DETERMINATION OF ANTI-DIABETIC ACTIVITY OF GYNURA PROCUMBENS USING BIOASSAY–GUIDED FRACTIONATION

SITI PAULIENA BINTI MOHD BOHARI

FBSB 2006 27
DEDICATION

My beloved parents (Mak and Abah)

My sisters and brothers

My Grandfather

Thanks for your prayers, support, encouragement, motivation and sacrifice……………..
Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfilment of requirement for the degree of Master of Science

DETERMINATION OF ANTI-DIABETIC ACTIVITY OF GYNURA PROCUMBENS USING BIOASSAY-GUIDED FRACTIONATION

By

SITI PAULIENA BINTI MOHD BOHARI

July 2006

Chairman: Muhajir Hamid, PhD
Faculty : Faculty of Biotechnology and Biomolecular Sciences

This study aims to investigate the antidiabetic and hypoglycaemic properties of Malaysian herb, Gynura procumbens (Sambung nyawa). Bioassay guided fractionation has been carried out to identify the bioactive crude fraction responsible for antidiabetic activity of Gynura procumbens. Both in vitro and in vivo model study were used to evaluate the antidiabetic properties of this plant.

In vitro insulin secretion study, glucose uptake study and cytotoxicity were used as primary assay on crude methanolic extract, hexane, ethyl acetate and butanol fractions. Cytotoxicity studies demonstrated that crude methanolic extract have the lowest cytotoxicity when compared with crude fractions Gynura procumbens in BRIN BD11 cell lines. Cytotoxicity study with adipocytes and muscle cell lines showed that the crude methanolic extract of Gynura procumbens have the lowest toxicity when
compared with the crude fractions of the plant. Determination of insulin secretion response was done by using BRIN BD11 cell lines and from the result, it showed that crude hexane and ethyl acetate crude fractions have good potential in stimulation of insulin release. Glucose uptake study with adipocytes cell lines (3T3 mouse adipocytes cell lines) indicated that this plant has the dose dependent manner and *Gynura procumbens* crude hexane fraction indicated the highest activity on stimulating glucose uptake. Effect of crude methanolic extract and crude fractions in the presence of insulin showed moderate glucose uptake activity when compared with *Gynura procumbens* crude extract/fractions alone. Glucose uptake study with a mouse L6 muscle cell lines indicated that *Gynura procumbens* crude methanolic extract has highest reading from all of the crude extracts. When comparing the crude extract and fractions with insulin, all of the results showed moderate glucose uptake activity and thus expressed that this plant has dose dependent manner.

Further study was done with Type 1 and Type 2 model diabetic rats. It shows that crude methanolic extract of *Gynura procumbens* have hypoglyceamic activity on both models. This result was further investigated with gut perfusion study using crude methanolic extract and ethyl acetate fraction of *Gynura procumbens* and showed positive result by delaying glucose absorption in the rat intestine.

Further investigation was done with ethyl acetate fraction that showed potential activity from *In vitro* and *In vivo* study. Identification of compounds by using reverse phase HPLC showed some promising peaks of interesting compounds. Isolation and
purification was carried on by using various chromatography techniques such as normal chromatography and gel filtration Sephadex LH-20. Two compounds from isolated from ethyl acetate fraction were mix of β-sitosterol and stigmasterol, and kaemferol-3-O-glucoside.
Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk ijazah Master Sains

PENGENALPASTIAN AKTIVITI ANTI-DIABETES *GYNURA PROCUMBENS* MENGGUNAKAN BIOASAI BERDASARKAN FRAKSINASI

Oleh

SITI PAULIENA BINTI MOHD BOHARI

Julai 2006

Pengerusi: Muhajir Hamid, PhD

Fakulti: Fakulti Bioteknologi dan Sains Biomolekul

Penyelidikan secara *in vitro* menggunakan asai perembesan insulin, asai pengambilan glukosa dan asai sitotoksik sebagai penaksiran awal bagi ekstrak kasar metanol, fraksi heksana, fraksi etil asetat dan fraksi butanol. Penyelidikan sitotoksik menunjukkan bahawa ekstrak kasar metanol menunjukkan ketoksikan terendah apabila dibandingkan dengan fraksi-fraksi yang lain dalam jujukan sel BRIN BD11. Penyelidikan ketoksikan dengan menggunakan jujukan sel adipos and sel otot menunjukkan bahawa ekstrak metanol *Gynura procumbens* menunjukkan toksik terendah. Penentuan respon perembesan insulin telah dijalankan dengan menggunakan jujukan sel BRIN BD11 dan
keputusan menunjukkan bahawa fraksi heksana dan etil asetat menunjukkan potensi yang bagus dalam mengaruh rembesan insulin apabila dibandingkan dengan kawalan. Penyelidikan pengambilan glukosa dengan jujukan sel adipos (sel 3T3 adipos tikus) menandakan pokok ini memiliki ciri kebergantungan kepada dos ekstrak atau fraksi itu sahaja. Fraksi heksana daripada Gynura procumbens memberikan aktiviti tertinggi dalam pengaruh pengambilan glukosa apabila dibandingkan dengan kawalan (tanpa rawatan). Kesaran pada ekstrak metanol dan semua fraksi dengan kehadiran insulin hanya menunjukkan aktiviti yang sederhana jika hendak dibandingkan dengan ekstrak dan fraksi-fraksi Gynura procumbens sahaja. Penyelidikan pengambilan glukosa dengan sel L6 otot tikus menunjukkan ekstrak metanol Gynura procumbens mengaruh pengambilan glukosa dan menunjukkan bacaan tertinggi apabila dibandingkan dengan ekstrak metanol dan semua fraksi tumbuhan ini. Apabila dibandingkan ekstrak bersama insulin, hanya menunjukkan aktiviti yang sederhana dan menunjukkan bahawa pokok ini memiliki ciri kebergantungan kepada dos dari tumbuhan itu sahaja.

ACKNOWLEDGEMENTS

In the name of Allah, most Gracious and most Merciful.

I would like to express my sincere acknowledgement and deepest appreciation to my supervisor, Dr. Muhajir Hamid for his guidance, constructive critics and discussion from the course of my study.

Sincere appreciations are also extended to my supervisory committee, Associate Prof Dr. Khozirah Shaari and Prof Dr. Nordin Hj. Lajis for their advice kind and for imparting invaluable knowledge. I would like to extend my heartfelt gratitude to Prof. Dr. Liaquat Ali, Associate Prof. Dr. Rokeya Begum, Dr. Hannan and members in BIRDEM, Bangladesh for their help, advice and guidance.

I would also like to acknowledge the help of the Science officers (Salahudin, Zurina, Mazina) for spectroscopic data and Mr. Hussain Jiragon for his help in providing materials in bioassay laboratory. Many thanks to my labmates, Mr. Mohd Saufi Bastami, Mrs. Nazrien Kaman, Mr. Tajul Annuar and Ms. Palanamial as well as all students in laboratory of Natural Products for support and sharing their time and knowledge which contributed significantly to improving my skills in phytochemistry.

Special thanks to my beloved parents (mak and abah) for their constant love, prayers and sacrifice and to my sisters and brothers for their endless motivation, support and encouragement.
I certify that an Examination Committee has met on 17 July 2006 to conduct the final examination of Siti Pauliena Binti Mohd Bohari on her Master of Science thesis entitled “Determination of Anti-Diabetic Activity of *Gynura procumbens* using Bioassay-Guided Fractionation” accordance with Universiti Pertanian Malaysia (Higher Degree) Act 1980 and Universiti Pertanian Malaysia (Higher Degree) Regulations 1981. The Committee recommends that the candidate be awarded the relevant degree. Members of the Examination Committee are as follow:

Examiner 1, PhD
Professor
Faculty of Graduate Studies
Universiti Putra Malaysia
(Chairman)

Examiner 2, Ph. D.
Professor
Faculty of Graduate Studies
Universiti Putra Malaysia
(Internal Examiner)

Examiner 3, Ph. D.
Professor
Faculty of Graduate Studies
Universiti Putra Malaysia
(External Examiner)

HASANAH MOHD GHAZALI, Ph. D.
Professor/Deputy Dean
School of Graduate Studies
Universiti Putra Malaysia

Date:
This thesis submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfilment of the requirement for the degree of Master of Science. The members of the Supervisory Committee are as follow:

Muhajir Hamid, PhD
Lecturer
Faculty of Biotechnology and Biomolecular Sciences
Universiti Putra Malaysia
(Chairman)

Khozirah Shaari, PhD
Associate Professor
Institute of Bioscience
Universiti Putra Malaysia
(Member)

Nordin Hj. Lajis, PhD
Professor
Institute of Bioscience
Universiti Putra Malaysia
(Member)

AINI IDERIS, PhD
Professor/Dean
School of Graduate Studies
Universiti Putra Malaysia

Date:
DECLARATION

I hereby declare that the thesis is based on my original work except for quotations and citations which have been duly acknowledged. I also declare that it has not been previously or concurrently submitted for any other degree at UPM or other institutions.

SITI PAULIENA BINTI MOHD BOHARI

Date:
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>DEDICATION</td>
<td>ii</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>iii</td>
</tr>
<tr>
<td>ABSTRAK</td>
<td>vi</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>ix</td>
</tr>
<tr>
<td>APPROVAL</td>
<td>x</td>
</tr>
<tr>
<td>DECLARATION</td>
<td>xii</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>xv</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xvii</td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
<td>xxii</td>
</tr>
</tbody>
</table>

CHAPTER

1 **INTRODUCTION**

2 **LITERATURE REVIEW**

2.1 Diabetes Mellitus 5
2.2 The Endocrine Pancreas 9
 2.2.1 Insulin 10
 2.2.2 Insulin secretion in β-cell 10
 2.2.3 Mechanism of Insulin Action 14
 2.2.4 Effect of Insulin on Glucose Uptake 16
2.3 Oral Antidiabetic Drugs 18
 2.3.1 Sulfonylureas 19
 2.3.2 Biguanides 19
 2.3.3 Thiazolidinedions 22
 2.3.4 Alpha-Glucosidase Inhibitor 23
 2.3.5 Benzoic acid derivatives 25
 2.3.6 Glucagon-like peptide 1 26
2.4 Medicinal Plant as antidiabetic agent 26
 2.4.1 *Gynura procumbens* 28
 2.4.2 Phytochemical studies 28
 2.4.3 Biological activity studies 30

3 **MATERIAL AND METHOD** 32

3.1 Plant samples 32
3.2 Sample preparation and extraction 32
3.3 Experimental design
 3.3.1 *In vitro* study 34
 3.3.2 *In vivo* study 42
3.4 Chromatography 46
 3.4.1 Isolation of compounds from the ethyl acetate fraction 47
3.5 Spectroscopic Instrumentation 48
3.6 Statistical analysis

4 RESULT AND DISCUSSION
4.1 In vitro study
 4.1.1 Cytotoxicity study
 4.1.2 Insulin secretion responses on *Gynura procumbens*
 4.1.3 Glucose uptake stimulatory
4.2 In vivo study
 4.2.1 Acute effect on postprandial glucose level in normal and Type 1 diabetes rat
 4.2.2 Acute effect on fasting and postprandial glucose level in Type 2 diabetes rat
 4.2.3 Intestinal glucose absorption
4.3 Isolation of compounds from ethyl acetate fraction
 4.3.1 Structure elucidation of β-sitosterol and Stigmasterol
 4.3.2 Structure elucidation of Kaempferol-3-O-Glucoside

5 CONCLUSION

REFERENCES
APPENDICES
BIODATA OF THE AUTHOR
LIST OF PUBLICATIONS
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Inhibition concentration 50% (IC$_{50}$) on pancreatic beta cell lines towards cytotoxicity study</td>
<td>52</td>
</tr>
<tr>
<td>2 Cytotoxicity study methanolic extract of Gynura procumbens in BRIN BD 11 cell lines</td>
<td>54</td>
</tr>
<tr>
<td>3 Cytotoxicity study hexane fraction of Gynura procumbens in BRIN BD 11 cell lines</td>
<td>56</td>
</tr>
<tr>
<td>4 Cytotoxicity study ethyl acetate fraction of Gynura procumbens in BRIN BD 11 cell lines</td>
<td>58</td>
</tr>
<tr>
<td>5 Cytotoxicity study butanol fraction of Gynura procumbens in BRIN BD 11 cell lines</td>
<td>60</td>
</tr>
<tr>
<td>6 Cytotoxicity study of glibenclamide in BRIN BD 11 cell lines</td>
<td>62</td>
</tr>
<tr>
<td>7 Inhibition concentration 50% (IC$_{50}$) on adipocytes cell lines towards cytotoxicity study</td>
<td>63</td>
</tr>
<tr>
<td>8 Cytotoxicity study methanolic extract of Gynura procumbens in 3T3 adipocytes cell lines</td>
<td>65</td>
</tr>
<tr>
<td>9 Cytotoxicity study hexane fraction of Gynura procumbens in 3T3 adipocytes cell lines</td>
<td>67</td>
</tr>
<tr>
<td>10 Cytotoxicity study ethyl acetate extract of Gynura procumbens in 3T3 adipocytes cell lines</td>
<td>69</td>
</tr>
<tr>
<td>11 Cytotoxicity study butanol extract of Gynura procumbens in 3T3 adipocytes cell lines</td>
<td>71</td>
</tr>
<tr>
<td>12 Cytotoxicity study of metformin in 3T3 adipocytes cell lines</td>
<td>73</td>
</tr>
</tbody>
</table>
13 Inhibition concentration 50% (IC\textsubscript{50}) on muscle cell lines towards cytotoxicity study

14 Cytotoxicity study methanol extract of \textit{Gynura procumbens} in L6 muscle cell lines

15 Cytotoxicity study hexane extract of \textit{Gynura procumbens} in L6 muscle lines

16 Cytotoxicity study ethyl acetate extract of \textit{Gynura procumbens} in L6 muscle cell lines

17 Cytotoxicity study butanol extract of \textit{Gynura procumbens} in L6 muscle cell lines

18 Cytotoxicity study of Metformin in L6 muscle cell lines

19 Insulin secretion activity on \textit{Gynura procumbens}

20 Glucose Uptake activity in adipocytes cell lines

21 Glucose Uptake activity in muscle cell lines

22 Effect of methanol extract of \textit{Gynura procumbens} on 30 minutes before blood glucose level of nondiabetic and Type 1 diabetic model rats

23 Effect of methanol extract of \textit{Gynura procumbens} on fasting serum glucose level of nondiabetic and Type 2 diabetic rats

24 Effect of methanol extract of \textit{Gynura procumbens} on simultaneous blood glucose level of nondiabetic and Type 2 diabetic model rats

25 Effect of methanol extract of \textit{Gynura procumbens} on 30 minutes before blood glucose level of nondiabetic and Type 2 diabetic model rats

26 The assignment of protons and carbons of kaempferol-3-O-glucoside
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Human Insulin</td>
<td>11</td>
</tr>
<tr>
<td>2</td>
<td>The Ionic Control from human insulin pancreatic beta cells</td>
<td>13</td>
</tr>
<tr>
<td>3</td>
<td>The insulin receptor and insulin action</td>
<td>15</td>
</tr>
<tr>
<td>4</td>
<td>Mechanism of Glucose Uptake</td>
<td>17</td>
</tr>
<tr>
<td>5</td>
<td>Structure of Sulphonylureas</td>
<td>20</td>
</tr>
<tr>
<td>6</td>
<td>Structure of Biguanides drugs</td>
<td>21</td>
</tr>
<tr>
<td>7</td>
<td>Structure of Acarbose</td>
<td>24</td>
</tr>
<tr>
<td>8</td>
<td>Gynura procumbens</td>
<td>29</td>
</tr>
<tr>
<td>9</td>
<td>Flowchart of extraction and fractionation of Gynura procumbens</td>
<td>33</td>
</tr>
<tr>
<td>10</td>
<td>Morphology of BRIN BD 11 cells as assessed by phase contrast microscopy</td>
<td>35</td>
</tr>
<tr>
<td></td>
<td>(x200 magnification)</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>Morphology of 3T3 F442A adipocytes cells as assessed by phase contrast</td>
<td>36</td>
</tr>
<tr>
<td></td>
<td>microscopy (x200 magnification)</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>Morphology of L6 muscle cells as assessed by phase contrast microscopy</td>
<td>37</td>
</tr>
<tr>
<td></td>
<td>(x200 magnification)</td>
<td></td>
</tr>
</tbody>
</table>
13 Cytotoxicity effect of crude methanolic extract *Gynura procumbens* in BRIN BD 11 cell lines

14 Cytotoxicity effect of crude hexane fraction *Gynura procumbens* in BRIN BD 11 cell lines

15 Cytotoxicity effect of crude ethyl acetate fraction *Gynura procumbens* in BRIN BD 11 cell lines

16 Cytotoxicity effect of crude butanol fraction *Gynura procumbens* in BRIN BD 11 cell lines

17 Cytotoxicity effect of glibenclamide in BRIN BD11 cell lines

18 Cytotoxicity effect of crude methanolic extract *Gynura procumbens* in adipocytes cell lines

19 Cytotoxicity effect of crude hexane fraction *Gynura procumbens* in adipocytes cell lines

20 Cytotoxicity effect of crude ethyl acetate fraction *Gynura procumbens* in adipocytes cell lines

21 Cytotoxicity effect of crude butanol fraction *Gynura procumbens* in adipocytes cell lines

22 Cytotoxicity effect of metformin in adipocytes cell lines

23 Cytotoxicity effect of crude methanolic extract *Gynura procumbens* in muscle cell lines

24 Cytotoxicity effect of crude hexane fraction *Gynura procumbens* in muscle cell lines
25 Cytotoxicity effect of crude ethyl acetate fraction *Gynura procumbens* in muscle cell lines

26 Cytotoxicity effect of crude butanol fraction *Gynura procumbens* in muscle cell lines

27 Cytotoxicity effect of metformin in adipocytes cell lines

28 Effect of crude methanolic extract *Gynura procumbens* on insulin secretion by BRIN BD 11 cell lines after 30 minutes incubation

29 Effect of crude hexane extract *Gynura procumbens* on insulin secretion by BRIN BD 11 cell lines after 30 minutes incubation

30 Effect of crude ethyl acetate extract *Gynura procumbens* on insulin secretion by BRIN BD 11 cell lines after 30 minutes incubation

31 Effect of crude butanol extract *Gynura procumbens* on insulin secretion by BRIN BD 11 cell lines after 30 minutes incubation

32 Effect of Glibenclamide *Gynura procumbens* on insulin secretion by BRIN BD 11 cell lines after 30 minutes incubation

33 Effect of the various concentration of *Gynura procumbens* in methanolic extract on glucose uptake in adipocytes cell lines

34 Effect of the various concentration of *Gynura procumbens* in hexane crude fraction on glucose uptake in adipocytes cell lines

35 Effect of the various concentration of *Gynura procumbens* in ethyl acetate crude fraction on glucose uptake in adipocytes cell lines

36 Effect of the various concentration of *Gynura procumbens* in butanol crude fraction on glucose uptake in adipocytes cell lines
37 Effect of metformin on glucose uptake in adipocytes cell lines

38 Effect of the various concentration of *Gynura procumbens* in methanolic extract on glucose uptake in muscle cell lines

39 Effect of the various concentration of *Gynura procumbens* in hexane crude fraction on glucose uptake in muscle cell lines

40 Effect of the various concentration of *Gynura procumbens* in ethyl acetate crude fraction on glucose uptake in muscle cell lines

41 Effect of the various concentration of *Gynura procumbens* in butanol crude fraction on glucose uptake in muscle cell lines

42 Effect of the metformin on glucose uptake in muscle cell

43 Effect of methanolic extract of *Gynura procumbens* in glucose absorption in the gut

44 Effect of ethyl acetate fraction of *Gynura procumbens* in glucose absorption in the gut

45 Glucose absorption in the gut with ouabain

46 HPLC analysis of ethyl acetate fraction of *Gynura procumbens*

47 Structure of mix β-sitosterol and stigmasterol

48 HNMR spectrum of mix β-sitosterol and stigmasterol

49 Mass spectrum of mix β-sitosterol and stigmasterol

50 HNMR spectrum of kaempferol-3-O-glucoside
51 CNMR spectrum of kaempferol-3-O-glucoside 127

52 Cosy spectrum of kaempferol-3-O-glucoside 128

53 Structure of kaempferol-3-O-glucoside 129
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>β</td>
<td>Beta</td>
</tr>
<tr>
<td>BIRDEM</td>
<td>Bangladesh Institute of Research & Rehabilitation in Diabetes, Endocrine and Metabolic Disorder</td>
</tr>
<tr>
<td>BSA</td>
<td>Bovine serum albumin</td>
</tr>
<tr>
<td>b.w</td>
<td>Body weight</td>
</tr>
<tr>
<td>13 C</td>
<td>Carbon 13</td>
</tr>
<tr>
<td>CO$_2$</td>
<td>Carbon dioxide</td>
</tr>
<tr>
<td>cc</td>
<td>Column chromatography</td>
</tr>
<tr>
<td>δ</td>
<td>Chemical shift in ppm</td>
</tr>
<tr>
<td>CHCl$_3$</td>
<td>Chloroform</td>
</tr>
<tr>
<td>cm2</td>
<td>Centimeter square</td>
</tr>
<tr>
<td>$^\circ$ C</td>
<td>Degree Celsius</td>
</tr>
<tr>
<td>DMSO</td>
<td>Dimethyl sulfoxide</td>
</tr>
<tr>
<td>d</td>
<td>Doublet</td>
</tr>
<tr>
<td>dd</td>
<td>Doublet of doublet</td>
</tr>
<tr>
<td>DEPT</td>
<td>Distortionless Enhancement by polarization Transter</td>
</tr>
<tr>
<td>ELISA</td>
<td>Enzyme-Linked Immunosorbent Assay</td>
</tr>
<tr>
<td>EtoAC</td>
<td>Ethyl acetate</td>
</tr>
<tr>
<td>FBS</td>
<td>Feotal bovine serum</td>
</tr>
<tr>
<td>g</td>
<td>Gram</td>
</tr>
<tr>
<td>GDM</td>
<td>Gestational diabetes mellitus</td>
</tr>
<tr>
<td>Acronym</td>
<td>Description</td>
</tr>
<tr>
<td>---------</td>
<td>-------------</td>
</tr>
<tr>
<td>GLUT4</td>
<td>Glucose transporter 4</td>
</tr>
<tr>
<td>HMBC</td>
<td>Heteronuclear Multiple Bond Correlation</td>
</tr>
<tr>
<td>Hz</td>
<td>Hertz</td>
</tr>
<tr>
<td>HPLC</td>
<td>High Performance Layer Chromatography</td>
</tr>
<tr>
<td>hr</td>
<td>Hour</td>
</tr>
<tr>
<td>IC₅₀</td>
<td>Concentration of 50% inhibition</td>
</tr>
<tr>
<td>IDDM</td>
<td>Insulin dependent diabetes mellitus</td>
</tr>
<tr>
<td>Kg</td>
<td>Kilogram</td>
</tr>
<tr>
<td>L</td>
<td>Litre</td>
</tr>
<tr>
<td>M</td>
<td>Molar</td>
</tr>
<tr>
<td>MeOH</td>
<td>Methanol</td>
</tr>
<tr>
<td>µl</td>
<td>Microlitre</td>
</tr>
<tr>
<td>mg</td>
<td>Miligram</td>
</tr>
<tr>
<td>NIDDM</td>
<td>Non insulin diabetes mellitus</td>
</tr>
</tbody>
</table>
CHAPTER 1

INTRODUCTION

Diabetes mellitus is a metabolic disorder in the endocrine system. The disease is one of the major public health concerns and is rapidly increasing in most parts of the world. People suffering from diabetes are not able to produce or properly use insulin in the body, so they have a high content of blood glucose.

As a very common chronic disease, diabetes is becoming the third ‘killer’ along with cancer, cardiovascular and cerebrovascular diseases because of its high prevalence, morbidity and mortality (Li et al., 2004). The cause of diabetes is a mystery, although both genetic and environmental factors such as obesity and lack of exercise appear to play a role. Ethnic and racial differences have been found in heterogenous populations within the same area. Most researchers believe that in the presence of a genetic predisposition, something in the environment triggers the development of the diabetes. With a long cause and serious complications often resulting in high death-rate, the treatment of diabetes spent vast amounts of resources including medicines, diets, and physical training in all countries. Up to now, many kinds of antidiabetic medicines have been developed for patients, but almost all are chemical or biochemical agents. The fact is that there has been no report of someone recovering totally from diabetes (Li et al., 2004).