UNIVERSITI PUTRA MALAYSIA

DESIGN ASSESSMENT OF THERMAL COMFORT USING COMPUTATIONAL SIMULATION OF A TERRACE HOUSE IN KUALA LUMPUR, MALAYSIA

NASIBEH SADAFI

FRSB 2008 5
DESIGN ASSESSMENT OF THERMAL COMFORT USING COMPUTATIONAL SIMULATION OF A TERRACE HOUSE IN KUALA LUMPUR, MALAYSIA

By

NASIBEH SADAFI

Thesis Submitted to the School of Graduate Studies, University Putra Malaysia, in Fulfilment of the Requirements for the Degree of Master

September 2008
Terrace housing is the most common type of housing in Malaysia. They have been increasingly common in cities and towns in comparison to the detached single-family houses. However, comfort conditions in such house types vary according to the designs, modifications and adaptations of the occupants. Meanwhile, indoor environment studies in Malaysia revealed that most of the modern terrace houses are above upper thermal comfort level during day and night. The cause is simply because of unsuitable climatic design. In fact bioclimatic design considerations in terrace houses of Malaysia are not fully exploited according to occupant’s comfort needs. This study investigates the influence of different design factors in enhancing thermal condition of the house.

Firstly, current condition of thermal comfort sensation for a case study terrace house in Kuala Lumpur Malaysia is investigated, using Fanger’s Predicted Mean Vote thermal
comfort index. The case study was chosen in ‘Oversea Union Garden’ (OUG) area where field measurement was conducted during a three-day recording of air temperature, humidity, globe temperature and air velocity in naturally-ventilated spaces of the house. The study shows that the house is thermally comfortable for almost 15 hours during day and night, when comfort conditions mostly occurred during night hours. For improving the thermal conditions during the day, ceiling fan was used to increase the air velocity in the building. When the air temperature reaches its maximum amount, reducing the absorption of sun radiation will help more to enhance the thermal comfort condition of the house.

Baseline model for the computational experiment was developed according to the results from field measurement as well as selection and adjustment of the tool. In the next step ECOTECT software has been applied for constructing the computer model of the case study terrace house. Consequently, thermal analysis part in ECOTECT has been used to assess internal thermal properties of the house in three different months of the year including: March, Jun and December. Testing of the model consists of evaluating the existing condition, testing for the shading condition and testing for the effects of including internal courtyard in the house. These evaluations revealed that suitable shading design will improve the thermal conditions, especially during noon hours when the house has the most penetration of the sun from the windows as well as highest internal temperature. Introducing the internal courtyard will increase the thermal interactions between the building and outdoor environment especially in adjacent zones. However it can improve the thermal condition by applying suitable shading design as well as suitable materials for the fabrics.
According to the results of the study care should be taken for designing terrace houses in order to provide an optimal solar protection while considering the values of natural light. In courtyard buildings, the potential of courtyards to act as passive cooling can be correlated with the building composition in terms of air flow pattern.
Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia bagi memenuhi keperluan ijazah Sarjana

PENILAIAN REKABENTUK BAGI KESELESAAN SUHU DENGAN MENGGUNAKAN SIMULASI KOMPUTER UNTUK RUMAH TERES DI KUALA LUMPUR, MALAYSIA

Oleh
NASIBEH SADAFI

September 2008

Pengerusi: Prof. Dato’ Ar. Elias @ Ilias Bin Salleh

Fakulti: Rekabentuk dan Senibina

kepada faktor perbezaan rekabentuk untuk meningkatkan keadaan termal sesuatu rumah.

Acknowledgements

First of all; I am extremely grateful and thankful to GOD- ALLAH, for without his mercy and guidance none of this work would have been accomplished.

Next I would like to express my thanks and appreciate to each one of the following:

Great thanks to the University Putra Malaysia and Faculty of Design and Architecture.

My sincere and deepest thanks to my supervisor Prof. Dato' Ar. Elias @ Ilias Bin Salleh for his through supervision and encouragements that greatly inspired this work.

To Ar. Lim Chin Haw and Dr. Mohamad Fakri Zaky Bin Jaafar for their invaluable comments and insightful suggestions that further made this study meaningful.

To Mdm. Nor Shahrene Mohd.Ibrahim, I acknowledge her assistance for valuable explanations to understand Ecotect software and model preparation.

Special Thanks and great appreciate to my husband and my family for their support and assistant during this study.
This thesis was submitted to the Senate of the Universiti Putra Malaysia and has been accepted as fulfillment of the requirement for the degree of Master. The members of the Supervisory Committee were as follows:

Dato' Ar. Elias @ Ilias Bin Salleh, PhD
Professor
Faculty of Design and Architecture
Universiti Putra Malaysia

Ar. Lim Chin Haw
Senior lecturer
Faculty of Design and Architecture
Universiti Putra Malaysia

Mohamad Fakri Zaky Bin Jaafar, PhD
Lecturer
Faculty of Design and Architecture
Universiti Putra Malaysia

AINI IDERIS, PhD
Professor and Dean
School of Graduate Studies
Universiti Putra Malaysia

Date: 13 November 2008
DECLARATION

I declare that the thesis is my original work except for quotations and citations which have been duly acknowledged. I also declare that it has not been previously, and is not concurrently, submitted for any other degree at Universiti Putra Malaysia or at any other institution.

NASIBEH SADAFI

Date:
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABSTRACT</td>
<td>ii</td>
</tr>
<tr>
<td>ABSTRAK</td>
<td>v</td>
</tr>
<tr>
<td>ACKNOWLEDGMENTS</td>
<td>vi</td>
</tr>
<tr>
<td>APPROVAL</td>
<td>viii</td>
</tr>
<tr>
<td>DECLARATION</td>
<td>x</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>xiv</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xv</td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
<td>xix</td>
</tr>
</tbody>
</table>

CHAPTER

1 **INTRODUCTION**

1.1 Introduction 1
1.2 Background 2
1.3 Problem Statement 3
1.4 Objectives of the research 5
1.5 Scope of the study 5
1.6 Research Methodology 6
1.7 Research Framework 7
1.8 Chapters overview 8

2 **CLIMATIC DATA AND BIOCLIMATIC DESIGN**

2.1 Introduction 10
2.2 General Climatic Consideration 10
2.2.1 Temperature Distribution 11
2.2.2 Relative Humidity 12
2.2.3 Sunshine and Solar Radiation 13
2.2.4 Wind flow in Malaysia 15
2.2.5 Rainfall Distribution 16
2.3 Bioclimatic design in warm-humid climate 18
2.3.1 Thermal impacts of shading conditions 19
2.3.2 Insulation and thermal heat gain 24
2.3.3 Thermal impacts of ventilation conditions 27
2.4 Summary 32

3 **TERRACE HOUSES IN MALAYSIA**

3.1 Introduction 34
3.2 Historical background 34
3.2.1 Terrace houses in Malaysia 34
3.3 The modern terrace houses 37
3.3.1 Design factors of Terrace Houses. 37
4 THERMAL COMFORT PRINCIPLES AND STUDIES

4.1 Introduction
4.2 Comfort terminologies
 4.2.1 Thermal vote
 4.2.2 Thermal Neutrality
 4.2.3 Thermal acceptability
 4.2.4 Thermal preference
4.3 Conditions for Thermal Comfort
 4.3.1 Comfortable core body temperature
 4.3.2 Comfortable skin temperature
 4.3.3 Comfortable perspiration rate
4.4 Comfort Prediction
 4.4.1 Early thermal comfort indices
 4.4.2 Fanger’s model: Predicted Mean Vote
 4.4.3 Adaptive comfort
4.5 The importance of thermal comfort in architectural design
 4.5.1 Investigation methods in thermal comfort studies
 4.5.2 Computer modeling
 4.5.3 Thermal Comfort Studies in South East Asia
 4.5.4 Thermal comfort studies in Malaysia
 4.5.5 Courtyard building studies
4.6 Summary

5 DEVELOPMENT OF BASELINE MODEL

5.1 Introduction
5.2 Prevailing climatic condition for April
5.3 Field measurement
 5.3.1 The investigated building/Unit of analysis
 5.3.2 Data Collection
 5.3.3 Assumptions of the study
5.4 Results
 5.4.1 Recorded Data
 5.4.2 Discussions
5.5 Thermal improvement investigation
 5.5.1 Using ceiling fan to promote the air velocity
 5.5.2 Mean Radiant Temperature
 5.5.3 Results and discussion
5.6 Baseline model
5.7 Tool selection process
5.8 ECOTECT
5.9 Procedure
 5.9.1 Baseline modeling parameters
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2-1 Station: The Values of Rainfall Intensity for Various Return Period</td>
<td>18</td>
</tr>
<tr>
<td>4-1 Summary of some early indices of thermal comfort</td>
<td>51</td>
</tr>
<tr>
<td>4-2 Met Value Table</td>
<td>58</td>
</tr>
<tr>
<td>4-3 Expectancy factor for non-air-conditioned buildings in warm climate.</td>
<td>64</td>
</tr>
<tr>
<td>4-4 thermal comfort studies in tropical South East Asia region</td>
<td>70</td>
</tr>
<tr>
<td>4-5 Results from various thermal comfort studies in Malaysia.</td>
<td>74</td>
</tr>
<tr>
<td>5-1 Material description for the case study building.</td>
<td>83</td>
</tr>
<tr>
<td>5-2 Assumptions in PMV calculation</td>
<td>86</td>
</tr>
<tr>
<td>5-3 Summary of thermal comfort condition according to PMV variations.</td>
<td>93</td>
</tr>
<tr>
<td>5-4 variation of air velocity in different settings of the ceiling fan</td>
<td>96</td>
</tr>
<tr>
<td>5-5 PMV variation according to changes in air velocity</td>
<td>97</td>
</tr>
<tr>
<td>5-6 PMV variations according to changes in Mean Radiant Temperature</td>
<td>98</td>
</tr>
<tr>
<td>5-7 Material description for the case study building</td>
<td>104</td>
</tr>
<tr>
<td>5-8 Assumptions in ECOTECT analysis.</td>
<td>107</td>
</tr>
<tr>
<td>5-9 Sun penetration in the kitchen –SE orientation</td>
<td>110</td>
</tr>
<tr>
<td>5-10 Sun penetration in the living area –NW orientation</td>
<td>110</td>
</tr>
<tr>
<td>7-1 Analysis of the recorded data for three days of experiment</td>
<td>138</td>
</tr>
<tr>
<td>7-2 Division of comfort condition in the house according to PMV variations</td>
<td>139</td>
</tr>
<tr>
<td>7-3 HSA and VSA angles</td>
<td>143</td>
</tr>
<tr>
<td>7-4 Internal temperature variations in living area according the height of courtyard shading roof</td>
<td>148</td>
</tr>
<tr>
<td>8-1 Summary of the recommendations.</td>
<td>154</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2-1 Rectangular sun path</td>
<td>14</td>
</tr>
<tr>
<td>2-2 wind rose for Kuala Lumpur</td>
<td>15</td>
</tr>
<tr>
<td>2-3 The derivation of horizontal shadow angle (HSA)</td>
<td>22</td>
</tr>
<tr>
<td>2-4 The derivation of the VSA based on the plane containing the Sun</td>
<td>23</td>
</tr>
<tr>
<td>2-5 Width, depth and height as they apply to this simple method of horizontal shading device design</td>
<td>24</td>
</tr>
<tr>
<td>2-6 Placing your hand against the interior surface of a window pane will cause the adjacent air to become warmer, buoyant and to rise.</td>
<td>28</td>
</tr>
<tr>
<td>2-7 A single-banked layout for a residence will readily enable airflow across its width.</td>
<td>31</td>
</tr>
<tr>
<td>2-8 Opening up the vertical envelope for cross-ventilation</td>
<td>32</td>
</tr>
<tr>
<td>3-1 Jonker's Street in Malacca, Malaysia.</td>
<td>35</td>
</tr>
<tr>
<td>3-2 The range of building lot size</td>
<td>39</td>
</tr>
<tr>
<td>3-3 setback of building lines</td>
<td>40</td>
</tr>
<tr>
<td>3-4 building height of the terrace house</td>
<td>41</td>
</tr>
<tr>
<td>3-5 Possible position of the staircase.</td>
<td>41</td>
</tr>
<tr>
<td>3-6 The position of car park and car porch.</td>
<td>42</td>
</tr>
<tr>
<td>3-7 common views and zoning in the terrace houses.</td>
<td>42</td>
</tr>
<tr>
<td>3-8 Possible positions of courtyard/ air well in terrace houses</td>
<td>43</td>
</tr>
<tr>
<td>3-9 Modern Terrace houses façade</td>
<td>44</td>
</tr>
<tr>
<td>3-10 Modern Terrace houses design</td>
<td>44</td>
</tr>
<tr>
<td>3-11 Terrace houses new design</td>
<td>44</td>
</tr>
<tr>
<td>4-1 Thermal sensation</td>
<td>49</td>
</tr>
</tbody>
</table>
4-2 Predicted percentage of dissatisfied (PPD) as a function of predicted mean vote

4-3 Thermal sensation indicator

4-4 Insulation for clothing value

4-5 PMV and PPD relation and variation.

5-1 Dry Bulb Temp variation during 10th-13th April 2007.

5-3 Wind speed variation during 10th-13th April 2007.

5-4 floor plans and longitudinal section of the case study terrace house.

5-5 North facade of the case study Terrace house. (a), (b) and(c)

5-6 (a, b): field measurement tool INNOVA.

5-7 Air temperature variation during three days field measurement

5-8 Globe temperature and air temperature variations during three days field measurement

5-9 Relative humidity variation during three days field measurement

5-10 Recorded Air velocity during three days experiment

5-11 variation of PMV and PPD (ground floor)

5-12 Variation of PMV during 3 days- ground floor family area: condition (1)

5-13 PMV variations during 3 days experiment: condition (2)

5-14 PMV variations during 3 days experiment: condition (3)

5-15 Air velocity measurement in different settings fan

5-16 variation of PMV and PPD after changing air velocity to “1m/s” in uncomfortable conditions for three days measurement

5-17 Case study building ground floor plan

5-18 Case study building first floor plan

5-19 Case study building section
5-20 Zone division for the case study building .. 106
5-21 Sun penetration in ground floor area at 9:00 am on 15th of March 2007. 108
5-22 HSA angle for the rear façade of the case study building at 9am 15th March 2007 109
5-23 VSA for the rear facade at 9am 15th March 2007 .. 109
5-24 Sun pass diagram for KL in 15th Jun 3pm ... 111
5-25 VSA angle at 3pm 15th Jun for front façade ... 112
5-26 Sun pass diagram for KL in 15th Dec 9am .. 112
5-27 VSA angle at 9am 15th December for rear facade .. 113
5-28 Shading device and VSA for living area .. 114
5-29 After applying the horizontal shading device there are some penetration in the 115
kitchen
5-30 HSA and vertical shading device for kitchen (plan) ... 115
5-31 Dividing the wide shading device to two narrower ... 116
5-32 Suggested egg-crate shading device for the kitchen window 117
5-33 (a and b) narrow shading devices and VSA for rear facade (kitchen). 117
5-34 Temperature variations comparison between field measurement data and 118
ECOTECT simulation
6-1 Hourly temperature-living area-15th March 2007 ... 121
6-2 Hourly temperature-living area-15th Jun 2007 ... 122
6-3 Hourly temperature-living area-15th December ... 122
6-4 Temperature variation of the living area in mode B 15th Jun 123
6-5 Case study terrace house after introducing the courtyard 124
6-6 Hourly temperatures for the living area in 15th March 125
6-7 Hourly temperatures for the living area in 15th Jun model C 125
6-8 Thermal performance of the living area in 15th of December 126
6-9 Temperature difference of living area before and after using shading device 127
6-10 Temperature difference between mode A and C in March 128
6-11 Conduction gains difference of mode A and C for living area in March 128
6-12 Heat gain and loss through ventilation for mode A and C 129
6-13 Temperature difference between mode A and C for living area in Jun. 129
6-14 Temperature difference between mode A and C for dining area in Jun 130
6-15 Solar gains difference of dining area for mode A and C in Jun 130
6-16 Temperature difference between mode A and C in December for living area 131
6-17 Temperature difference for living area when different height for courtyard shading roof 132
6-18 Shading roof for the court yard with 500mm height 132
6-19 Solar gain difference in courtyard area mode C and C-1 (courtyard with shading roof) 133
6-20 Temperature difference for the living area mode C and C1 in March 133
6-21 temperature difference of the living area for mode C and C2 135
7-1 Temperature difference of living area before and after using shading device 144
7-2 PMV variation difference for mode A and B 145
7-3 Ground floor of the case study terrace house after introducing the courtyard, living area can release the heat through the windows 146
7-4 Ground floor of the case study terrace house after introducing the courtyard, there is no way for the entered heat in the dining area to be released 146
7-5 PMV variation difference in living area mode A and C 147
7-6 PMV variation difference for mode A and C in dining area 147
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASHRAE</td>
<td>American Society of Heating, Refrigerating and Air-Conditioning Engineers</td>
</tr>
<tr>
<td>Clo</td>
<td>Clothing Level</td>
</tr>
<tr>
<td>C</td>
<td>degree Celsius</td>
</tr>
<tr>
<td>DBT</td>
<td>Dry Bulb Temperature</td>
</tr>
<tr>
<td>DOSM</td>
<td>Department Of Statistics Malaysia</td>
</tr>
<tr>
<td>ET</td>
<td>Effective Temperature</td>
</tr>
<tr>
<td>F</td>
<td>degree Fahrenheit</td>
</tr>
<tr>
<td>f<sub>cl</sub></td>
<td>the ratio of a person’s surface when area while clothed, to the surface area while nude</td>
</tr>
<tr>
<td>h<sub>c</sub></td>
<td>convective heat transfer coefficient</td>
</tr>
<tr>
<td>I<sub>cl</sub></td>
<td>thermal resistance of clothing</td>
</tr>
<tr>
<td>Met</td>
<td>Metabolic Rate</td>
</tr>
<tr>
<td>MRT</td>
<td>Mean Radiant Temperature</td>
</tr>
<tr>
<td>PMV</td>
<td>Predicted Mean Vote</td>
</tr>
<tr>
<td>PPD</td>
<td>Predicted Percent of Dissatisfied</td>
</tr>
<tr>
<td>p<sub>a</sub></td>
<td>partial water vapor pressure</td>
</tr>
<tr>
<td>RH</td>
<td>Relative Humidity</td>
</tr>
<tr>
<td>Ta</td>
<td>Air Temperature</td>
</tr>
<tr>
<td>Tn</td>
<td>Thermal neutrality</td>
</tr>
<tr>
<td>Tave</td>
<td>monthly mean outdoor Temperature</td>
</tr>
<tr>
<td>Symbol</td>
<td>Description</td>
</tr>
<tr>
<td>--------</td>
<td>---------------------------</td>
</tr>
<tr>
<td>To</td>
<td>operative Temperature</td>
</tr>
<tr>
<td>Teq</td>
<td>equivalent Temperature</td>
</tr>
<tr>
<td>tcl</td>
<td>surface temperature of clothing</td>
</tr>
<tr>
<td>tr</td>
<td>mean radiant temperature</td>
</tr>
<tr>
<td>Vel</td>
<td>Air Movement</td>
</tr>
<tr>
<td>V_ar</td>
<td>relative air velocity</td>
</tr>
<tr>
<td>W</td>
<td>external Work</td>
</tr>
</tbody>
</table>
CHAPTER 1

INTRODUCTION

1.1 Introduction

As a developing country, Malaysia is facing problems to accommodate the urban population. The migration of rural population to cities caused the government and private agencies to built 1.8 millions units of house from 1976 to 1995. Most of the houses were built in rows, called terrace houses with façade of 20-24 feet and depth of 70-80 feet, constructed either one or two story high and openings only on the front and back elevations; actually they are an efficient vertical use of scarce urban space (Mohammed Ali, 2003).

In architectural aspects, similar forms and facades resulted in the urban landscapes without variety and character (Said, 1994), also since 1981 several researchers have determined that these buildings are not designed in response to the country's inclement climate which is characterized by four main features; seasonal uniformity, low wind velocities and small diurnal temperature range as well as high humidity. In fact most terrace house designs have ignored the importance of thermal comfort zone in the interiors (Takahashi, 1981).
1.2 Background

The first major issue of most discussions about climate is the thermal comfort level (Salleh E, 2004). Thermal comfort can be defined as ‘the state of mind, which expresses satisfaction with the thermal environment’ (ASHRAE, 1985); the definition quickly perceived, but hard to exploit in physical parameters. Air temperature, air movement, radiation and humidity are not the only climatic characteristics that affect human comfort but they are the dominant ones. Thermal-comfort problems are varied and as they may be caused by different factors such as conversion of building operational and physical characteristics and occupant behavior and interference, they can be difficult to identify and solve (Van Hoof J, 2007).

For buildings in tropical regions with warm-humid climate various strategies have been suggested in previous studies in order to handle the warmth and humidity in relation to thermal comfort (Koenigsberger et al, 1971, Evans, 1979 and Salleh E, 2004). As Koenigsberger et al (1971) suggested in warm humid climate indoor comfort is largely dependent on the control of air movement and radiant heat. Maximum air movement passing over the body must be encouraged and solar gain must be prevented from reaching the building’s occupants either directly through doors and windows or indirectly by heating the structure. But exploitation of these various strategies seems to be neglected in contemporary modern constructions.

In Malaysia, as a country located in warm-humid tropics, the new type of modern housing sprang up after its independence, called “terrace housing” which brought about
a new and alien life style (Salleh R, 1989). Large numbers of terrace houses have been constructed in Malaysia. In cities and towns the terrace houses have been increasingly common in comparison to the detached single-family houses. They are attached houses with similar façade treatment. Found in the inner city they look similar to the row housing of Europe, which are built on a rectangular plot and the frontage form is the narrow section of the lot.

The terrace house is low-rise, but it can be built at a very high density in a regimented layout. About 40 units can be built on one-hectare area (Mohammed Ali, 2003). However, in spite of their adaptability, the climate and urban conditions of the country has not been considered in the design stage of their construction, so air-conditioning systems are common ways for controlling indoor comfort despite their increase of energy demands (Pattaranan, 2006).

1.3 Problem Statement

Bioclimatic design considerations in terrace houses of Malaysia have not been fully explored according to occupant’s comfort needs.

Thermal comfort should be considered as the main concern apart from other comfort criteria such as visual, acoustic and indoor air quality. Passive means should be given priority first and active systems should also be provided whenever they are required to minimize the thermal stress. To achieve this aim, it is important to consider climate at all design stages (Pattaranan, 2006). In spite of the importance of comfort sensation on the
indoor environmental quality perception, climatic, behavioral and adaptive factors affecting thermal comfort requirements are normally being neglected by the architects and systems designer at the time of designing buildings. In the process, a significant opportunity to save energy and providing the optimum environmental settings for thermal satisfaction will be missed out (Mahdavi A et al, 2001).

Indoor environment studies in Malaysia revealed that most of the modern terrace houses are above upper thermal comfort level during day and night (Davis et al, 1998). The mass housing programs resulted in dwelling units which are not designed suitable for the warm-humid tropical climate of the country. The importance of thermal comfort of the house has been ignored in most of the common housing designs (Said et al, 1994).

So this study is intended to investigate the effects of suitable bioclimatic designing in preventing indoor overheating conditions and lowering maximum indoor temperature below the ambient, in warm humid climates. It is hypothesized here that applying such strategies in modern terrace houses can enhance indoor comfort conditions.

In this case the following research questions are deemed relevant:

1. How to apply suitable bioclimatic design principles to ameliorate the thermal conditions of terrace houses in hot-humid climate of Malaysia?
 a. What are the current thermal comfort conditions in existing Terrace house of Malaysia?
b. What is the relationship between shading design and thermal sensation?

c. What are the effects of introducing internal courtyard on indoor comfort conditions in terrace houses?

1.4 Objectives of the research

The main objectives of this research are:

- To investigate the thermal performances of an existing terrace house under warm-humid climate.
- To examine the effects of different aspects of climatic design to improve the current condition.
- To propose appropriate design measures in ensuring indoor thermal comfort in terrace houses of warm-humid climate.

1.5 Scope of the study

The study focuses on the effects of design variables on thermal comfort, under naturally ventilated conditions, with reference to the family area in a terrace house.

These design variables are limited to:

1. Shading device

2. Internal courtyard