DEVELOPMENT OF FINITE ELEMENT CODE FOR NON-LINEAR ANALYSIS OF INTERLOCKING MORTARLESS MASONRY SYSTEM

By

AHMED HASAN AHMED AL-WATHAF

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfilment of the Requirements for the Degree of Doctor of Philosophy

April 2006
TO ALL MEMBERS OF MY FAMILY
Presently, interlocking mortarless masonry system has been developed as an alternative to the conventional mortared masonry system for wall construction. The structural behaviour of the interlocking mortarless masonry system is not well explored and there is no standard and/or design specification for safe design of the interlocking mortarless block masonry system. The existing finite element analyses are simplified due to the absence of the significant and essential structural characteristics of the interlocking mortarless masonry system. Hence these models show inaccurate prediction for the structural response of the masonry system compared to actual behaviour of the system found experimentally.

This study aims at investigating numerically the structural response of interlocking masonry system using finite element method. The developed algorithm used in the FE analysis includes appropriate mathematical models to simulate the main features of mortarless masonry system. These models are derived experimentally using small scale specimens. The main features simulated are the structural characteristics of the
interlocking dry joints under combined Normal-Shear force actions, the failure mechanism of the joints, nonlinear contact behaviour of the joint considering the geometric imperfection of the block beds, the nonlinear stress-strain behaviour of the masonry materials and the failure of the masonry materials as well as the geometric nonlinearity. Proper test setups have been proposed to measure accurately the joint response under elastic, inelastic and failure stages of load. The actual behaviour of the interlocking system obtained experimentally is mathematically modelled and implemented in the finite element algorithm developed for the analysis of the interlocking masonry system. An incremental-iterative 2-D nonlinear finite element code is developed to implement the proposed algorithm and analyze the masonry system till failure.

The developed experimental setups used in this study successfully revealed the important features of the interlocking mortarless joint. The results indicate that the developed constitutive model and finite element code can successfully trace the structural behaviour (capacity, deformation and mode of failure) of the interlocking mortarless masonry system from the initial stage of loading till the failure. A general equation is proposed to estimate the capacity of interlocking mortarless masonry walls under eccentric and concentric vertical loads.
Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk ijazah Doktor Falsafah

PEMBANGUNAN KOD UNSUR TERHINGGA UNTUK ANALISIS TIDAK LINEAR SISTM PERBATAAN TANPA MORTAR SALING-KUNCI.

Oleh

AHMED HASAN AHMED AL-WATHAF

April 2006

Pengerusi: Profesor Madya Waleed A. M. Thanoon, PhD

Fakulti : Kejuruteraan

Pada masa kini, sistem saling-kunci perbataan tanpa mortar telah dibangunkan sebagai alternatif kepada sistem perbataan dengan mortar yang biasa digunakan untuk pembinaan dinding. Tingkahlaku sistem struktur saling-kunci perbataan tanpa mortar belum dibangunkan dengan sempurna dan tiada piawaian dan/atau spesifikasi rekabentuk yang selamat untuk sistem perbataan blok saling-kunci. Analisis unsur terhingga yang sedia ada telah dipermudahkan kerana ketiadaan ciri penting sistem struktur perbataan tanpa mortar. Oleh itu model menunjukkan ketidaktepatan ramalan untuk tingkahlaku sistem struktur perbataan berbanding kepada tingkahlaku sebenar sistem yang dilakukan secara eksperimen.

Kajian ini bermatlamat untuk mengkaji tingkahlaku sistem struktur perbataan saling kunci secara numerikal menggunakan analisis unsur terhingga. Algorithma yang dibangunkan dalam analisis unsur terhingga merangkumi model matematik yang besesuaian, diperolehi secara eksperimen menggunakan spesimen yang berskala kecil. Penampilan paling utama yang disimulasikan adalah ciri struktur saling-kunci

Susunan eksperimen yang dibangunkan untuk kajian telah berjaya membuktikan ciri penting sambungan saling-kunci sambungan tanpa mortar. Keputusan menunjukkan algrithma yang dibangunkan dan kod unsur terhingga telah berjaya mengesan tingkahlaku struktur (kapasiti, perubahan dan mod kegagalan) sistem saling-kunci perbataan tanpa mortar daripada peringkat awal bebanan hingga gagal. Persamaan umum diusulkan untuk menganggarkan kapasiti dinding perbataan saling kunci tanpa mortar di bawah bebanan tegak eksentrik dan konsentrik.
ACKNOWLEDGEMENTS

Praises and thanks for the Almighty Allah S. W. T. for giving me the strength, health and wisdom to complete this Degree successfully.

I would like to express my deepest gratitude to my supervisor Prof. Dr. Waleed A. M. Thanoon for his kind supervision, guidance, and valuable suggestions. I have learned a lot from his thorough and insightful review of this study and his dedication to achieve high quality and practical research.

I am grateful to all my supervisory committee members; Assoc. Prof. Dr. Jamaloddine Noorzaei, Assoc. Prof. Dr. Mohd Saleh Jaafer and Assoc. Prof. Dr. Mohd Razali Abdulkadir for their advices and suggestions during this study.

Also, I gratefully acknowledge Sana’a University for their financial support during the course of this study which gave me the opportunity to pursue my study in Malaysia.

Many great thanks extended to all my friends and the structural laboratory staff especially Mr. Mohd Halim Othman for their valuable assistance and help in the production of the blocks and providing the testing equipments and instrumentation.
I certify that an Examination Committee has met on 7th April 2006 to conduct the final examination of Ahmed Hasan Ahmed Al-Wathaf on his Doctor of Philosophy thesis entitled “Development of Finite Element Code for Non-Linear Analysis of Interlocking Mortarless Masonry System” in accordance with Universiti Pertanian Malaysia (Higher Degree) Act 1980 and Universiti Pertanian Malaysia (Higher Degree) Regulations 1981. The Committee recommends that the candidate be awarded the relevant degree. Members of the Examination Committee are as follows:

Bujang Kim Huat, PhD
Professor
Faculty of Engineering
Universiti Putra Malaysia
(Chairman)

Abang Abdullah Abang Ali, PhD
Professor
Faculty of Engineering
Universiti Putra Malaysia
(Internal Examiner)

Abdel Magid Salem Hamouda, PhD
Professor
Faculty of Engineering
Universiti Putra Malaysia
(Internal Examiner)

Muhamad Fauzi Mohd Zain, PhD
Professor
Faculty of Engineering
Universiti Kebangsaan Malaysia
(External Examiner)

HASANAH MOHD. GHAZALI, PhD
Professor/Deputy Dean
School of Graduate Studies
Universiti Putra Malaysia

Date: 18 MAY 2006

viii
This thesis submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfilment of the requirement for the degree of Doctor of Philosophy. The members of the Supervisory Committee are as follows:

Waleed A. M. Thanoon, PhD
Associate Professor
Faculty of Engineering
Universiti Putra Malaysia
(Chairman)

Jamaloddine Noorzaei, PhD
Associate Professor
Faculty of Engineering
Universiti Putra Malaysia
(Member)

Mohd Saleh Jaafer, PhD
Associate Professor
Faculty of Engineering
Universiti Putra Malaysia
(Member)

Mohd Razali Abdulkadir, PhD
Associate Professor
Faculty of Engineering
Universiti Putra Malaysia
(Member)

AINI IDERIS, PhD
Professor/ Dean
School of Graduate Studies
Universiti Putra Malaysia

Date: 08 JUN 2006
DECLARATION

I hereby declare that the thesis is based on my original work except for quotations and citations which have been duly acknowledged. I also declare that it has not been previously or concurrently submitted for any other degree at UPM or other institutions.

AHMED H. A. AL-WATHAF

Date: 28/4/2006
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>DEDICATION</td>
<td>ii</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>iii</td>
</tr>
<tr>
<td>ABSTRAK</td>
<td>v</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>vii</td>
</tr>
<tr>
<td>APPROVAL</td>
<td>viii</td>
</tr>
<tr>
<td>DECLARATION</td>
<td>x</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>xvi</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xviii</td>
</tr>
<tr>
<td>LIST OF NOTATIONS /ABBREVIATIONS</td>
<td>xxviii</td>
</tr>
</tbody>
</table>

CHAPTER

1 **INTRODUCTION**
 1.1 General
 1.2 Research Significance
 1.3 Objectives
 1.4 Scope
 1.5 Layout of Thesis

2 **LITERATURE REVIEW**
 2.1 Introduction
 2.2 Development and Structural Behaviour of Interlocking Mortarless Masonry
 2.3 Finite Element Modelling of Masonry
 2.3.1 Conventional Masonry Models
 2.3.1.1 Masonry Micro-Models
 2.3.1.2 Masonry Macro-Models
 2.3.1.3 Higher Smeared Masonry Macro-Models
 2.3.1.4 Mixed Masonry Models
 2.3.2 Interlocking Mortarless Masonry Models
 2.3.3 Masonry Joint Models
 2.3.3.1 Interface Element
 2.3.3.2 Link Element
 2.4 Summary and Conclusion

3 **FINITE ELEMENT MODELLING**
 3.1 Introduction
 3.2 Masonry Discretization
 3.3 Finite Element Formulation
 3.3.1 Plane Isoparametric Element Formulation
 3.3.2 Isoparametric Interface Element Formulation
 3.3.3 Isoparametric Bar Element Formulation
 3.3.4 Numerical Integration
3.4 Nonlinear Finite Element Modelling
3.5 Summary and Conclusion

4 EXPERIMENTAL TESTING PROGRAM
4.1 Introduction
4.2 Preparation for Testing
 4.2.1 Interlocking Blocks Production
 4.2.2 Verification of Block Unit Dimensions
 4.2.3 Water Absorption, Water Content and Oven-Dry Density for Blocks
 4.2.4 Concrete Grout Specimen Casting
4.3 Compression Test of Block and Grout
 4.3.1 Test Specimens
 4.3.2 Compression Test Setup and Test Procedure
 4.3.2.1 Compressive Stress-Strain Relation Test
 4.3.2.2 Poisson’s Ratio Determination Test
4.4 Splitting Tensile Strength Test
 4.4.1 Test Specimens
 4.4.2 Test Setup and Test Procedure
4.5 Shear Test of Interlocking Mortarless Joint
 4.5.1 Proposed Modified Triplet Shear Test Setup
 4.5.2 Test Procedure and Measurements
4.6 Contact Behaviour Test of Bed Joint
 4.6.1 Proposed Methods of Contact Behaviour Test
 4.6.1.1 Single Joint Specimens
 4.6.1.2 Multiple Joints Specimens
 4.6.2 Test Setup and Test Procedure
4.7 Compression Test of Prisms
 4.7.1 Test Specimens
 4.7.2 Test Setup and Test Procedure
4.8 Summary and Conclusion

5 EXPERIMENTAL TEST RESULTS AND DISCUSSION
5.1 Introduction
5.2 Characteristic of Block and Grout under Compression
 5.2.1 Compressive Strength Characteristic
 5.2.2 Uniaxial Compressive Stress-Strain Behaviour
 5.2.2.1 Concrete Block Units
 5.2.2.2 Concrete Grout
 5.2.3 Poisson’s ratio
 5.2.4 Mode of Failure of Block under Axial Compression
 5.2.5 Mathematical Modelling of Uniaxial Compressive Stress-Strain Curves
 5.2.5.1 Stress-Strain Relations Review
 5.2.5.2 Discussion on the Reviewed Stress-Strain Relations
 5.2.5.3 Selection of Stress-Strain Relation
5.2.5.4 Proposed Method of Material Parameter Determination

5.3 Splitting Tensile Strength of Block and Grout

5.4 Shear Characteristic of Interlocking Mortarless Masonry Joint
5.4.1 Strength and Deformation Characteristics
5.4.2 Mode of Failure and Interlocking Mechanism Evaluation
5.4.3 Normal-Shear Stresses Failure Envelope

5.5 Characteristic of Mortarless Joint under Compression
5.5.1 Single Joint
5.5.2 Multiple Joints

5.6 Characteristic of Interlocking Mortarless Block Prism under Compression
5.6.1 Strength and Deformation Characteristics
5.6.1.1 Ungrouted Prisms
5.6.1.2 Grouted Prisms
5.6.2 Web Splitting and Mode of Failure
5.6.2.1 Ungrouted Prisms
5.6.2.2 Grouted Prisms

5.7 Summary and Conclusion

6 NONLINEAR FINITE ELEMENT ANALYSIS: CONSTITUTIVE MODELLING

6.1 Introduction

6.2 Masonry Materials Modelling
6.2.1 Stress-Strain Relation
6.2.1.1 Uniaxial Stress-Strain Relation
6.2.1.2 Biaxial Stress-Strain Relation
6.2.2 Material Failure Criteria
6.2.3 Masonry Material Stiffness

6.3 Modelling of Mortarless (Dry) Joint
6.3.1 Contact Stress-Deformation Relation
6.3.2 Shear Stress-Slip Relation
6.3.3 Failure Criteria of Mortarless Joint
6.3.3.1 Mortarless Joint Opening
6.3.3.2 Mortarless Joint Shear Strength Envelope
6.3.4 Mortarless Joint Stiffness

6.4 Modelling of Block-Grout Interface
6.5 Steel Reinforcement Modelling
6.6 Summary and Conclusion

7 NONLINEAR FINITE ELEMENT ANALYSIS: PROCEDURE AND PROGRAMMING

7.1 Introduction
7.2 Nonlinear Finite Element Analysis
7.2.1 Numerical Procedure of Nonlinear FE Analysis

xiii
7.2.2 Solution Algorithm of Nonlinear FE Analysis
7.2.2.1 Residual Forces
7.2.2.2 Convergence Criterion
7.3 Nonlinear Finite Element Programming
7.3.1 Input and Output Data
7.3.2 Nonlinear FE Program Modules
7.3.2.1 Main Program
7.3.2.2 Auxiliary subroutines
7.4 Program Verification
7.4.1 Interface Element Stiffness Verification
7.4.2 Type of Loading and Interface Element Location Verification
7.4.3 Stress Verification
7.4.4 Stiffness Matrices Transformation Verification
7.4.5 Nonlinear Analysis Process Verification
7.5 Summary and Conclusion

8 NONLINEAR FINITE ELEMENT ANALYSIS: RESULTS AND DISCUSSION
8.1 Introduction
8.2 Materials and Interfaces Properties
8.3 Structural Behaviour of Block Unit
8.4 Structural Behaviour of Prisms
8.4.1 Ungrouted (Hollow) Prism
8.4.2 Grouted Prism
8.5 Structural Behaviour of Wall Panels
8.5.1 Wall Discretization
8.5.2 Wall Compressive Strength
8.5.3 Deformation of Walls
8.5.3.1 Vertical deformation
8.5.3.2 Lateral Deflection
8.5.4 Mortarless Joint Response
8.5.5 Mode of Failure of Walls
8.5.5.1 Un-Stiffened Walls (Group A)
8.5.5.2 Un-stiffened walls (Group B)
8.5.5.3 Un-Stiffened Walls (Group C)
8.6 Developments of Capacity Equation
8.6.1 Effect of Slenderness and Eccentricity on Wall Capacity
8.6.2 Mathematical Modelling of Wall Capacity
8.6.3 Evaluation of Capacity Equation
8.6.3.1 Group I, Un-stiffened walls
8.6.3.2 Group II, Stiffened Walls
8.6.3.3 Group III, Stiffened walls
8.7 Summary and Conclusion
<table>
<thead>
<tr>
<th>9</th>
<th>SUMMARY AND CONCLUSION</th>
<th>290</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.1</td>
<td>Summary</td>
<td>290</td>
</tr>
<tr>
<td>9.2</td>
<td>Conclusion</td>
<td>293</td>
</tr>
<tr>
<td>9.2.1</td>
<td>Characteristics of Interlocking Mortarless Masonry</td>
<td>293</td>
</tr>
<tr>
<td>9.2.2</td>
<td>Constitutive model</td>
<td>295</td>
</tr>
<tr>
<td>9.2.3</td>
<td>Nonlinear Finite Element Analyses</td>
<td>296</td>
</tr>
<tr>
<td>9.3</td>
<td>Recommendation for Further Work</td>
<td>297</td>
</tr>
</tbody>
</table>

REFERENCES 298
APPENDICES 306
BIODATA OF THE AUTHOR 326
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1</td>
<td>Coordinates and Weights of Gaussian Points</td>
</tr>
<tr>
<td>5.1</td>
<td>Compression and splitting test results of block and grout material</td>
</tr>
<tr>
<td>5.2</td>
<td>Stress-Strain Relations</td>
</tr>
<tr>
<td>5.3</td>
<td>Summary of the shear test results</td>
</tr>
<tr>
<td>5.4</td>
<td>Compression Test Results of Prisms</td>
</tr>
<tr>
<td>6.1</td>
<td>Material Stiffness Matrix of Cracked and Crushed Masonry Material</td>
</tr>
<tr>
<td>6.2</td>
<td>Stiffness Matrix of Opened and Slipped Dry Joint</td>
</tr>
<tr>
<td>7.1</td>
<td>Masonry Material and Mortarless Properties of Verification Example</td>
</tr>
<tr>
<td>8.1</td>
<td>Masonry Materials Properties</td>
</tr>
<tr>
<td>8.2</td>
<td>Dry Joint Element Properties (JE)</td>
</tr>
<tr>
<td>8.3</td>
<td>Block- Grout Interface Element Properties (BE)</td>
</tr>
<tr>
<td>8.4</td>
<td>Material Properties of Walls</td>
</tr>
<tr>
<td>8.5</td>
<td>Cross Sectional Properties of Walls</td>
</tr>
<tr>
<td>8.6</td>
<td>Compressive Strength of Walls</td>
</tr>
<tr>
<td>8.7</td>
<td>Wall Capacity Reduction Comparison</td>
</tr>
<tr>
<td>8.8</td>
<td>Maximum Predicted Loads and Reduction</td>
</tr>
<tr>
<td>8.9</td>
<td>Coefficients of Proposed Equations</td>
</tr>
<tr>
<td>8.10</td>
<td>Comparison of Capacity Reduction Factor of Group I</td>
</tr>
<tr>
<td>8.11</td>
<td>Comparison of Capacity Reduction Factor of Group II</td>
</tr>
<tr>
<td>8.12</td>
<td>Comparison of Capacity Reduction Factor of Group III</td>
</tr>
<tr>
<td>A.1</td>
<td>Dimension Measurements of Stretcher Blocks</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Interlocking Block Developed by Thallon (1983)</td>
<td>8</td>
</tr>
<tr>
<td>2.2</td>
<td>Haenar Interlocking System (1984)</td>
<td>8</td>
</tr>
<tr>
<td>2.3</td>
<td>Mecano Interlocking System, Gallegos (1988)</td>
<td>9</td>
</tr>
<tr>
<td>2.4</td>
<td>Drexel University Interlocking Block, Harris et al. (1992)</td>
<td>10</td>
</tr>
<tr>
<td>2.5</td>
<td>Compression Test Setup and Results, Oh (1994)</td>
<td>11</td>
</tr>
<tr>
<td>2.6</td>
<td>Typical test setup of diagonal shear test, Oh et al. (1993)</td>
<td>12</td>
</tr>
<tr>
<td>2.7</td>
<td>Interlocking Hollow Block System, UPM, Abang et al. (1993)</td>
<td>13</td>
</tr>
<tr>
<td>2.8</td>
<td>Crack Pattern of Axial Loaded Wall, Abang et al. (1993)</td>
<td>14</td>
</tr>
<tr>
<td>2.9</td>
<td>Vertical Deformation Results, Abang et al. (1993)</td>
<td>15</td>
</tr>
<tr>
<td>2.10</td>
<td>Interlocking Hollow Block System, Mirasa et al. (1999)</td>
<td>16</td>
</tr>
<tr>
<td>2.11</td>
<td>Details of SILBLO CK, Anand and Ramamurthy (2000)</td>
<td>17</td>
</tr>
<tr>
<td>2.12</td>
<td>Test Setup and Test Result Comparison, Anand and Ramamurthy (2000)</td>
<td>18</td>
</tr>
<tr>
<td>2.13</td>
<td>Smart Masonry, Anderson and Beal (2001)</td>
<td>19</td>
</tr>
<tr>
<td>2.14</td>
<td>Putra Interlocking Block System, Thanoon et al. (2004)</td>
<td>20</td>
</tr>
<tr>
<td>2.15</td>
<td>Wall Construction of Putra Block System, Thanoon et al. (2004)</td>
<td>20</td>
</tr>
<tr>
<td>2.16</td>
<td>Test Setup Wall Panels, Najm (2001)</td>
<td>21</td>
</tr>
<tr>
<td>2.17</td>
<td>Variations of Wall Efficiency, Najm(2001)</td>
<td>22</td>
</tr>
<tr>
<td>2.18</td>
<td>Wall Specimens of Shehab (2005)</td>
<td>23</td>
</tr>
<tr>
<td>2.19</td>
<td>Stiffened Wall Efficiency, Shehab (2005)</td>
<td>23</td>
</tr>
<tr>
<td>2.20</td>
<td>Prism and Wall Panel Specimens, Jaafar et al. (2005)</td>
<td>24</td>
</tr>
</tbody>
</table>
2.21 Test Specimens and Comparison of Stress-Strain Curves, Marzahn (1997)

2.22 Influence of Bed Plane Quality, Marzahn (1997)

2.23 Triplet Shear Test Setup and Shear Strength Curves, Marzahn (1998)

2.24 Long-Term Compression Test (0.5 N/mm²), Marzahn (1999)

2.25 Finite Element Subdivision and Test Results Comparison, Page (1978)

2.26 FE Idealization and Test Results Comparison, Suwalski and Drysdale (1986)

2.27 Typical FE Mesh and Test Result Comparison, Ali and Page (1988)

2.28 Comparison the FE Model with Test Result, Ali and Page (1989)

2.29 3-D FE Model and the Proposed Behaviour, Afshari and Kaldjian (1989)

2.30 3-D and 2-D FE Models, Guo (1991)

2.31 FE Mesh and Vertical Deformation Result, Sayed-Ahmed and Shrive (1996a)

2.32 Typical FE Mesh and Results, Yi and Shrive (2003)

2.33 Failure Surface and Test Results Comparison, Samarasinghe et al. (1981)

2.34 Transformation and Stress And Strain Results, Dhanasekar et al. (1985)

2.35 Numerical and Test Results of Load-Displacement, Lotfi and Shing (1991)

2.36 Layered Element and Result Comparison, Cerioni and Doinda (1994)

2.37 Repetitive Unit Cell, Luciano and Sacco (1997)

2.38 Unit Cell Used by Mafra and Sacco (2001)

2.39 FE mesh and test result comparison, Oh (1994)

2.40a Elementary Sliding Mechanism, Alpa et al. (1998)
2.40b Elementary Portion of Masonry and Response of a Wall, Alpa et al. (1998)

2.41 3-D FE Mesh of a Wall and Efficiency Comparison, Sadoun (2000)

2.42 Zero Thickness Joint Elements Used By Goodman et al. (1968)

2.43 Zero Thickness Joint Elements Used By Page (1978)

2.44 Isoperimetric Interface Element Used By Lotfi and Shing. (1994)

2.45 Interface Element of Giambanco et al. (2001)

2.46 Link Element Idealization, Saadeghvaziri and Mehta (1993)

2.47 Typical Wall Segment Showing Link Elements, Riddington and Noam (1994)

3.1 Elements Used In FE Analysis

3.2 2-D Finite Elements Meshes of Masonry

3.3 8-Nodded Isoparametric Plane Element

3.4 Relation between Material and Global Coordinate Systems

3.5 Isoparametric Parabolic Interface Element

3.6 Axes Transformation

3.7 Bar Element in General Orientation

3.8 Locations of Gaussian Points

4.1 Putra Interlocking Block units

4.2 Nominal Dimensions of Putra Interlocking Block Units

4.3 Compression Test Specimens

4.4 Universal Testing Machine and Data Acquisition System

4.5 Compressive Stress-Strain Test Setup

4.6 Unit Test Compression Machine

4.7 Poisson's Ratio Determination Test
4.8 Splitting Tensile Strength Specimens
4.9 Splitting Test Setup
4.10 Different Types of Shear Tests Set-Up
4.11 Proposed Modified Triplet Shear Test Setup
4.12 Details of Shear Test Setup
4.13 A Specimen under Test
4.14 Dimensions of the Panel Specimen and Measuring Points, DPs
4.15 Diagonal Demec Point's Displacement (D) and Horizontal Slip(S)
4.16 Mortarless (Dry) Masonry Bed Joint
4.17 Contact Test Specimen of Single Joint
4.18 Contact Test Specimen of Multiple Joints
4.19 Contact Test Setups
4.20 Ungrouted and Grouted Test Specimen of Prisms
4.21 Compression Test Setup of Ungrouted and Grouted Prisms
5.1 Compressive Strength Versus Density Of Different Block Units
5.2 Compressive Strength Versus Density Of All Block Units
5.3 Stress-Strain Curves of Stretcher Concrete Blocks
5.4 Stress-Strain Curves of Corner Concrete Blocks
5.5 Stress-Strain Curves of Half Concrete Blocks
5.6 Typical Stress-Strain Curve of Concrete Block Units
5.7 Maximum Compressive Stress and Corresponding Strain
5.8 Stress-Strain Curves of Concrete Grout
5.9 Typical Stress-Strain Curve of Concrete Grout
5.10 Poisson’s Ratio Curves of Concrete Block
5.1 Poisson’s Ratio Curves of Concrete Grout
5.12 Typical Poisson’s Ratio Curves of Concrete Block and Grout
5.13 Typical Mode of Failure of Block Units
5.14 Different Stress-Strain Relations Comparison
5.15 Initial Tangent Modulus Estimation at the Origin for a Specimen
5.16 Stress-Strain Curve Based On the Estimated Initial Tangent Modulus
5.17 Stress-Strain Data Fitting Comparison
5.18 Stress-Strain Data Fitting Of Block Unit
5.19 Splitting Failure of the Test Specimens
5.20 Shear Load-Slip Curves of the Bed Joints for All Panels
5.21 Shear Load-Slip Curves of Specimen SH1-I
5.22 Shear Load-Slip Curves of Specimen SH1-II
5.23 Shear Load-Slip Curves of Specimen SH2-I
5.24 Shear Load-Slip Curves of Specimen SH2-II
5.25 Shear Load-Slip Curves of Specimen SH3-I
5.26 Shear Load-Slip Curves of Specimen SH3-II
5.27 Shear Load-Slip Curves of Specimen SH4-I
5.28 Shear Load-Slip Curves of Specimen SH4-II
5.29 Typical Shear Test Results Of Conventional Mortared Joint (Guo, 1991)
5.30 Typical Slip Failure at the Bed Joints
5.31 Slipping and Cracking Of Panel SH4 (II)
5.32 Failure Surface of a Face-Shell Bed Joint
5.33 Cross Section View of Interlocking System After Failure
5.34 Interlocking Projections Failure of Middle Course

xxii
5.35 Interlocking Projections Failure of Bottom Course
5.36 Relation between Normal Stress and Shear Strength
5.37 Load-Displacement Curves in a Single Joint
5.38 Deformation of Dry Bed Joint with Increasing Load
5.39 Range of the Single Joint Roughness
5.40 Load-Displacement Curves of Multiple Mortarless Joints of W1
5.41 Load-Displacement Curves of Multiple Mortarless Joints of W2
5.42 Load-displacement curves of multiple mortarless joints of W3
5.43 Load-Displacement Variation of Multiple Joints in Test Panel
5.44 Load-Axial Deformation Curves Of Ungrouted Prism PR1
5.45 Load-Axial Deformation Curves Of Ungrouted Prism PR2
5.46 Load-Axial Deformation Curves of Ungrouted Prism PR3
5.47 Load-Axial Deformation Curves of Ungrouted Prisms
5.48 Typical Load-Deformation Curves of Dry Joint in Ungrouted Prisms
5.49 Load-Axial Deformation Curves of Grouted Prism PRG1
5.50 Load-Axial Deformation Curves of Grouted Prism PRG2
5.51 Load-Axial Deformation Curves of Grouted Prism PRG3
5.52 Load-Axial Deformation Curves of Grouted Prisms
5.53 Typical Load-Deformation Curves of Dry Joint in Ungrouted Prisms
5.54 Web Splitting Of Hollow Prisms
5.55 Face-Shell Cracking Of Hollow Prisms
5.56 Mode of Failure of PR1 Specimen
5.57 Web Splitting of Grouted Prisms
5.58 Face-Shell Cracking of Grouted Prism
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.59</td>
<td>Block Shells De-Bonding In Grouted Prism</td>
<td>161</td>
</tr>
<tr>
<td>6.1</td>
<td>Stress-Strain Relation with Different Material Parameters</td>
<td>166</td>
</tr>
<tr>
<td>6.2</td>
<td>Comparison of Test Data and the Best Fit Relation</td>
<td>167</td>
</tr>
<tr>
<td>6.3</td>
<td>Equivalent Uniaxial Stress-Strain of an Element under Biaxial</td>
<td>169</td>
</tr>
<tr>
<td></td>
<td>Compression</td>
<td></td>
</tr>
<tr>
<td>6.4</td>
<td>Stress-Strain Curves of Masonry Material for Different Biaxial</td>
<td>171</td>
</tr>
<tr>
<td></td>
<td>Stress Ratio</td>
<td></td>
</tr>
<tr>
<td>6.5</td>
<td>Masonry Failure Envelope for Different Stress States</td>
<td>174</td>
</tr>
<tr>
<td>6.6</td>
<td>Relation Between Material And Global Coordinate Systems</td>
<td>178</td>
</tr>
<tr>
<td>6.7</td>
<td>Close-Up Deformation under Compressive Stress of Dry Joint</td>
<td>181</td>
</tr>
<tr>
<td>6.8</td>
<td>Shear Slip under Different Pre-Compressive Stresses in Dry Joint</td>
<td>182</td>
</tr>
<tr>
<td>6.9</td>
<td>Shear Load and Shear Slip</td>
<td>183</td>
</tr>
<tr>
<td>6.10</td>
<td>Opening and Closure Criteria of Dry Joint</td>
<td>184</td>
</tr>
<tr>
<td>6.11</td>
<td>Shear Strength Envelope of Dry Joint</td>
<td>185</td>
</tr>
<tr>
<td>6.12</td>
<td>Axes Transformation of Interface</td>
<td>187</td>
</tr>
<tr>
<td>6.13</td>
<td>Shear Strength Envelope of Block-Grout Interface</td>
<td>190</td>
</tr>
<tr>
<td>6.14</td>
<td>Stress-Strain Curve for the Steel Material</td>
<td>191</td>
</tr>
<tr>
<td>7.1</td>
<td>Incremental-Iterative Procedure of Nonlinear Analysis</td>
<td>196</td>
</tr>
<tr>
<td>7.2</td>
<td>Solution Procedure of the Nonlinear Analysis</td>
<td>198</td>
</tr>
<tr>
<td>7.3</td>
<td>Solution Algorithm of Different Elements</td>
<td>204</td>
</tr>
<tr>
<td>7.4</td>
<td>Program Flowchart</td>
<td>213</td>
</tr>
<tr>
<td>7.5</td>
<td>Cantilever Beam Idealization</td>
<td>215</td>
</tr>
<tr>
<td>7.6</td>
<td>Cantilever Beam Deflection with Different IE Normal Stiffness</td>
<td>215</td>
</tr>
<tr>
<td>7.7</td>
<td>Cantilever Beam Deflection with Different IE Shear Stiffness</td>
<td>216</td>
</tr>
<tr>
<td>7.8</td>
<td>Cantilever Beam Deflected Shape</td>
<td>216</td>
</tr>
</tbody>
</table>