EFFECTS OF WATER STRESS ON THE PHYSIOLOGICAL PROCESSES AND WATER USE EFFICIENCY IN OIL PALM

By

MOHD ROSLAN BIN MD NOOR

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfilment of the Requirement for the Degree of Master of Agricultural Science

October 2006
Special dedicated

To

My beloved wife and children

“He who finds a way in searching for knowledge,
God finds him a way to paradise”
Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfilment of the requirement of the degree of Master of Agricultural Science

EFFECTS OF WATER STRESS ON THE PHYSIOLOGICAL PROCESSES AND WATER USE EFFICIENCY IN OIL PALM

By

MOHD ROSLAN BIN MD NOOR

October 2006

Chairman: Professor Mohd Razi Ismail, PhD

Faculty: Agriculture

Malaysia is currently the major producer of palm oil in the world with a total production of crude palm oil of about 15 million tonnes in 2005. This major commercial crop in Malaysia covers an area of about 4 million hectares of agricultural land. Due to its important role, various research and development are still on going to improve and to ensure the sustainability of this industry. In this physiological study of oil palm, focus was given to two different environments and palm age.

In the first experiment, physiological evaluation was done on two different planting materials namely the commercial DxP and PS1.1 dwarf palms. This PS1.1 planting material is expected to be shorter, higher yielding, more compact and with desirable fruit qualities. The seedlings were raised in large polybags filled with topsoil. Experiments were initially done at Green House I that was located near the UPM Hydroponics and later, at Green House II situated at the
UPM Agriculture Park. Various physiological parameters were studied to compare the performance of both genotypes and their responses to soil drying. Four replicates of ten seedlings per treatment were used. Among the parameters studied were gas exchange, chlorophyll fluorescence, vegetative growth, chlorophyll content, root:shoot ratio, soil moisture and leaf sugar analysis. Based on vegetative measurements, DxP seedlings had 34% longer rachis length than PS1.1 and were 29% taller. The leaves of DxP seedlings had higher relative water content and moisture content as compared to PS1.1. As water is essential for cell growth, this may be one of the factors that enable the DxP seedlings to grow faster. The leaf chlorophyll content was slightly higher in the DxP as compared to PS1.1 seedlings. Fluctuations in leaf sugar contents were found in both genotypes in response to soil drying. DxP seedlings had significantly higher water use efficiency (WUE) \((p<0.05)\) and showed vigorous growth as compared to PS1.1. The PS1.1 seedlings showed higher photosynthetic rate and higher evapotranspiration rate as compared to DxP. PS1.1 seedlings had similar root:shoot ratio as DxP. Both photosynthetic rate and stomatal conductance were reduced in response to soil drying.

In the second experiment, the study was carried out at the ESPEK Tanjung Genting, Sintuk located in North Kedah. The site was chosen because of the seasonal dry period that occurred at the end of the year and ends in the first quarter of the following year (Dec to Mac). Comparisons of physiological responses were done between irrigated and non-irrigated palms. Two treatments
with three replicates of 16-recorded palms per replicate were used. A total of 96 DxP oil palms planted in July 2000 were involved in this study. Irrigation was done using the drip system, where the Netafim drip tape was aligned at one side of the planting rows. A higher photosynthetic rate or gas exchange response to CO₂ concentration was observed in the irrigated palms as shown by the ACi curve. But there was no significant response of both irrigated and control palms to the different light intensities. The leaf moisture content of irrigated palms was higher than the control, but the relative water content and chlorophyll content were lower than control. No statistically significant difference was found in the canopy study, such as the leaf area index and light interception. The instantaneous WUE in the field study showed better response in the irrigated palms as compared to control. Based on chlorophyll fluorescence, palms in the control plots showed lower PSII efficiency. In the first year harvesting, the FFB yield in the irrigated plots was 10% higher than control.
Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk ijazah Master Sains Pertanian

KESAN KETEGASAN AIR TERHADAP PROSES-PROSES FISIOLOGI DAN KECEKAPAN PENGGUNAAN AIR DALAM SAWIT

Oleh

MOHD ROSLAN BIN MD NOOR

Oktober 2006

Pengerusi : Profesor Mohd Razi Ismail, PhD

Fakulti : Pertanian

Dalam ujikaji pertama, penilaian fisiologi dibuat ke atas dua bahan tanaman yang berbeza iaitu DxP komersil dan pokok renek PS1.1. Bahan tanaman PS1.1 dijangkakan lebih rendah, mengeluarkan hasil yang tinggi, padat dan mempunyai kualiti buah yang diinginkan. Anak benih dibesarkan dalam polibeg besar. Ujikaji pada mulanya dijalankan di rumah hijau I yang terletak berdekatan dengan...
Hidropnik UPM dan kemudian dipindahkan ke rumah hijau II, Taman Pertanian UPM. Berbagai parameter fisiologi telah diukurkan bagi membandingkan prestasi kedua genotip dan tindakbalas terhadap kekeringan tanah. Empat replikat setiap satunya sepuluh pokok telah digunakan. Diantara parameter yang dikaji adalah pertukaran gas, pengukuran tampang, kandungan klorofil, nisbah akar:pucuk, kelembapan tanah dan kandungan gula. Berdasarkan pada pengukuran tampang, panjang rakis bagi anak benih DxP adalah 34% lebih panjang dari PS1.1 dan 29% lebih tinggi. Anak benih DxP mempunyai kandungan air relatif yang lebih tinggi dari PS1.1. Memandangkan air adalah keperluan asas bagi pertumbuhan sel, ini mungkin salah satu faktor membolehkan DxP tumbuh dengan cepat. Kandungan klorofil dalam daun adalah sedikit tinggi dalam DxP. Perubahan turun naik aras kandungan gula dalam daun anak benih juga mempunyai nilai WUE yang bererti pada aras p<0.05 dan menunjukkan kadar fotosintesis dan evapotranspirasi yang tinggi berbanding DxP. PS1.1 menunjukkan nisbah akar:pucuk yang sama dengan DxP baik dalam kawalan dan juga selepas mengalami ketegasan air. Ini menunjukkan PS1.1 dan DxP mempunyai sistem akar yang serupa bagi menyerap air dan nutrien. Kadar fotosintesis dan stomata konduktans didapati menurun apabila tanah mengering.

Dalam ujikaji kedua, kajian dijalankan di estet yang dimiliki oleh Espek Tanjung Genting, Sintuk yang terletak di utara Kedah. Kawasan ini dipilih kerana ujudnya kemarau bermusim setiap tahun lazimnya bermula pada hujung tahun sehingga tiga bulan pertama tahun berikutnya. Perbandingan tindakbalas diantara pokok-
ACKNOWLEDGEMENTS

In the name of Allah the Beneficial and the Compassionate

Thank to Allah SWT, the Almighty God who had given me the strength to further my study and to complete this thesis.

I would like to convey my heartiest thank and appreciation to the chairman of my supervisory committee, Professor Dr. Mohd Razi Ismail, Department of Crop Science, Faculty of Agriculture for his courage and support throughout the study. Special thanks also to my co-supervisor, Dr Mohd Haniff Harun for his constructive comments and help and also to Professor Dr. Maziah Mahmood for her advice and involvement in the supervisory committee.

I am also thankful to my beloved wife, Hajah Norhaya Haji Hashim for her everlasting support and courage, and to my children, Nadrul Syahida, Abdul Muhaimin, Nur Izzaty, Syazwani and Nadhirah for sharing the hardship together.

My deepest heartfelt appreciation also goes to my late parents who have not been able to share these achievements together.

My appreciation to En Saiful Nizam, En Isa Yusof and all the MPOB Physiology staffs for their help during the field and green house studies. I thank also the management of Espek Tanjung Genting Estate for the fieldwork and Universiti
Putra Malaysia for the use of the green house. Special thanks to Tuan Hj Ahmad Tarmizi dan En Abd Razak Jelani for the opportunity to carry out the field study. Finally, I would like to thank the Director General of Malaysian Oil Palm Board for giving me the golden opportunity to do my MSc.
I certify that an Examination Committee met on 13th October 2006 to conduct the final examination of Mohd Roslan Bin Md Noor on his Master of Agricultural Science thesis entitled ‘Effects of Water Stress on the Physiological Processes and Water Use Efficiency in Oil Palm’ in accordance with Universiti Pertanian Malaysia (Higher Degree) Act 1980 and Universiti Pertanian Malaysia (Higher Degree) Regulations 1981. The Committee recommends that the candidate be awarded the relevant degree. Members of the Examination Committee are as follows:

Mohd Rafii Yusop, PhD
Associate Professor
Faculty of Agriculture
Universiti Putra Malaysia
(Chairman)

Mohd Ridzwan Abd Halim, PhD
Associate Professor
Faculty of Agriculture
Universiti Putra Malaysia
(Internal Examiner)

Ahmad Makmom Abdullah, PhD
Associate Professor
Faculty of Environmental Studies
Universiti Putra Malaysia
(Internal Examiner)

Masri Muhamad, PhD
Malaysian Agriculture Research and Development Institute
(External Examiner)

HASANAH MOHD. GHAZALI, PhD
Professor/Deputy Dean
School of Graduate Studies
Universiti Putra Malaysia
Date: 15 FEBRUARY 2007
This thesis submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfilment of the requirement for the degree of Master of Agricultural Science. The members of the Supervisory Committee are as follows:

Mohd Razi Ismail, PhD
Professor
Faculty of Agriculture
Universiti Putra Malaysia
(Chairman)

Mohd Haniff Harun, PhD
Crop Physiology Group
Malaysian Palm Oil Board
(Member)

Maziah Mahmood, PhD
Professor
Faculty of Biotechnology and Biomolecular Sciences
Universiti Putra Malaysia
(Member)

AINI IDERIS, PhD
Professor/Dean
School of Graduate Studies
Universiti Putra Malaysia

Date: 8 MARCH 2007
DECLARATION

I hereby declare that the thesis is based on my original work except for quotations and citations, which have been duly acknowledged. I also declare that it has not been previously or concurrently submitted for any other degree at UPM or other institutions.

MOHD ROSLAN BIN MD NOOR

Date: 9 JANUARY 2007
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>DEDICATION</td>
<td>ii</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>iii</td>
</tr>
<tr>
<td>ABSTRAK</td>
<td>vi</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>ix</td>
</tr>
<tr>
<td>APPROVAL</td>
<td>xi</td>
</tr>
<tr>
<td>DECLARATION</td>
<td>xiii</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>xviii</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xx</td>
</tr>
</tbody>
</table>

CHAPTER

I INTRODUCTION

- General objective of study
- Hypothesis of study

II LITERATURE REVIEW

- Oil Palm
 - Commercial DxP of PS1.1 dwarf palm
 - The oil palm and palm oil industry
- Oil palm morphology
 - Root
 - Stem
 - Fronds
 - Inflorescence
 - Fruit and bunch
- Factors affecting oil palm yield
- Water deficit
- Water-use efficiency
- Gas exchange
- Chlorophyll fluorescence
- Leaf water potential
- Irrigation in oil palm

III GENERAL MATERIALS AND METHODS

- Establishment of Planting Materials
- DxP commercial
- PS1.1
- Treatments and Experimental Design
- Sampling for measurements
- Vegetative measurements
 - Leaf area measurement
 - Leaf width
Leaf length 34
Rachis length 34
Petiole cross section 34
Petiole depth 34
Palm base diameter 34
Leaf water potential 35
Statistical Analysis 35

IV WATER STRESS EXPERIMENT ON OIL PALM SEEDLINGS

Introduction 36
Objectives of experiment 37
Materials and Methods 37

Plant Materials and Treatments 39
Vegetative measurement 40
Leaf parameter study 40

Chlorophyll content 40
Relative water content (RWC) 41
Leaf Moisture content 42

Gas exchange measurements 43

Instantaneous Water-use efficiency 43

Chlorophyll fluorescence 44

Root:Shoot ratio (R:S) 44

Sugar analysis of total soluble sugars 45

Results and Discussion 46

Vegetative measurement (VM) 46
Leaf parameter study 47

Chlorophyll content 47
Relative Water Content 48
Specific leaf area 49
Leaf moisture content 50

Gas exchange measurements 51

Photosynthesis rate 51
Stomatal conductance 55

Instantaneous Water-use efficiency 56

Chlorophyll fluorescence 57

Root:Shoot ratio (R:S) 59

Soil moisture measurements 61
Leaf Water Potential 62
Sugar analysis 63
Climatic data 65
V PHYSIOLOGICAL EVALUATION ON OIL PALM RESPONSES TO DIFFERENT WATERING REGIMES IN THE FIELD

Introduction 67
Objectives 68
Materials and Methods 69
 Plant Materials and Treatments 69
 Vegetative measurement 70
 Leaf parameter study 70
 Gas exchange measurements 71
 Light response curve 71
 Assimilation of intercellular CO₂ (ACi) curve 71
 Chlorophyll fluorescence measurement 72
 Soil moisture measurements 72
 Leaf area index 73
 Fractional light interception 73
 Frond dry weight 74
 Spear leaf accumulation 75
 Spear leaf extension rate 75
 FFB yield data 75
 Rainfall data 75

Results and Discussion 76
 Vegetative measurement 75
 Leaf parameter study 77
 Chlorophyll content 77
 Relative water content (RWC) 78
 Leaf moisture content 79
 Specific leaf area (SLA) 80
 Leaf gas exchange measurements 82
 Light response curve 83
 Assimilation of intercellular CO₂ (ACi) curve 84
 Chlorophyll fluorescence 85
 Soil moisture measurements 86
 Leaf area index 88
 Fractional light interception 89
 Frond dry weight 89
 Spear leaf accumulation 90
 Spear leaf extension rate 91
 FFB yield record 92
 Rainfall data 93

Physiological evaluation during dry season at Tanjung Genting 2005 95
VI GENERAL DISCUSSION 97
VII CONCLUSION 102
VIII RECOMMENDATION 103
REFERENCES 104
APPENDICES 113
BIODATA OF THE AUTHOR 127