UNIVERSITI PUTRA MALAYSIA

DYNAMICS OF CURRENT AND RESIDUAL PHOSPHORUS IN TROPICAL ACID SOIL

ESTHER WAKIURU GIKONYO.

FP 2005 2
DYNAMICS OF CURRENT AND RESIDUAL PHOSPHORUS IN TROPICAL ACID SOIL

By

ESTHER WAKIURU GIKONYO

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfilment of the Requirement for the Degree of Doctor of Philosophy

January 2006
DEDICATION

This work is dedicated to my lovely husband:

JOHN GIKONYO
The use of phosphate rocks (PRs) has been proposed as an agro-economically sound alternative to the more expensive superphosphates particularly, for P 'recapitalization' based on their purportedly high residual effects in acid tropical soils. To understand the current and residual dynamics of P from different P sources, one laboratory incubation trial and two field experiments were conducted. Experimental treatments comprised factorial combinations (3x4x2) of three P sources [Triple superphosphate (TSP), Gafsa PR (GPR) and Christmas Island PR (CIPR)] at four P rates with and without manure in three replications. Setaria grass (Setaria Anceps Stapf. Cv. Kazungula) was used as the test crop and was sequentially harvested bimonthly for 14 months in the field. Results indicated that the amounts of P extracted from treated soils using three soil tests: Mehlich-3 (M3P), Bray-1 (B1P) and Pi-strip (Pi-P) were in the order: M3P>B1P (85% M3P) >Pi-P (53% M3P) and were significantly related (R²=0.42 to 0.83, n=294). Phosphorus extracted from the different P sources was in the order: TSP>GPR>CIPR and increased with increasing P rates. When P rates were raised from 0 to 300 kg
decreased substantially at the highest P rate. The degree of phosphorus saturation (DPS) (defined as a ratio of P already adsorbed to P adsorption capacity of a soil) also varied with P sources (5.1 to 15.8%) and extractants (2.1 to 44%) following a similar order to extractable P. The variously estimated DPS values were all significantly correlated (r =0.91 to 0.98) and therefore were equally suitable in estimating DPS. Sequential strip P indicated that P released was described by power (R²=0.79 to 0.95) (TSP) and exponential (PR) functions (R²=0.77 to 0.99), while from the field trial, a power function described RV of P in both PRs and TSP (R²=0.64 to 0.96). Total extracted Pi-P was related to NaHCO₃ inorganic and organic P (Bic-Pi and Po), and HCl-P. However, though the Pi-strip could estimate P release, it could not estimate residual value (RV). Residual value is the ratio of amount of freshly applied TSP required to produce yield X to the amount of previously applied fertilizer required to produce the same yield X. The dry matter yield (DMY) exhibited a quadratic relationship with P rates. The maximum DMY (6-11 t ha⁻¹) was attained at 150-200 kg P ha⁻¹ and over time, DMY increased to a maximum (11 t ha⁻¹) and then declined to a constant yield (2-4 t ha⁻¹) after one year. Manure-CIPR integration increased DMY while, manure-GPR and manure-TSP integration depressed yields except in the initial harvest. Setaria DMY was found to be related to NaOH-organic and -inorganic P (Hyd-Po and Hyd-Pi, respectively), and Bic-Po fractions, which are not accounted for in M3P or B1P thus explaining the low R² between DMY and M3P (R²=0.08) or B1P (R²=0.10). The current RVs of the three fertilizers determined in the field were 100, 100 and 140% for CIPR, GPR and TSP, respectively at 100 kg P ha⁻¹. At the same rate, fertilizer-manure integration increased initial RV to 180,
160 and 110% in TSP, CIPR and GPR treatments. With an exception of CIPR-manure, RV was depressed by manure in the other fertilizers in subsequent harvests after the initial one. The RV also declined with increasing P rates as evidenced by current RV decline to 20, 60 and 50% in CIPR, GPR and TSP, respectively when P rate was raised from 100 to 300 kg P ha$^{-1}$. The RV declined to 30-40% for the first six months and then gradually to 10 – 20% after one year (power function). These results indicated that GPR and CIPR-manure combination were as good as TSP and the optimal P rate was 100 - 150 kg P ha$^{-1}$. The results did not support P 'recapitalization' in this soil but annual applications. The RV could be estimated from the P fractions: Bic-Po, Hyd-Pi and Hyd-Po, and DPS computed from Mehlich extracted Al, Fe and P. The RV had no relationship with M3P or B1P.
Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk ijazah Doktor Falsafah

DINAMIK FOSFORUS SEMASA DAN RESIDU DALAM TANAH ASID TROPIKA

Oleh

ESTHER WAKIURU GIKONYO

Januari, 2006

Pengurus: Profesor Zaharah Abdul Rahman, DSc

Fakulti: Pertanian

Batuan fosfat (PRs) telah dicadangkan sebagai satu alternatif baja P yang agronomik dan ekonomik berbanding baja superfosfat (kebiasaanannya TSP), terutama sekali sebagai sumber untuk membekal unsur P dalam jangkamasa panjang. Ini berdasarkan kemampuan batuan fosfat meninggalkan kesan residunya yang lama dalam tanah-tanah asid tropika.

Untuk memahami dinamik semasa dan residu unsur P dari berbagai sumber baja P, satu kajian pemeraman di makmal dan dua kajian ladang telah dijalankan. Kajian dijalankan dengan menggunakan rawatan kombinasi faktorial (3x4x2) yang terdiri dari tiga sumber baja P: Triple superphosfat (TSP), batuan fosfat Gafsa (GPR) dan batuan fosfat Pulau Christmas (CIPR) pada empat kadar dengan/tanpa baja kandang dalam tiga replikasi. Rumput Setaria (Setaria anceps Staff.Cv. Kazungula) digunakan sebagai tamanan ujian yang dituai setiap dua bulan selama 14 bulan di ladang. Keputusan menunjukkan jumlah P diekstrak dari tanah yang dirawat menggunakan tiga kaedah pengekstrak: Mehlich-3 (M3P), Bray-1 (BIP) dan Pi-strip (Pi-P) mengikut turutan M3P>B1P (85% M3P) >PiP (53% M3P) dan mengpunyai kaitan yang bererti (R^2=0.42 hingga 0.83, n=294). Fosforus terekstrak dari
sumber-sumber baja yang digunakan mengikut turutan TSP>GPR>CIPR
dan meningkat dengan bertambahnya kadar baja yang diberi. Apabila kadar
P ditingkatkan dari 0 hingga 300 kg P ha⁻¹, BIP meningkat sebanyak 470% (TSP) dan 160% (PRs). Kelarutan PR sangat menurun pada kadar P
tertinggi. Kadar ketepuan P (DPS) (didefinasikan sebagai nisbah P terjerap
kepada keupayaan penjerapan P oleh tanah) juga berbeza mengikut sumber
P (5.1 hingga 15.8%) dan larutan pengekstrak yang digunakan (2.1 hingga
44%) mengikut turutan yang sama dengan P yang terekstrak. Nilai
anggaran DPS yang dilakukan semuanya menunjukkan kaitan yang bererti
(r=0.91 hingga 0.98) dan dengan itu semuanya sesuai untuk digunakan
untuk menanggar nilai DPS. Pengekstraktan berulangan menggunakan
kertas disaluti ferum oksida (Pi-strip) menunjukkan P yang dilepaskan boleh
di terangkan dengan fungsi kuasa (\(R^2=0.79\) hingga 0.95) (TSP) dan
eksponen (\(R^2=0.79\) hingga 0.95) (PR), manakala daripada kajian ladang,
fungsi kuasa menerangkan RV baja P untuk kedua-dua PR dan TSP
(\(R^2=0.64\) hingga 0.96). Jumlah Pi-P didapati berkaitan dengan bikarbonat
tak organik dan P organik, dan HCl-P. Tetapi, sungguhpun Pi-P mampu
menganggar perlepasan P, ianya tidak dapat diguna untuk menganggar
keberkesanan relatif nilai residu (RV). Nilai residu ialah nisbah jumlah TSP
segar diberi diperluikan untuk menghasilkan hasil X kepada jumlah baja yang
diberi terdahulu untuk menghasilkan hasil X yang sama. Hasil berat kering
(DMY) menunjukkan kaitan kuadratik dengan kadar P digunakan.
DMY maksimum (6-11 t ha⁻¹) diperolehi apabila 150-200 kg P ha⁻¹
digunakan. Dengan meningkatnya masa, DMY meningkat ke maksimum (11
t ha⁻¹) dan menurun sehingga ke tahap stabil (2-4 t ha⁻¹) selepas setahun.
Campuran baja kandang dan CIPR tingkatkan DMY, manakala campuran dengan GPR dan TSP turunkan hasil, kecuali pada hasil pertama. Hasil rumput setaraia didapati ada kaitan dengan Hyd-Po dan Hyd-Pi, dan pecahan Bic-Po yang tidak diekstrak oleh Mechlich-3 dan Bray-1. Keberkesanan relatif nilai residu (RV) semasa ketiga-tiga sumber baja yang ditentukan di ladang menunjukkan 100, 100 dan 140% untuk CIPR, GPR dan TSP pada kadar 100 kg P ha⁻¹. Pada kadar yang sama, campuran dengan baja kandang tingkatkan RV diperingkat awal ke 180, 160 dan 110% untuk rawatan TSP, CIPR dan GPR. Hasil seterusnya menunjukan penurunan RV dengan campuran baja kandang, kecuali CIPR. RV juga didapati menurun dengan meningkatnya kadar baja P, dimana didapati RV menurun ke 20, 60 dan 50% bagi CIPR, GPR dan TSP apabila kadar P ditingkatkan dari 100 ke 300 kg P ha⁻¹. Dalam masa 6 bulan pertama, RV menurun ke 30-40% dan seterusnya ke 10-20% selepas satu tahun (fungsi "power"). Keputusan kajian menunjukkan bahawe campuran GPR dan CIPR dengan baja kandang adalah sama baik dengan TSP. Kadar yang optimum ialah 100-150 kg P ha⁻¹. Keputusan yang didapati dari kajian ini tidak menyokong konsep "P recapitalization" dalam tanah, malah disyorkan agar P diaplikasikan setiap tahun. Keberkesanan relatif nilai residu (RV) boleh dianggar daripada pecahan-pecahan P: Bic-Po, Hyd-Pi, dan Hyd-Po, dan DPS-M3P, tetapi tiada kaitan dengan M3P atau B1P.
ACKNOWLEDGEMENTS

The successful completion of this work is accredited to the support of many special people and I am greatly indebted to them. In this regard, my sincere appreciation is extended foremost, to the chairman of my supervisory committee, Prof. Zaharah Abdul Rahman for her professional guidance, support, patience and constructive comments from the beginning to the end of my study.

I am also very grateful to the other members of my supervisory committee, Assoc. Prof. Mohd Hanafi Musa and Assoc. Prof. Anuar Abdul Rahim for the benefit of their authoritative knowledge, helpful suggestions, valuable comments and critical review of the entire research and writing of the manuscript. Their constant suggestions and comments made the completion of this work possible.

Many thanks also to Zabeda Tumurin, Mayudin Othman, Junaidi Jafaa, Farida Aman, Alias Tahar, Fouziah Sulaiman, Linggam Kaudiah, Abdul Rahim, Zainudin Mohd Ali and Jamil Omar for their valuable assistance in every way. I also acknowledge the kind assistance of Dr. Bah Abdul, Dr. Mohamadu Boyie Jalloh and Dr. Osumanu Haruna Ahmed, and the entire staff of the Department of Land Management, Universiti Putra Malaysia for their wonderful cooperation.
My profound gratitude to the director, Kenya Agricultural Research Institute, Dr. Romano Kiome for granting me the opportunity to undertake this study. Thanks also to the director, National Agricultural Research Laboratories.

The financial support by the Third World Organisation of Women in Sciences (TOWOS) is greatly appreciated.

Also special thanks to the members of my family, especially my son, Morris for his assistance during my field activities and keeping me company throughout the course of my study. I also express my gratitude to my daughters, Lucy and Nancy for their endurance and patience during the many days of my absence from home and for their endless love. I am grateful to my father and mother for the assurance of their prayers and encouragement. The kind support of my sisters Rosemary, Juliet and Caroline are also greatly appreciated.

Finally and greatly acknowledged is the Lord God Almighty who enabled me to successfully complete this work, and without whom all other efforts would have been futile (Psalms 127:1 – 2). Great appreciation for prayers of my Kenya church members, P.C.E.A. Ongata Rongai; my church in Kuala Lumpur Malaysia (FGA); my mentors, Edward Andegwi and godly ladies, co-labourers in the lord Jesus Christ from KARI and all others who interceded for me and my family. Special thanks to Bishop Mto Rukaria Gitonga for his prayers and prophetic foresight.
I certify that an Examination Committee met on 13th December 2005 to conduct the final examination of Esther Wakiuru Gikonyo on her Doctor of Philosophy thesis entitled “Dynamics of Current and Residual Phosphorus in Tropical Acid Soil” in accordance with Universiti Pertanian Malaysia (Higher Degree) Act 1980 and Universiti Pertanian Malaysia (Higher Degree) Regulations 1981. The Committee recommends that the candidate be awarded the degree of Doctor of Philosophy. Members of the Examination Committee are as follows:

AHMAD HUSNI MOHD. HANIF, PhD
Associate Professor
Faculty of Agriculture
Universiti Putra Malaysia
(Chairman)

CHE FAUZIAH ISHAK, PhD
Associate Professor
Faculty of Agriculture
Universiti Putra Malaysia
(Internal Examiner)

AMINUDDIN HUSSIN, DSc
Associate Professor
Faculty of Agriculture
Universiti Putra Malaysia
(Internal Examiner)

JOHN KEITH SYERS, PhD
Professor
Neresuan Universiti
Thailand
(External Examiner)

HASANAH MOHD. GHAZALI, PhD
Professor/Deputy Dean
School of Graduate Studies
Universiti Putra Malaysia

Date: 16 FEB 2006
This thesis submitted to the senate of Universiti Putra Malaysia and has been accepted as fulfilment of the requirement for the degree of Doctor of Philosophy. The members of the Supervisory Committee are as follows:

ZAHRARAH ABDUL RAHMAN, DSc
Professor
Faculty of Agriculture
Universiti Putra Malaysia
(Chairman)

MOHD. HANAFI MUSA, PhD
Associate Professor
Faculty of Agriculture
Universiti Putra Malaysia
(Member)

ANUAR ABDUL RAHIM, PhD
Associate Professor
Faculty of Agriculture
Universiti Putra Malaysia
(Member)

AINI IDERIS, PhD
Professor/Dean
School of Graduate Studies
Universiti Putra Malaysia

Date: 09 MAR 2006
DECLARATION

I hereby declare that the thesis is based on my original work except for quotations and citations which have been duly acknowledged. I also declare that it has not been previously or concurrently submitted for any other degree at UPM or other institutions.

ESTHER WAKIURU GIKONYO

Date: 13th January 2006
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>DEDICATION</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABSTRACT</td>
<td>3</td>
</tr>
<tr>
<td>ABSTRAK</td>
<td>6</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>9</td>
</tr>
<tr>
<td>APPROVAL</td>
<td>11</td>
</tr>
<tr>
<td>DECLARATION</td>
<td>13</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>19</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>21</td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS/NOTATION/GLOSSARY OF TERMS</td>
<td>26</td>
</tr>
</tbody>
</table>

CHAPTER

I INTRODUCTION 30

II LITERATURE REVIEW 38

- Importance of Phosphorus 38
- Phosphorus Fertilizer Inputs 39
- Direct Application of PRs 40
- Dissolution of PR 41
 - Phosphate Rock Physical Factor 42
 - Phosphate Rock Chemical Factors 42
 - Soil Chemical Parameters 43
 - Plant Factors 44
- Effect of Organic Manures on PR Dissolution 44
- Fate of Fertilizer Phosphorus in the Soil 45
- Effects of Organic Matter on P Sorption 47
- Soil Testing Methods 48
- Degree of Phosphorus Saturation 50
- Phosphorus Release Kinetics 54
- Soil Phosphorus Pools/Fractions and Transformations 55
- Residual P 57
- Justification of the Study 60

III GENERAL METHODOLOGY 62

- Materials 62
- Characterization of Experimental Materials 63
- Other Methods Used in the Study 70
 - Phosphorus Fractionation and Analysis 70
 - Extractable Aluminium and Iron Oxides 72
 - Dithionite-Citrate Extractable Al and Fe Acid Oxalate 72
IV PHOSPHATE DESORPTION BY SUCCESSIVE EXTRACTIONS
WITH IRON OXIDE IMPREGNATED PAPER STRIP FROM
SOILS TREATED WITH DIFFERENT P FERTILIZERS

Introduction 76
Materials and Methods 78
Soil Sampling and Preparation 78
Soil Treatment and Equilibration Procedure 78
Sequential Extraction of P with Pi-Strip Procedure 79
Analysis of Other Soil Parameters 79
Results 80
Effect of Treatments on Extractable Mehlich-3 and Bray-1 P 80
Effect of Treatments on Phosphate Sorption Index 83
The DPS Computed From Available P and PSI 83
Effect of Treatments on Al, Fe, P and DPS Extracted by
Different Reagents 86
 Ammonium Oxalate Extractable Al, Fe, P and DPS 86
 Mehlich-3 Extractable Al, Fe, P and DPS 88
 Citrate Dithionite Extractable Al, Fe, P and DPS 91
Correlation between PSI, Al, Fe, and Al + Fe Extracted by
Different Reagents 92
Correlation between DPS and PSI 94
Sequentially Extracted P Using Pi-strip 95
Phosphorus Fractions 103
 Bicarbonate Inorganic Fraction 103
 Bicarbonate Organic P Fraction 105
 Hydroxide Inorganic P Fraction 107
 Hydroxide Organic P Fraction 109
 HCl-P Fraction 111
Discussion 113
Extractable P 113
Phosphate Sorption Index 114
Extractable Fe, Al, P and Resulting DPS for Various
Reagents 115
 Oxalate Extractable Fe, Al, P and DPS 115
 Mehlich 3 Extractable Al, Fe, P and DPS 117
 Citrate Dithionite Extractable Al, Fe, P and DPS 117
Correlation between PSI and Fe, Al and Fe + Al Extracted
by Different Reagents 118
Correlation between DPS and PSI 119
Phosphorus Sequentially Extracted Pi-strip 119
Phosphorus Fractions

Conclusions

V CURRENT AND RESIDUAL P AVAILABILITY IN AN ACID SOIL FERTILIZED WITH DIFFERENT P INPUTS

Introduction

Materials and methods

Experimental Treatments

Experimental Layout and Experimental Design

Rainfall Pattern

Soil Sampling

Soil Preparation

Setaria Grass Establishment

Plant Harvesting and Sampling

Plant Material Preparation

Plant Tissue Analysis for Nutrients Content

Soil Analysis

Calculations

Residual Effectiveness of Fertilizers

Degree of Phosphorus Saturation

Statistical Analysis

Results

Available Soil P

Mehlich-3 Extractable P

Bray 1 Extractable P

Pi-Strip P

Sesquioxides

Mehlich-3 Extractable Sesquioxides

Oxalate Extractable Al, Fe and P

Citrate Dithionite Extractable Al, Fe and P

Comparison of Al, Fe and P Extracted by Mehlich 3, Citrate Dithionite and Ammonium Oxalate Methods

Degree of Phosphorus Saturation

Sequential P fractions

Total Bicarbonate P

Bicarbonate Inorganic Fraction

Bicarbonate Organic P Fraction

Hydroxide Total P

Hydroxide Inorganic Fraction

Hydroxide Organic P

HCl- P Fraction

Residue P Fraction

Total P

Comparison of All the P Fractions

Plant Parameters

Dry Matter Yield
Phosphorus Content in Plant Tissue
Phosphorus Uptake
Zinc content and uptake
Potassium and Magnesium Contents
Residual Effectiveness of the Different Fertilizers
Residual Effectiveness of the Different Fertilizers Computed from the Slopes of Response Curves
Residual Effectiveness of the Different Fertilizers at Different Rates of Application
Relationship between Yield Parameters and the Various Soil Parameters
Relationship between Yield Parameters and Available P
Relationship between Yield Parameters and Degree of Phosphorus Saturation
Relationship between Yield Parameters and Different P Fractions
Relationship between Residual Value and the Different P Fractions
Relationship between Residual Value and Available P by the different Methods
Discussion
Sesquioxides
Degree of Phosphorus Saturation
Sequential Phosphorus Fractions
Relationship between P Fractions and Sesquioxides
Available P
Setaria Dry Matter Yields
Residual Value
Conclusions

VI ASSESSMENT OF PHOSPHORUS LEACHING IN 'P RECAPITALIZED SOILS USING DIFFERENT P SOURCES IN THE FIELD

Introduction
Materials and Methods
Experimental Site
Experimental Treatments and Design
Preparation of Resin Bags
Installation of Intact Leaching Columns and Resin Bags in the Field
Resin Sampling
Elution of P and Analysis
Calculation of P leached.
Statistical Analysis
Results
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1</td>
<td>67</td>
</tr>
<tr>
<td>3.2a</td>
<td>68</td>
</tr>
<tr>
<td>3.2b</td>
<td>69</td>
</tr>
<tr>
<td>4.1</td>
<td>92</td>
</tr>
<tr>
<td>4.2</td>
<td>95</td>
</tr>
<tr>
<td>4.3</td>
<td>96</td>
</tr>
<tr>
<td>4.4</td>
<td>98</td>
</tr>
<tr>
<td>4.5</td>
<td>100</td>
</tr>
<tr>
<td>5.1</td>
<td>147</td>
</tr>
<tr>
<td>5.2</td>
<td>151</td>
</tr>
<tr>
<td>5.3</td>
<td>157</td>
</tr>
<tr>
<td>5.4</td>
<td>163</td>
</tr>
<tr>
<td>5.5</td>
<td>164</td>
</tr>
<tr>
<td>5.6</td>
<td>184</td>
</tr>
<tr>
<td>5.7</td>
<td>185</td>
</tr>
<tr>
<td>5.8</td>
<td>201</td>
</tr>
<tr>
<td>5.9</td>
<td>211</td>
</tr>
<tr>
<td>Section</td>
<td>Description</td>
</tr>
<tr>
<td>---------</td>
<td>---</td>
</tr>
<tr>
<td>5.10</td>
<td>Stepwise multiple regression summary for P fractions vs. B1P, M3P, P content and DMY for; (a) All data minus control (b) Control</td>
</tr>
<tr>
<td>5.11</td>
<td>Multiple regression summaries of data partitioned into TSP and PRs</td>
</tr>
<tr>
<td>5.12</td>
<td>Multiple regression summaries of the data partitioned by P rates at 100 and 300 kg P ha(^{-1})</td>
</tr>
<tr>
<td>5.13</td>
<td>Multiple regression summaries of the various P fractions on residual value for: all data, partitioned into 100 and 300 kg P ha(^{-1}) and partitioned into PRs and TSP</td>
</tr>
<tr>
<td>5.14</td>
<td>Pearson correlation coefficients of different P fractions and extractable sesquioxides by different reagents</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1</td>
<td>X-ray diffractograms of GPR and CIPR.</td>
<td>66</td>
</tr>
<tr>
<td>3.2</td>
<td>Flow chart of the sequential P fractionation procedure in soil modified from Hedley et al. (1982). The Pi, Pt and Po, represent inorganic, total and organic phosphorus</td>
<td>71</td>
</tr>
<tr>
<td>4.1</td>
<td>Effects of P source x P rate x manure on extractable P by (a) Bray-1, and (b) Mehlich-3</td>
<td>81</td>
</tr>
<tr>
<td>4.2</td>
<td>Relationship between Bray-1 and Mehlich-3 extractable P from soil treated with different P sources</td>
<td>82</td>
</tr>
<tr>
<td>4.3</td>
<td>Effects of P source x P rate x manure on PSI</td>
<td>84</td>
</tr>
<tr>
<td>4.4</td>
<td>Effects of P source x P rate x manure on (a) DPS-BrayPSI and (b) DPS-MehPSI</td>
<td>85</td>
</tr>
<tr>
<td>4.5</td>
<td>Effect of P sources x P rate x manure on (a) Ox-Al, (b) Ox-Fe, (c) Ox-P, and (d) DPS-Ox</td>
<td>88</td>
</tr>
<tr>
<td>4.6</td>
<td>Effects of P source x P rate x manure on Mehlich-3 extractable (a) Meh-Al, (b) Meh-Fe, (c) Meh-P, and (d) DPS-MehPSI</td>
<td>90</td>
</tr>
<tr>
<td>4.7</td>
<td>Effects of P source x P rate x manure on (a) CD-Al, (b) CD-Fe, (c) CD-P, and (d) DPS-CD</td>
<td>93</td>
</tr>
<tr>
<td>4.8</td>
<td>Relationships between the different DPS (a) DPS-MehPSI vs. DPS-MehAF, (b) DPS-BrayPSI vs. DPS-MehAF, (c) DPS-CD vs. DPS-MehAF, (d) DPS-CD vs. DPS-Ox, (e) DPS-MehPSI vs. DPS-CD, (f) DPS-BrayPSI vs. DPS-CD, (g) DPS-BrayPSI vs. DPS-Ox, (h) DPS-MehPSI vs. DPS-Ox, and (i) DPS-MehPSI vs. DPS-BrayPSI</td>
<td>97</td>
</tr>
<tr>
<td>4.9</td>
<td>Effect of different P sources with and without manure on Pi-strip P at P rates (a) 0 (control), (b) 100, (c) 200, and (d) 400 mg P kg⁻¹</td>
<td>99</td>
</tr>
<tr>
<td>4.10</td>
<td>Relationship between (a) Constant ‘a’ vs. initial Pi-strip P and (b) Total P vs. initial Pi-strip P</td>
<td>102</td>
</tr>
<tr>
<td>4.11</td>
<td>Constant b vs. (a) DPS-CD, (b) DPS-MehAF, (c) DPS-Ox, and x-exponent vs. (d) DPS-CD, (e) DPS-MehPSI, and (f) DPS-Ox</td>
<td>102</td>
</tr>
</tbody>
</table>
4.12 Relationship between total P and (a) DPS-CD, (b) DPS-Ox, (c) DPS-MehPSI, and (d) DPS-BrayPSI

4.13 Effects of P source x P rate x manure on Bic-Pi (a) Prior and (b) After the Pi-strip P extraction

4.14 Effects of P source x P rate x manure on Bic-Po (a) Prior and (b) After the Pi-strip P extraction

4.15 Effects of P source x P rate x manure on Hyd-Pi (a) Prior and (b) After the Pi-strip P extraction

4.16 Effects of P source x P rate x manure on Hyd-Po (a) Prior and (b) After the Pi-strip P extraction

4.17 Effects of P source x P rate x manure on HCl-P (a) Prior and (b) After the Pi-strip P extraction

5.1 Experimental site location showing residual (left) and fresh TSP (right) plots location before planting

5.2 Bimonthly total rainfall for the experimental period between June 2003 and July 2004

5.3 Effects of different P sources with and without manure at rates (a) 0 (b) 100, and (c) 300 kg P ha\(^{-1}\) on extractable M3P over time

5.4 Effects of different P sources with and without manure at rates (a) 0, (b) 100, and 300 kg P ha\(^{-1}\) on extractable Bray 1 P over time

5.5 Effects of the different P sources with and without manure at rates (a) 0, (b) 100, and (c) 300 kg P ha\(^{-1}\) P on Pi-strip P.

5.6 Relationship between the three soil tests (a) M3P vs. B1P, (b) B1P vs.Pi-Strip P and (c) M3P vs. Pi-Strip P

5.7 Effect of different P sources with and without manure at rates (a) 0, (b) 100 and 300 kg P ha\(^{-1}\) on Mehlich 3 extractable Al over time

5.8 Effect of different P sources with and without manure at rates (a) 0, (b) 100 and 300 kg P ha\(^{-1}\) on Mehlich 3 extractable Fe over time

5.9 Effect of different P sources with and without manure at rates (a) 0, (b) 100, and (c) 300 kg P ha\(^{-1}\) on oxalate extractable Fe over time
5.10 Effect of different P sources with and without manure at rates (a) 0, (b) 100 and 300 kg P ha\(^{-1}\) on oxalate extractable Al over time

5.11 Effect of different P sources with and without manure at rates (a) 0, (b) 100, and (c) 300 kg P ha\(^{-1}\) on oxalate extractable P over time

5.12 Effect of different P sources with and without manure at rates (a) 0, (b) 100 and 300 kg P ha\(^{-1}\) on citrate dithionite extractable Al over time

5.13 Effect of different P sources with and without manure at rates (a) 0, (b) 100, and (c) 300 kg P ha\(^{-1}\) on citrate dithionite extractable Fe over time

5.14 Effect of different P sources with and without manure at different rates (a) 0, (b) 100, and (c) 300 kg P ha\(^{-1}\) on citrate dithionite extractable Fe over time

5.15 Effect of different P sources with and without manure at rates (a) 0, (b) 100, and (c) 300 kg P ha\(^{-1}\) on citrate dithionite DPS over time

5.16 Effect of different P sources with and without manure at rates (a) 0, (b) 100 and 300 kg P ha\(^{-1}\) on oxalate DPS over time

5.17 Figure 5.17: Effect of different P sources with and without manure at rates (a) 0, (b) 100, and (c) 300 kg P ha\(^{-1}\) on Mehlich DPS over time

5.18 Effects of different P sources with and without manure at the rates (a) 0 (control), (b) 100, and (c) 300 kg P ha\(^{-1}\) on total inorganic bicarbonate fraction

5.19 Effects of different P sources with and without manure at rates (a) 0, (b) 100, and (c) 300 kg P ha\(^{-1}\) on inorganic bicarbonate P fraction

5.20 Effect of P Sources with and without manure at P rates (a) 0, (b) 100, and (c) 300 kg P ha\(^{-1}\) on organic bicarbonate fraction

5.21 Effect of P sources with and without manure at rates (a) 0, (b) 100, and (c) 300 kg P ha\(^{-1}\) on total hydroxide P fraction.

5.22 Effect of P sources with and without manure at P rates (a) 0, (b) 100, and (c) 300 kg P ha\(^{-1}\) on inorganic hydroxide P fraction.
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.23</td>
<td>Effect of P sources with and without manure at rates (a) 0, (b) 100, and (c) 300 kg P ha(^{-1}) on organic hydroxide P fraction over time</td>
<td>178</td>
</tr>
<tr>
<td>5.24</td>
<td>Effect of P sources with and without manure at rates (a) 0, (b) 100, and (c) 300 kg P ha(^{-1}) on hydrochloric acid P fraction</td>
<td>179</td>
</tr>
<tr>
<td>5.25</td>
<td>Effect of P sources with and without manure at rates (a) 0, (b) 100, and (c) 300 kg P ha(^{-1}) on residue-P fraction</td>
<td>182</td>
</tr>
<tr>
<td>5.26</td>
<td>Effects of different P sources with and without manure at rates (a) 0, (b) 100 and (c) 300 kg P ha(^{-1}) on total P</td>
<td>183</td>
</tr>
<tr>
<td>5.27</td>
<td>Yield response curves for the different P sources with and without manure for harvests one to seven excluding harvest six, (since it was similar to harvest seven)</td>
<td>187</td>
</tr>
<tr>
<td>5.28</td>
<td>Photograph of a general view of the crop at different harvests</td>
<td>188</td>
</tr>
<tr>
<td>5.29</td>
<td>Changes of cumulative setaria dry matter yields as influenced by different P sources with and without manure</td>
<td>190</td>
</tr>
<tr>
<td>5.30</td>
<td>Setaria DMY changes of all the harvests as influenced by different P sources with and without manure at rates (a) 0 (control) & 100 (b) 200, and (c) 300 kg P/ha</td>
<td>191</td>
</tr>
<tr>
<td>5.31</td>
<td>Effect of P rates on average P content in plant tissue for the different P sources with and without manure</td>
<td>192</td>
</tr>
<tr>
<td>5.32</td>
<td>Setaria P content in plant tissue over time as influenced by different P sources with and without manure at rates (a) 0 (control) &100 (b) 200 and (c) 300 kg P ha(^{-1})</td>
<td>193</td>
</tr>
<tr>
<td>5.33</td>
<td>Setaria P uptake changes over time as influenced by different P sources with and without manure at rates (a) 0 (control) & 100 (b) 200 and (c) 300 kg P ha(^{-1})</td>
<td>196</td>
</tr>
<tr>
<td>5.34</td>
<td>Effects of P fertilizer rate on cumulative P uptake for all the fertilizers with and without manure</td>
<td>197</td>
</tr>
<tr>
<td>5.35</td>
<td>Effect of manure addition on Zn uptake by setaria grass</td>
<td>197</td>
</tr>
<tr>
<td>5.36</td>
<td>Zinc uptake changes over time for the different fertilizer rates</td>
<td>198</td>
</tr>
<tr>
<td>5.37</td>
<td>Three point linear response functions for all fertilizer treatments and fresh TSP response for harvests one to seven excluding harvest two which showed no response to any P source</td>
<td>200</td>
</tr>
</tbody>
</table>

24