diagnosis, treatment response monitoring, prognosis and progression
2.2 Epstein-Barr virus (EBV)
2.2.1 EBV biology and immunology
2.2.2 Primary and persistent EBV infection
2.3 Epstein-Barr virus (EBV) and nasopharyngeal carcinoma (NPC)
2.3.1 EBV infection in NPC
2.3.2 EBV gene expression in NPC
2.3.3 Latent Membrane Protein 1 (LMP1) variant and its transformation potential in NPC
2.3.4 Circulating EBV DNA in plasma
2.4 Quantitative Real-Time Polymerase Chain Reaction (Quantitative Real-Time PCR)

3 MATERIALS AND METHODS

3.1 Specimen collection

3.1.1 Tissue specimens 44
3.1.2 Blood 44
3.2 Cell culture 45
3.3 DNA extraction 45
3.3.1 Tissue specimens 45
3.3.2 Plasma samples 46
3.3.3 Cultured cells 47
3.4 PCR amplification 48
3.4.1 PCR reagents 48
3.4.2 PCR amplification of Latent Membrane Protein 1 (LMP1) 30-base pair deletion region 49
3.4.3 PCR amplification of XhoI restriction site 49
3.4.4 PCR amplification of B-actin gene 50
3.5 PCR product purification 52
3.6 XhoI restriction endonuclease digestion of PCR product 52
3.7 EBV DNA quantification 53
3.7.1 Plasmid clones 53
3.7.2 Preparation of chemically competent E. coli cells 53
3.7.3 Heat shock transformation method 54
3.7.4 Miniprep of plasmid DNA 55
3.7.5 DNA sequencing 56
3.7.6 BamHI restriction endonuclease digestion of plasmid DNA 56
3.7.7 Gel purification of plasmid DNA 57
3.7.8 Standard curve generation 58
3.7.9 Real time PCR quantification of EBV LMP1 gene 59
3.8 Statistical Analysis 60

4 ANALYSIS OF THE EBV LMP1 VARIANTS IN NASOPHARYNGEAL CARCINOMA 61
4.1 Introduction 61
4.2 Clinicopathological data of patients 63
4.3 Detection of the EBV LMP1 gene 30-bp deletion 66
4.3.1 Result 66
4.3.2 Discussion 76
4.4 Detection of the XhoI polymorphism in the exon 1 of LMP1 gene 82
4.4.1 Result 82
4.4.2 Discussion 89
4.5 Summary of detection of the 30-bp deletion in exon 3 and XhoI polymorphism in exon 1 of LMP1 in NPC 93
4.5.1 Results 93
4.5.2 Discussion 94
4.6 Conclusion 97
5 QUANTIFICATION OF EBV DNA LOAD IN NASOPHARYNGEAL CARCINOMA

5.1 Introduction
5.2 Results
 5.2.1 Clinicopathological data of NPC patients
 5.2.2 Extracted plasma DNA
 5.2.3 The standard curve
 5.2.3.1 Plasmid DNA
 5.2.3.2 Inter-assay reproducibility
 5.2.4 EBV DNA load between NPC patients and apparently healthy adults
 5.2.5 Correlation between plasma NPC EBV DNA levels and clinicopathological characteristics of NPC patients
5.3 Discussion

6 CONCLUSIONS AND FUTURE RECOMMENDATIONS
6.1 Conclusions
6.2 Future recommendations

REFERENCES
APPENDICES
BIODATA OF THE AUTHOR
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1 The tumor, node, metastasis (TNM) classification of the American Joint Committee (AJCC) on Cancer</td>
<td>18</td>
</tr>
<tr>
<td>2.2 Stage grouping of NPC by AJCC</td>
<td>19</td>
</tr>
<tr>
<td>2.3 Patterns of latent gene expression in EBV-related malignancies</td>
<td>21</td>
</tr>
<tr>
<td>3.1 Target genes, primers and nucleotide sequences.</td>
<td>51</td>
</tr>
<tr>
<td>4.1 Clinicopathological details of NPC patients for the NPC tissues specimens used in the analysis of LMP1 gene variants.</td>
<td>64</td>
</tr>
<tr>
<td>4.2 Clinicopathological details of NPC patients for the plasma samples used in the analysis of LMP1 gene variants.</td>
<td>65</td>
</tr>
<tr>
<td>4.3 30-bp Deletion in NPC and non-malignant nasopharyngeal tissues</td>
<td>68</td>
</tr>
<tr>
<td>4.4 (A) Sequence variation in the LMP1 Exon 3 in isolates from two nasopharyngeal carcinoma tissues</td>
<td>69</td>
</tr>
<tr>
<td>4.4 (B) Comparison of deduced amino acid sequences in the LMP1 exon 3 in isolates from two nasopharyngeal carcinoma tissues</td>
<td>70</td>
</tr>
<tr>
<td>4.5 Association between clinicopathological data with 30-bp deletion studies in NPC tissue</td>
<td>71</td>
</tr>
<tr>
<td>4.6 30-bp deletion in NPC plasma samples</td>
<td>74</td>
</tr>
<tr>
<td>4.7 Association between clinicopathological data with 30-bp deletion studies in NPC plasma</td>
<td>75</td>
</tr>
<tr>
<td>4.8 XhoI polymorphism in NPC and non-malignant nasopharyngeal tissues</td>
<td>83</td>
</tr>
<tr>
<td>Section</td>
<td>Title</td>
</tr>
<tr>
<td>---------</td>
<td>-------</td>
</tr>
<tr>
<td>4.9</td>
<td>Association between clinicopathological data with \textit{XhoI} polymorphism in NPC tissue</td>
</tr>
<tr>
<td>4.10</td>
<td>\textit{XhoI} polymorphism in NPC plasma samples</td>
</tr>
<tr>
<td>4.11</td>
<td>Association between clinicopathological data with \textit{XhoI} polymorphism in NPC plasma</td>
</tr>
<tr>
<td>4.12</td>
<td>Comparison between the prevalence of the 30-bp deletion and \textit{XhoI} loss variants in NPC tissues and plasma</td>
</tr>
<tr>
<td>5.1</td>
<td>Clinicopathological data of NPC patients for the plasma samples used in the quantification of EBV \textit{LMP1} in NPC</td>
</tr>
<tr>
<td>5.2</td>
<td>C_T values (mean ± Standard Deviation) from five replicates amplification</td>
</tr>
<tr>
<td>5.3</td>
<td>EBV DNA load in nasopharyngeal carcinoma (NPC) patients</td>
</tr>
<tr>
<td>5.4</td>
<td>EBV DNA load in Apparently Healthy Adults (AHA)</td>
</tr>
<tr>
<td>5.5</td>
<td>Sensitivity, specificity and predictive values of plasma EBV DNA load for identification of NPC. Numbers in square brackets refer to lower and upper 95% confidence intervals (CI).</td>
</tr>
<tr>
<td>5.6</td>
<td>Correlation between clinicopathological characteristics with EBV DNA load in NPC plasma.</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>The nasopharynx is the upper part of the pharynx behind the nose.</td>
<td>6</td>
</tr>
<tr>
<td>2.2</td>
<td>The Epstein-Barr virus (EBV) genome.</td>
<td>24</td>
</tr>
<tr>
<td>2.3</td>
<td>A model for Epstein–Barr virus (EBV) infection and persistence.</td>
<td>26</td>
</tr>
<tr>
<td>2.4</td>
<td>Protein sequence comparison of BLMP1 and NLMP1.</td>
<td>36</td>
</tr>
<tr>
<td>4.1</td>
<td>Agarose electrophoresis gel of the LMP1 gene exon 3 amplicons with and without the 30-bp deletion from tissues samples as represented by the 156-bp and 186-bp band, respectively.</td>
<td>68</td>
</tr>
<tr>
<td>4.2</td>
<td>Agarose electrophoresis gel of the LMP1 gene exon 3 amplicons with and without the 30-bp deletion from plasma samples as represented by the 156-bp and 186-bp band, respectively.</td>
<td>73</td>
</tr>
<tr>
<td>4.3</td>
<td>Representative gel electrophoresis of LMP1 amplicons from NPC plasma showing simultaneous presence of wild type and 30-bp deletion variants.</td>
<td>74</td>
</tr>
<tr>
<td>4.4</td>
<td>PCR amplification of LMP1 exon 1 covering the XhoI restriction site. The PCR products shown were before purification.</td>
<td>85</td>
</tr>
<tr>
<td>4.5</td>
<td>Purified PCR products of LMP1 N-terminal covering the XhoI restriction site.</td>
<td>85</td>
</tr>
<tr>
<td>4.6</td>
<td>XhoI digestion analyses of NPC and non-malignant tissues as well as plasma samples from NPC patients.</td>
<td>86</td>
</tr>
<tr>
<td>5.1</td>
<td>Representative electrophoresis gel of the PCR amplification of β-actin gene with extracted DNA from plasma of NPC patients and apparently healthy adult.</td>
<td>102</td>
</tr>
</tbody>
</table>
5.2 Representative electrophoresis gel of the purified p-TOPO LMP1 plasmid DNA.

5.3 Representative electrophoresis gel of the PCR amplification of 447bp LMP1 gene from extracted plasmid DNA.

5.4 BLAST result of the sequencing sequence against Epstein-Barr virus genome, strain B95.8 (GenBank Accession no.V01555).

5.5 Representative electrophoresis gel of the recombinant p-TOPO LMP1 plasmid with BamHI restriction enzyme digestion.

5.6 Representative electrophoresis gel of the PCR amplification of LMP1 gene with purified BamHI digested p-TOPO LMP1 plasmid DNA.

5.7 (A) Representative real time PCR cycling profiles of LMP1 from the p-TOPO LMP1 plasmid DNA with starting EBV DNA ranging from 74.8 to 7480000 copies.

5.7 (B) Representative standard curve for LMP1 PCR generated from six serial dilutions of the p-TOPO LMP1 standard against their respective threshold value (C_T).

5.7 (C) Representative melting curves for LMP1 amplification products from p-TOPO LMP1 plasmid DNA of six concentrations.

5.8 Scatter plot of inter-assay comparisons between the six different concentration of EBV copies number and C_T values.

5.9(A) Representative real time PCR cycling profiles of LMP1 from the p-TOPO LMP1 plasmid DNA with starting EBV DNA ranging from 74.8 to 7480000 copies and the NPC samples.

5.9 (B) Representative standard curve for LMP1 PCR generated from six serial dilutions (indicated in blue dots) of the p-TOPO LMP1 standard against their respective threshold value (C_T).
5.9(C) Representative melting curves for LMP1 amplification products from p-TOPO LMP1 plasmid DNA of six concentrations and NPC samples.

5.10 Data with the cycle threshold (C_T) value of the amplification plot of pooled plasma of NPC individuals co-extracted with each samples. The coefficient of variation was 1.01% (mean C_T=29.56 ± 0.30).

5.11 Box plots represent the plasma EBV DNA concentrations in nasopharyngeal carcinoma (NPC) patients and apparently healthy adults (AHA).

5.12 Receiver-operating characteristic (ROC) curve analysis of plasma EBV DNA for the prediction of NPC.

5.13 Plasma cell-free EBV DNA in pre-treatment and intra-treatment NPC patients.

5.14 Plasma cell-free EBV DNA in untreated and treated NPC patients.

5.15 Box plots represent the plasma EBV DNA concentrations in pre-, intra-, and post-treatment in nasopharyngeal carcinoma (NPC) patients.

5.16 (A) Representative real time PCR cycling profiles of LMP1 from the p-TOPO LMP1 plasmid DNA with starting EBV DNA ranging from 74.8 to 7480000 copies, normal adults PBMC, TW06 and CNE1.

5.16 (B) Melting curves for LMP1 amplification products from p-TOPO LMP1 plasmid DNA of six concentrations, normal adults PBMC, TW06 and CNE1.
LIST OF ABBREVIATIONS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>~</td>
<td>Approximately</td>
</tr>
<tr>
<td>bp</td>
<td>Base-pair</td>
</tr>
<tr>
<td>kb</td>
<td>Kilobase-pair</td>
</tr>
<tr>
<td>β</td>
<td>Beta</td>
</tr>
<tr>
<td>°C</td>
<td>Degree of Celsius</td>
</tr>
<tr>
<td>%</td>
<td>Percentage</td>
</tr>
<tr>
<td>μl</td>
<td>Microliter</td>
</tr>
<tr>
<td>μm</td>
<td>Micrometer</td>
</tr>
<tr>
<td>ml</td>
<td>Milliliter</td>
</tr>
<tr>
<td>Mg</td>
<td>Miligram</td>
</tr>
<tr>
<td>μg</td>
<td>Microgram</td>
</tr>
<tr>
<td>ng</td>
<td>nanogram</td>
</tr>
<tr>
<td>A</td>
<td>Absorbance</td>
</tr>
<tr>
<td>AHA</td>
<td>Apparently healthy adults</td>
</tr>
<tr>
<td>AIDS</td>
<td>Acquired Immune Deficiency Syndrome</td>
</tr>
<tr>
<td>AJCC</td>
<td>American Joint Committee on Cancer</td>
</tr>
<tr>
<td>AKT</td>
<td>v-akt murine thymoma viral oncogene homolog</td>
</tr>
<tr>
<td>AML</td>
<td>Acute myelogenous leukemia</td>
</tr>
<tr>
<td>ANOVA</td>
<td>Analysis of Variance</td>
</tr>
<tr>
<td>AUC</td>
<td>Area under the ROC curve</td>
</tr>
<tr>
<td>BamH</td>
<td>Bacillus amyloliquefaciens H</td>
</tr>
</tbody>
</table>