EFFECTS OF TOPICAL APPLICATION OF EUPATORILUM ODORATUM, CHANNA STRIATUS, CENTELLA ASLAT ICA AND SILVER SULPHADIAZINE ON BURN WOUNDS IN AN ANIMAL MODEL

NUR FAIZAH BT MUSTAFA

FPV 2005 13
EFFECTS OF TOPICAL APPLICATION OF *EUPATORIUM ODORATUM*,
CHANNA STRIATUS, *CENTELLA ASIATICA* AND *SILVER SULPHADIAZINE*
ON BURN WOUNDS IN AN ANIMAL MODEL

By

NUR FAIZAH BT MUSTAFA

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia,
in Fulfilment of the Requirement for the Degree of Master of Science

July 2005
Dedicated with love to:

My parents, my in laws, my husband, my child,

my sisters and brothers and also my brother-in law
Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfilment of the requirement for the Degree of Master of Science

EFFECTS OF TOPICAL APPLICATION OF EUPATORIUM ODORATUM, CHANNA STRIATUS, CENTELLA ASIATICA AND SILVER SULPHADIAZINE ON BURN WOUNDS IN AN ANIMAL MODEL

By

NUR FAIZAH BT MUSTAFA

July 2005

Chairman : Md. Zuki Bin Abu Bakar@Zakaria, PhD
Faculty : Veterinary Medicine

The merit of attempting to treat burn wounds has long been appreciated since the last century, at least in the sense of providing a clean wound, avoiding formation of purulent and exudation as well as to enhance a granulation and reepithelization. It has been a special consideration in medical practice as burn denatures cellular protein, inhibits cellular metabolism hence secondary interference of local vascular supply.

Therefore, the present study was designed to investigate the effect of a crude methanolic extract of Eupatorium odoratum, Channa striatus and Centella asiatica on burn wound healing as these natural resources have been traditionally used in burn treatment. A standard reproducible of second
degree burn wounds was inflicted using a cylindrical stainless steel template (2.5 cm diameter) on 225 adult male Sprague Dawley weighing between 250 - 350g. The animals were divided into five groups with nine animals in each group, representing a control and experimental groups. Extracts of *Eupatorium odoratum, Channa striatus* and *Centella asiatica* with silver sulphadiazine, as a standard treatment were applied twice daily, except in the control group where wounds were left without any topical treatment.

The rats were closely monitored to assess any changes. The rats were euthanized at 3, 7, 14, 21 and 28 days post burned. The macroscopic appearance of burn wounds was evaluated and recorded. The percentage of wound contractions was measured. The burn sites were excised and subjected to water content assessment and biomechanical study. Apart from that, histological study was also performed qualitatively and quantitatively using a hematoxylin and eosin and Masson's trichrome staining.

Results obtained from this study revealed that from macroscopic study, *Eupatorium odoratum* showed advanced effect to minimize the progression of zone of stasis as compared to other groups. Quantitative evaluation of the number of inflammatory cells (polymorphonuclear leucocytes, and macrophages) from day 3 to day 28 in wounds treated with *Eupatorium odoratum* demonstrated significant fall in number of inflammatory cells (polymorphonuclear leucocytes, and macrophages) from day 3 to day 28, whereas the number of proliferative cells (fibroblasts and endothelial cells)
increased from day 7 to day 28. The *Eupatorium odoratum* also showed potential to preserve viable dermal tissue and induce a well-formed of angiogenesis with better organization as compared to other treatments. A semi quantitative wound scoring system used to evaluate the collagen bundles indicated that the *Eupatorium odoratum* treated burns demonstrated a better orientation of collagen as compared to other experimental groups as characterized by more densely packed fibres with thick bundles of well-aligned collagen and showed a basket-weave-like pattern with a more random structure. *Eupatorium odoratum* also promoted remodeling of collagen by synthesis of inter and intra-molecular protein crosslinking and thus produced a marked increased (p<0.05) in tensile strength as compared to other experimental groups. *Eupatorium odoratum* also consistently prevented burn edema as shown by reduction in wet to dry weight ratio of the burn site tissues. On the other hand, burn wounds treated with *Channa striatus* showed earlier re-epithelialization as early as 3 days post burned while *Eupatorium odoratum* treated burn wounds at day 7. The results also demonstrated that burn wounds treated with *Channa striatus* showed rapid cleansing of the wound with minimal scarring at day 28.
In conclusion, the present study showed that the *Eupatorium odoratum* was the most superior treatment agent for burn wounds followed by *Channa striatus* and then *Centella asiatica* in relation to macroscopic evaluation, histological findings, edema measurement and biomechanical property.
Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk Ijazah Master Sains

KESAN SAPUAN EUPATORIUM ODORATUM, CHANNA STRIATUS, CENTELLA ASIATICA DAN SILVER SULPHADIAZIN KE ATAS LUKA TERBAKAR DENGAN MENGGUNAKAN HAIWAN SEBAGAI MODEL

Oleh

NUR FAIZAH BT MUSTAFA

Julai 2005

Pengerusi: **Md. Zuki Bin Abu Bakar@Zakaria, PhD**

Fakulti: **Perubatan Veterinar**

Semenjak abad yang lalu, usaha untuk merawat kecederaan terbakar telah mendapat perhatian yang luas, sekurang-kurangnya untuk menyediakan keadaan luka yang bersih, menghindarkan daripada berlakunya pernanahan dan eksudasi, malah ianya turut ditumpukan dalam usaha untuk membentuk semula proses granulasi dan pembinaan sel epithelium. Oleh kerana kebakaran mampu memusnahkan sel-sel protein, merencat berlakunya proses metabolisme sel dan menghalang pengaliran darah setempat secara sekunder, maka ia mendapat perhatian yang khusus di sektor perubatan.
Sehubungan dengan itu, satu kajian telah direkabentuk untuk melihat keberkesanan *Eupatorium odoratum, Channa striatus* dan * Centella asiatica* yang diekstrak secara mentah dengan menggunakan sebatian metanol terhadap luka terbakar memandangkan sumber asli ini telah digunakan secara tradisional untuk merawat luka terbakar. Luka terbakar ini telah dihasilkan secara seragam dengan menggunakan templat keluli tahan karat yang berbentuk bulat (berdiameter 2.5 cm) ke atas 225 ekor tikus jantan dewasa daripada spesis Sprague Dawley yang mempunyai berat diantara 250 - 300 g. Kesemua tikus ini telah dibahagikan kepada lima kumpulan dimana setiap kumpulan mengandungi 9 ekor tikus meliputi kumpulan tikus yang dirawat dan kumpulan tikus ujikaji terkawal. Ekstrak *Eupatorium odoratum, Channa striatus* dan *Centella asiatica* beserta krim silver sulphadiazin yang bertindak sebagai rawatan piawai diberikan secara sapuan kepada setiap kumpulan kecuali kumpulan tikus ujikaji terkawal yang tidak diberi sebarang rawatan.

dengan menggunakan pewarnaan hematoxylin dan eosin dan Masson’s trichrome.

Keputusan yang dicapai daripada ujikaji ini telah mendedahkan secara makroskopi, bahawa *Eupatorium odoratum* terbukti paling berkesan untuk meminimumkan berlakunya penyebaran luka pada zon stasis jika dibandingkan dengan kumpulan yang lain. Ujian secara kuantitatif pula telah menunjukkan bahawa luka yang dirawat dengan *Eupatorium odoratum* berkecenderungan untuk menurunkan bilangan sel inflamasi (polimorfonuklear leukosit dan makrofaj) bermula daripada hari ke 3 hingga ke 28, malah didapati juga berkesan untuk meningkatkan bilangan sel proliferasi (sel fibroblas dan sel endotelial) daripada hari ke 7 hingga 28. Bertentangan dengan kumpulan rawatan jenis lain, ia juga berpotensi untuk memelihara sel-sel dermal yang hidup dan menggalakkan pertumbuhan dan struktur yang lebih baik terhadap sel-sel darah. Sistem pemarkahan secara separa kuantitatif selepas pewarnaan Masson’s trichrome yang digunakan untuk mengevaluasi berkas kolagen telah menunjukkan bahawa kecederaan luka yang dirawat oleh *Eupatorium odoratum* memperlihatkan orientasi kolagen yang lebih sempurna dengan karakter yang lebih padat serta menunjukkan seolah-olah corak anyaman bakul yang tidak tersusun. Rawatan dengan *Eupatorium odoratum* juga menggalakkan proses pembentukan semula ke atas kolagen, dengan mensintesis silangpangkah secara inter dan intra-molekul yang seterusnya menghasilkan peningkatan yang
signifikikan terhadap ujian regangan (p<0.05). Malahan, terbukti juga bahawa *Eupatorium odoratum* secara konsisten berkesan untuk menghalang berlakunya edema yang ditunjukkan dengan penurunan nisbah berat basah ke atas berat kering. Selain itu, ujian ini juga telah menunjukkan kecederaan luka yang dirawat dengan *Channa striatus* berupaya menghasilkan proses pembinaan semula epithelium sel seawal 3 hari selepas luka dikenakan berbanding dengan rawatan *Eupatorium odoratum* pada hari ke 7. Pada masa yang sama juga, rawatan dengan menggunakan ekstrak *Channa striatus* telah terbukti berupaya membersihkan luka dengan cepat dengan kadar parut yang minima pada hari ke 28.

Kesimpulannya, kajian ini telah menunjukkan bahawa ekstrak *Eupatorium odoratum* adalah bahan yang unggul dalam mengubati luka terbakar diikuti oleh *Channa striatus* dan kemudian *Centella asiatica* daripada segi pengevaluasian secara makroskopi, penemuan pada kajian histologi, pengiraan edema dan kandungan sifat mekanikal.
ACKNOWLEDGEMENTS

Alhamdulillah...all praise and thanks is due to Allah, the One who blessed me with the ability to undertake and finally complete this work. He has bestowed on me in all my endeavors, and especially in conducting this research.

It is more than a word of thanks that I owe to those who have made this thesis possible. First and foremost, I am greatly indebted to my thesis supervisor, Dr. Md. Zuki b. Abu Bakar@Zakaria for kindly providing guidance throughout the development of this study. His comments and patience have been of greatest help at all times. Beyond gaining academic knowledge, a highly gratitude also goes to my committee members, Dr Norimah bt. Yusof, Prof. Madya Dr Nazrul Hakim Abdullah and Prof. Madya Dr. Mohamed Noordin Mustapha for serving as my second supervisors with various suggestions and also for the help and encouragement during the research work.

I would like also to acknowledge with much appreciation to all staff in Histopathology laboratory, Faculty of Veterinary Medicine, UPM especially to Mrs Sapiah, Mr. Jamil and Mr. Ikhwan for their cooperation throughout the development of histological techniques. Many thanks are also due to Mr. Zahid, Mr. Wan, Mrs. Asnah and Miss Ainul and entire staffs of Polymer Laboratory at MINT, Bangi whose assistances were vital for my experiments
as well as ‘stretching my rats tissue’ during the tensile strength measurement and ‘heating the back of my rats’ for water edema assessment. A special note of thanks are also goes to Mr. Kufli for providing me with sufficient number of rats at all times.

Many more persons participated in various ways to ensure my research succeeded, but special mentions are due to my beloved lab mates: Miss Rozaini, Miss Fadilah, Dr. Hafez, Dr. Roy, Dr. Popo, Dr Ani and Dr. Ainul. I am honored to have the opportunity to work with such a dedicated bunch who taught me the meaning of teamwork and camaraderie.

This thesis is dedicated to my adored parents, ‘Ayahanda’ Mustafa b. Ibrahim and ‘Bonda’ Azizah bt Mohd Rabi whose example and inspirations made me worked hard. I can’t thank my mother and father enough for their love, caring, understanding and endless support. Whatever I am, and whatever I shall be, I owe them for entire of my life. Thanks also go to my siblings (Along, Abg Isa, Abg Ayie, Faiz, Arif, Idah, Affiq and also Naufal) for their encouragements and tolerances.

Last but not least, I am immensely thankful for the everlasting love, respect, understanding and support of my husband, Mr. Borhanuddin. And of course, my father and mother in law, Tuan Haji Md. Hassan b. Ibrahim and Puan Hajjah Eshah bt. Omar who deserve my great and unending gratitude.
for help on innumerable fronts. May Allah grant you a worthy reward in this life and in the hereafter.

After all, 'thank you' seems such a small token of appreciation, yet there are no words that can describe the depth of my gratefulness. I thank them from the bottom of my heart...
I certify that an Examination Committee met on 13th July 2005 to conduct the final examination of Nur Faizah Mustafa on her Master of Science thesis entitled “Effects of Topical Application of Eupatorium odoratum, Channa striatus, Centella asiatica and Silver sulphadiazine on Burn Wounds in an Animal Model” in accordance with Universiti Pertanian Malaysia (Higher Degree) Act 1980 and Universiti Pertanian Malaysia (Higher Degree) Regulations 1981. The Committee recommends that the candidate be awarded the relevant degree. Members of the Examination Committee are as follows:

Mohd. Zamri Saad, PhD
Professor
Faculty of Veterinary Medicine
Universiti Putra Malaysia
(Chairman)

Jasni Sabri, PhD
Associate Professor
Faculty of Veterinary Medicine
Universiti Putra Malaysia
(Internal Examiner)

Nasaruddin Abd. Aziz, PhD
Associate Professor
Faculty of Medicine and Health Sciences
Universiti Putra Malaysia
(Internal Examiner)

Othman Mansor, PhD
Professor
School of Health Science
USM Health Campus
(External Examiner)

GULAM RUSUL RAHMAT ALI, PhD
Professor/Deputy Dean
School of Graduate Studies
Universiti Putra Malaysia

Date: 22 AUG 2005
This thesis submitted to the Senate of Universiti Putra Malaysia has been accepted as fulfilment of the requirement for the degree of Master of Science. The members of the Supervisory Committee are as follows:

Md. Zuki Bin Abu Bakar, PhD
Lecturer
Faculty of Veterinary Medicine
Universiti Putra Malaysia
(Chairman)

Noordin Bin Mohamed Mustapha, PhD
Associate Professor
Faculty of Veterinary Medicine
Universiti Putra Malaysia
(Member)

Muhammad Nazrul Hakim Bin Abdullah, PhD
Associate Professor
Faculty of Medicine and Health Science
Universiti Putra Malaysia
(Member)

Norimah Bte Yusof, PhD
Agrotechnology and Bioscience Division
Malaysian Institute for Nuclear Technology (MINT).
(Member)

[Signature]

AINI IDERIS, PhD
Professor/Dean
School of Graduate Studies
Universiti Putra Malaysia

Date: 08 SEP 2005
TABLE OF CONTENTS

DEDICATION .. ii
ABSTRACT .. iii
ABSTRAK ... vii
ACKNOWLEDGEMENTS xi
APPROVAL ... xiv
DECLARATION ... xvi
LIST OF TABLES ... xxi
LIST OF FIGURES .. xxiii
LIST OF ABBREVIATIONS xxviii

CHAPTER

I INTRODUCTION ... 1
 General Introduction 1
 Objectives of this study 1

II LITERATURE REVIEW 6
 The skin .. 6
 General anatomy and histology of the skin 6
 Mechanical properties of the skin 8
 Burn wound injury 10
 Animal Model for studies burn wound healing 12
 Rats as an animal model 14
 Anatomy of rat skin 15
 Classification of thermal burn 16
 Superficial thickness burn wound 16
 Superficial partial thickness burn wound 17
 Deep partial thickness burn wound 19
 Full thickness burn wound 20
 Tissue response to thermal injury 21
 Edema formation following thermal injury 23
 Edema formation of non-burned tissue . 24
 Management of thermal injury 25
 Debridement 26
 Dressing .. 27
 Topical microbial application 29
 Silver Sulphadiazine (SSD) 30
 Burn wound healing 31
 Inflammatory response 33
 Proliferative phase 35
 Wound Contraction 35

xvii
III GENERAL MATERIALS AND METHODS
Preparation of the extract
Channa striatus
Centella asiatica and Eupatorium odoratum
Experimental animals
Experimental design
Preparation of the skin
The burn infliction
The thermal source
Wound location
Infliction of the burn wound
Mode of treatment
Assessment of burn wound
Statistical analysis

IV MACROSCOPIC EVALUATION OF BURN WOUND HEALING AND RATE OF BURN WOUND CONTRACTION TREATED WITH EUPATORIUM ODORATUM, CHANNA STRIATUS AND CENTELLA ASIATICA
Introduction
Materials and Methods
Animals model
Assessment of burn wound healing
Macroscopic evaluations
Rate of wound contraction
Statistical analysis
Results
Macroscopic appearances
Wound contraction
Discussion
Conclusion
VII MICROSCOPIC EVALUATION OF BURN WOUND HEALING POST TREATED WITH EUPATORIUM ODORATUM, CHANNA STRIATUS AND CENTELLA ASIATICA

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction</td>
<td>91</td>
</tr>
<tr>
<td>Materials and Methods</td>
<td>93</td>
</tr>
<tr>
<td>Animals model</td>
<td>93</td>
</tr>
<tr>
<td>Histological evaluation</td>
<td>94</td>
</tr>
<tr>
<td>Statistical analysis</td>
<td>96</td>
</tr>
<tr>
<td>Results</td>
<td>98</td>
</tr>
<tr>
<td>Discussion</td>
<td>164</td>
</tr>
<tr>
<td>Conclusion</td>
<td>173</td>
</tr>
</tbody>
</table>

VI TENSILE STRENGTH PROPERTY OF BURN WOUND HEALING POST TREATED WITH EUPATORIUM ODORATUM, CHANNA STRIATUS AND CENTELLA ASIATICA

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction</td>
<td>174</td>
</tr>
<tr>
<td>Materials and Methods</td>
<td>176</td>
</tr>
<tr>
<td>Animals model</td>
<td>176</td>
</tr>
<tr>
<td>Preparation of the strip</td>
<td>177</td>
</tr>
<tr>
<td>Tensile strength measurement</td>
<td>177</td>
</tr>
<tr>
<td>Statistical analysis</td>
<td>180</td>
</tr>
<tr>
<td>Results</td>
<td>181</td>
</tr>
<tr>
<td>Discussion</td>
<td>186</td>
</tr>
<tr>
<td>Conclusion</td>
<td>191</td>
</tr>
</tbody>
</table>

VII ASSESSMENT THE WATER CONTENT OF THE BURN WOUND SITE AS A REPRESENTATIVE OF EDEMA POST TREATED WITH EUPATORIUM ODORATUM, CHANNA STRIATUS AND CENTELLA ASIATICA

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction</td>
<td>192</td>
</tr>
<tr>
<td>Materials and Methods</td>
<td>194</td>
</tr>
<tr>
<td>Animals model</td>
<td>194</td>
</tr>
<tr>
<td>Wet/dry ratio measurements</td>
<td>195</td>
</tr>
<tr>
<td>Statistical analysis</td>
<td>195</td>
</tr>
<tr>
<td>Results</td>
<td>197</td>
</tr>
<tr>
<td>Discussion</td>
<td>202</td>
</tr>
<tr>
<td>Conclusion</td>
<td>205</td>
</tr>
</tbody>
</table>
Conclusion

BIBLIOGRAPHY 215
APPENDICES 233
BIODATA OF THE AUTHOR 237
LIST OF TABLES

<table>
<thead>
<tr>
<th>Tables</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1 The experimental design</td>
<td>50</td>
</tr>
<tr>
<td>4.1 Longitudinal and transverse measurements of wound area as percentage of original wound size at day 3 post burns</td>
<td>77</td>
</tr>
<tr>
<td>4.2 Longitudinal measurements of wound contraction of the control and treated groups at different days as percentage of original wound size</td>
<td>79</td>
</tr>
<tr>
<td>4.3 Transverse measurements of wound contraction of the control and treated groups at different days as percentage of original wound size</td>
<td>81</td>
</tr>
<tr>
<td>5.1 The experimental design for microscopic study</td>
<td>93</td>
</tr>
<tr>
<td>5.2 Quantitative histopathologic findings of the dermal collagen changes based on Masson's trichrome staining</td>
<td>96</td>
</tr>
<tr>
<td>5.3 Differential cell counts (Cell per unit area Mean±SD)</td>
<td>99</td>
</tr>
<tr>
<td>5.4 Quantitative histopathologic findings of the collagen alterations based on Masson's trichrome staining</td>
<td>104</td>
</tr>
<tr>
<td>6.1 The experimental design for tensile strength</td>
<td>176</td>
</tr>
</tbody>
</table>
measurement

6.2 Tensile strength measurement of different treatments on various days

7.1 The experimental design for water content assessment

7.2 Mean of wet to dry ratio of the burned site
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figures</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Illustration of a general anatomy of skin</td>
<td>7</td>
</tr>
<tr>
<td>2.2</td>
<td>Illustration of superficial thickness burn wound</td>
<td>17</td>
</tr>
<tr>
<td>2.3</td>
<td>Illustration of superficial partial thickness burn wound</td>
<td>18</td>
</tr>
<tr>
<td>2.4</td>
<td>Illustration of deep partial thickness burn wound</td>
<td>19</td>
</tr>
<tr>
<td>2.5</td>
<td>Illustration of full thickness burn wound</td>
<td>20</td>
</tr>
<tr>
<td>3.1</td>
<td>Photograph of Channa striatus (Ikan haruan)</td>
<td>47</td>
</tr>
<tr>
<td>3.2</td>
<td>Photograph of Centella asiatica (Daun pegaga) and Eupatorium odoratum (Daun kapal terbang)</td>
<td>48</td>
</tr>
<tr>
<td>3.3</td>
<td>Photograph of dorsum of the rat after skin preparation</td>
<td>55</td>
</tr>
<tr>
<td>3.4</td>
<td>Photograph of the cylindrical stainless steel template</td>
<td>55</td>
</tr>
<tr>
<td>3.5</td>
<td>Photograph of marking anatomical location on the dorsum part of the rat</td>
<td>56</td>
</tr>
<tr>
<td>3.6</td>
<td>Photograph of infliction of burn with the template</td>
<td>56</td>
</tr>
<tr>
<td>3.7</td>
<td>Experimental design of the entire project</td>
<td>57</td>
</tr>
<tr>
<td>4.1</td>
<td>Longitudinal measurement of the burn wound size</td>
<td>63</td>
</tr>
</tbody>
</table>
4.2 Transverse measurement of the burn wound size

4.3 Photograph of the typical appearance immediately after infliction

4.4 Photograph of the typical changes of burn appearance at day 3 after burn infliction

4.5 Photograph of the typical changes of burn appearance at day 7 after burn infliction

4.6 Photograph of the typical changes of burn appearance at day 14 after burn infliction

4.7 Photograph of the typical changes of burn appearance at day 21 after burn infliction

4.8 Photograph of the typical changes of burn appearance at day 28 after burn infliction

4.9 Graph of transverse and longitudinal measurement of wound area of the control and treated groups as percentage of original wound size at day 3 post burns

4.10 Graph of longitudinal measurement (percentage of wound contraction)

4.11 Graph of transverse measurement
(percentage of wound contraction)

5.1 Photomicrographs of wound sections showing cells that were identified

5.2 Graph plotting number of neutrophils against days after burned injury

5.3 Graph plotting number of macrophages against days after burned injury

5.4 Graph plotting number of fibroblasts against days after burned injury

5.5 Graph plotting number of endothelial cells against days after burned injury

5.6 Photomicrograph of histology of burn wound after 3 days post burned, stained with H&E

5.7 Photomicrograph of histology of burn wound after 3 days post burned, stained with Masson trichrome

5.8 Photomicrograph of histology of burn wound after 7 days post burned, stained with H&E

5.9 Photomicrograph of histology of burn wound after 7 days post burned, stained with Masson trichrome

5.10 Photomicrograph of histology of burn wound after