By

LIM CHEE SIONG

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfilment of the Requirements for the Degree of Master of Science

May 2004
This study aims to evaluate the chemical composition, physical and mechanical properties of fibre-reinforced composite via synthesis of resole fibre-reinforced phenolic resin binded and cured under heat and pressure to the outside metal faces. Two types of resin; phenol formaldehyde resin and poly(vinyl alcohol) resin were blended and applied on the paper’s surfaces (MG Craft Paper GSM: 50 Ribbed) and then arranged in an alternate manner for the adhesion of both surfaces resin.

A series of various phenolic resin/poly (vinyl alcohol) blend compositions were prepared through solution casting technique and characterization was done through infrared, differential scanning calorimetry, thermogravimetry analysis, viscosity measurement, tensile strength and Young’s modulus.
Prepared specimen was cured for pre-press stage for 72 hours under pressure of 25 kg cm$^{-2}$ at room temperature before undergoing hot press step. The compounded samples were then hot pressed at temperature 200 ± 5 °C and pressure 100 kg cm$^{-2}$ for about 30 minutes and setting duration was taken after temperature setting was achieved. After cooling, the samples were tested for various analytical and mechanical assessments such as flexural strength and flexural modulus in accordance with ASTM Standard D790-98a.

The samples were also characterized for density and moisture content, and these procedures were repeated for different parameters; curing time, curing temperature, temperature setting and pressure setting.

FT-IR study indicated that the polymer blending lead to formation of methylol groups of phenolic resin and double bonding of PVA towards strong internal bonding with paper surface, polymer blending demonstrated low resistance in miscibility via DSC, the composite displayed high shear thinning and high yield stress which resemblance liquid-like flow behaviour determined by viscometer. TGA detected the polymer blend is dispensed to the die and it has the ability to form chemical bond with the coated substrate.

Phenolic formaldehyde/poly(vinyl alcohol) blending at ratio of 5/95 showed the highest tensile strength (12705.2 Pa) and Young’s modulus (355.7 Pa). The density of the fibre-reinforced composites with aluminium sheets produced in this study was found to be a
maximum at 1.74×10^3 kg m$^{-3}$ (Ratio = 100/0) and pure PVA exhibit the highest moisture content with 19.19 %, this would affect the resistance to cracking of the resulting product.

However, fibre-reinforced composite with high composition loading of PF/PVA = 60/40 demonstrated the highest flexural strength and flexural modulus. Meanwhile, curing time, curing temperature, temperature setting and pressure setting of 96 hours, 25 °C, 200 °C and 120.0 kg cm$^{-2}$ respectively was found to be the most economical and optimum condition for formation of fibre-reinforced composite, with excellent structural strength.
Abstrak yang dikemukakan kepada Senat Universiti Putra Malaysia bagi memenuhi keperluan ijazah Master Sains

PENYEDIAAN DAN PENCIRIAN RESIN FENOL FORMALDEHID-POLI(VINIL ALKOHOL) SEBAGAI FILEM PELEKAT GENTIAN PENEKANAN

Oleh

LIM CHEE SIONG

Mei 2004

Pengerusi: Profesor Anuar Kassim, Ph. D.

Fakulti : Sains dan Pengajian Alam Sekitar

Penyelidikan ini bertujuan menilai komposisi kimia, sifat-sifat fizikal dan mekanikal gentian di bawah penekanan lekatan filem tipis melalui kaedah sintesis bagi penekanan lekatan gentian resol di bawah kesan haba dan tekanan dengan perlindungan 2 kulit kepingan logam aluminium pada permukaan luarnya. Terdapat 2 jenis resin iaitu resin fenol formaldehid and resin poli(vinil alkohol) yang terlarut campur dan diaplikasikan ke atas kepingan-kepingan kertas jenis MG kertas kraf GSM: 50 belang dan kemudian disusun semula dalam corak belang yang berselang-seli bagi menyempurnakan pelekatan kedua-dua resin ini.

Satu siri dengan percampuran gabungan komposisi di antara resin fenolik/ poli(vinil alkohol) telah disediakan melalui teknik pelarutan terlindung dan pencirian kimia ke atas sampel-sampel tersebut dengan penyerapan infra merah,
kalorimeter pengimbasan perbezaan, analisis termo-gravimetri, dan pencirian fizikal iaitu kelikatan, ketahanan tensil dan modulus Young telah dijalankan.

Dalam langkah penyediaan sampel pengujian, kerja pematangan melalui langkah pra-tekanan selama 72 jam di bawah tekanan 25 kg cm\(^{-2}\) dan pada suhu bilik sebelum langkah pemanasan telah dijalankan. Sampel ujian di bawah tekanan 100.0 kg cm\(^{-2}\) dan suhu 200 ± 5 °C selama 30 minit, tempoh pemanasan diambil kira sejurus selepas mencapai suhu yang dikehendaki. Selepas langkah penyijeukan, pelbagai pengujian dan pengukuran mekanikal ke atas ciri-ciri tertentu seperti ketahanan pembengkokan dan modulus pembengkokan berdasarkan pengukuran piawai ASTM D790-98a telah dijalankan.

Sebelum itu, pencirian sampel-sampel tersebut dilaksanakan seperti pengukuran ketumpatan, kandungan wap air dan seterusnya ujian persampelan akan dilakukan dengan pengujian ke atas parameter penyediaan yang berlainan seperti tempoh pematangan, suhu pematangan, suhu penekanan and tekanan persampelan.

Kajian FT-IR mengesahkan percampuran polimer melibatkan pembentukan kumpulan metanol di antara resin fenolik dan ikatan ganda dua PVA. Ini menguatkkan ikatan dalam percampuran resin tersebut apabila diaplikasikan ke atas permukaan kertas serta memberikan rintangan rendah yang terlarut-campur. Komposisi juga menunjukkan keterikan dan regangan yang tinggi, mempamerkan sifat mudah alir bagi campuran polimer berkenaan yang ditentukukan melalui viskometer. Keputusan TGA menunjukkan kepekaan polimer campuran ini
terhadap term yang kian meningkat dan ketahanan pembentukan ikatan secara kimia di antara molekul-molekulnya.

Campuran PF/PVA pada nisbah 5/95 menunjukkan nilai ketahanan tensil yang tertinggi iaitu 12705.2 Pa yang sepadan dengan nilai modulus Young iaitu 355.7 Pa. Nilai ketumpatan yang tertinggi bagi komposit-komposit gentian di bawah penekanan lekatan filem tipis bersama kepingan-kepingan aluminium yang dihasilkan adalah 1.75×10^3 kg m$^{-3}$ (Nisbah sampel = 100/0) manakala PVA tulen mempamerkan kandungan wap air yang tertinggi dengan peratusan 19.19%. Ciri-ciri sedemikian telah mempengaruhi kadar peretakan sampel apabila diuji dengan regangan secara mekanikal.

Walau bagaimanapun, komposit gentian di bawah penekanan lekatan filem tipis dengan komposisinya di antara PF/PVA = 60/40 menghasilkan nilai-nilai ketahanan tensil dan modulus ketahanan yang tertinggi. Ujikaji pada tempoh pematangan 96 jam, suhu pematangan 25 °C, suhu pemanasan 200 °C dan tekanan pada 120.0 kg cm$^{-2}$ masing-masing memberikan keadaan yang optimum dalam penyediaan komposit gentian di bawah penekanan lekatan filem tipis yang berstruktur ketahanan unggul.
ACKNOWLEDGEMENTS

First and foremost, I would like to express my deepest appreciation to my supervisor, Professor Dr. Anuar Kassim and members of the supervisory committee, Professor Dr. Mohd Zobir Hussein, Associate Professor Dr. Mohamad Zaki Ab. Rahman, Dr. Abdul Halim Abdullah for their unfailing help, guidance, advice and suggestions throughout the duration of this study.

I am also very grateful to all the examiners and the staff of the Chemistry Department of UPM, En. Abas Abd. Rahman, Pn. Choo Chai Syam, En. Mohd Ihsan Hj. Abd Razak, En. Mat Kamal Margona, Pn. Norliza Atan, Pn. Zabedah Sabudin and En. Zulhisham Razali for their co-operation and help during the study. My sincere thanks also extended to my laboratory-mates, Ms. Lee Siew Ling, Mr. Ekramul Mahmud, Mr. Faraj Ahmad Abu-Ilaiwi, Mr. and Mrs. Ng and especially Mr. Mok Chun Choong, whose friendship I will forever treasure. I am also very thankful to the financial sponsorship provided by UPM under the PASCA Scheme.

Last but not the least, I am also indebted to my family and all my friends who have always encouraged and supported me. Credit is also given to anyone who had either directly or indirectly contributed to the completion of this thesis.
I certify that an Examination Committee met on 14th May 2004 to conduct the final examination of Lim Chee Siong on his Master of Science thesis entitled “Preparation and Properties of Phenol Formaldehyde-Poly(vinyl alcohol) Resin as Fibre-Reinforced Film Adhesive” in accordance with Universiti Pertanian Malaysia (Higher Degree) Act 1980 and Universiti Pertanian Malaysia (Higher Degree) Regulations 1981. The Committee recommends that the candidates be awarded the relevant degree. Members of the Examination Committee are as follows:

Gwendoline Ee Cheng Lian, Ph. D.
Associate Professor
Faculty of Science and Environmental Studies
Universiti Putra Malaysia
(Chairperson)

Zulkarnain Zainal, Ph. D.
Associate Professor
Faculty of Science and Environmental Studies
Universiti Putra Malaysia
(Member)

Mohd Zaizi Desa, Ph. D.
Associate Professor
Faculty of Science and Environmental Studies
Universiti Putra Malaysia
(Member)

Ambar Yarmo, Ph. D.
Associate Professor
Faculty of Science and Technology
Universiti Kebangsaan Malaysia
(Independent Examiner)

GULAM RUSUL RAHMAT ALI, Ph. D.
Professor/ Deputy Dean
School of Graduate Studies
Universiti Putra Malaysia

Date:
This thesis submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfilment of the requirement for the degree of Master of Science. The members of the Supervisory Committee are as follows:

Anuar Kassim, Ph. D.
Professor
Faculty of Science and Environmental Studies
Universiti Putra Malaysia
(Chairperson)

Mohd Zobir Hussein, Ph. D.
Professor
Faculty of Science and Environmental Studies
Universiti Putra Malaysia
(Member)

Mohamad Zaki Ab Rahman, Ph. D.
Associate Professor
Faculty of Science and Environmental Studies
Universiti Putra Malaysia
(Member)

Abdul Halim Abdullah, Ph. D.
Associate Professor
Faculty of Science and Environmental Studies
Universiti Putra Malaysia
(Member)

AINI IDERIS, Ph. D.
Professor/Dean
School of Graduate Studies
Universiti Putra Malaysia
Date:
DECLARATION

I hereby declare that the thesis is based on my original work except for quotations and citations which have been duly acknowledged. I also declare that it has not been previously or concurrently submitted for any other degree at UPM or other institutions.

LIM CHEE SIONG

Date:
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABSTRACT</td>
<td>2</td>
</tr>
<tr>
<td>ABSTRAK</td>
<td>5</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENT</td>
<td>8</td>
</tr>
<tr>
<td>APPROVAL</td>
<td>9</td>
</tr>
<tr>
<td>DECLARATION</td>
<td>11</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>15</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>16</td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
<td>20</td>
</tr>
</tbody>
</table>

CHAPTER

I INTRODUCTION

Background
- 1.1 Papers Fiber Reinforced Plastics (FRP) Composite 23
- 1.2 Fiber-Reinforced Polymer 23
- 1.3 Structural Film Adhesive 24
 - 1.3.1 Film Adhesive 24
 - 1.3.2 Film Supported Adhesive 25
- 1.4 Reinforcements 25
 - 1.4.1 Reinforcement Mechanism 26
 - 1.4.2 Development of Reinforcements 27
- 1.5 Resins 28
 - 1.5.1 Phenolic 30
- 1.6 Additives and Modifiers 30
 - 1.6.1 Additive Functions 31

Objectives of the Research 34

II LITERATURE REVIEW

- 2.1 Composite Materials 35
- 2.2 Composite Panel 37
- 2.3 Paper Laminates 38
- 2.4 Adhesives 39
 - 2.4.1 Advantages of Adhesive Bonding 42
 - 2.4.2 Disadvantages of Adhesive Bonding 43
 - 2.4.3 Selection of Adhesive 43
 - 2.4.4 Dimensions of Adhesive-Bonded Joints 45
- 2.5 Phenol Formaldehyde Resin 49
 - 2.5.1 Physical Properties of Phenol Formaldehyde Resins 51
 - 2.5.2 Preparation of Phenol Formaldehyde Resins 52
 - 2.5.3 Phenol Formaldehyde Resin Impregnation 53
- 2.6 Natural Occurrence 54
- 2.7 Types of Filler for Plastic Composites 57
- 2.8 Phases of Material 59
III MATERIAL AND METHODS

3.1 Materials
3.2 Phenol-Formaldehyde Resin Preparation
3.3 Poly (vinyl alcohol) Preparation
3.4 Polymer Blends Preparation
3.5 Fourier Transform Infrared (FT-IR)
3.6 Differential Scanning Calorimetry
3.7 Thermo gravimetric Analysis
3.8 Viscosity
3.9 Tensile Properties
3.10 Samples Laminate Preparation
 3.10.1 Surface Preparation For Bonding
 3.10.2 Laminate Specimen Preparation
 3.10.3 Pre-press
 3.10.4 Hot press
 3.10.5 Determination of Density and Moisture Content
 3.10.6 Flexural Properties
3.11 Parameters Studies
 Curing Time
 Curing Temperature
 Temperature Setting
 Pressure Setting
3.12 Surface Morphology Study

IV RESULTS AND DISCUSSION

4.1 Fourier Transform Infrared (FT-IR)
 4.1.1 Phenol Formaldehyde Resin
 4.1.2 Poly(vinyl alcohol)
 4.1.3 Reaction of Phenolic Resin with PVA
 4.1.4 Mixture Behaviour

2.8.1 Plastic 60
2.8.2 Thermoplastics and Thermosets 61
2.8.3 Homopolymer and Copolymer 61
2.8.4 Mechanical Properties of Plastics 62
2.9 Poly (vinyl alcohol) 64
 2.9.1 Poly(vinyl alcohol) Preparation 65
 2.9.2 Structure and Properties 67
 2.9.3 Applications 68
2.10 The experiment and Numerical Bending Test 68
2.11 Products Manufacturing 70
 2.11.1 Assembly Processes 70
 2.11.2 Process Control 70
 2.11.3 Cure and consolidation processes 71
 2.11.4 Degree of cure 72
 2.11.5 Viscosity 72
 2.11.6 Pressing Conditions 73
 2.11.7 Treatment to Reduce Thickness Swelling 74
 2.11.8 Direct heat Curing 75

III MATERIAL AND METHODS

3.1 Materials 76
3.2 Phenol-Formaldehyde Resin Preparation 76
3.3 Poly (vinyl alcohol) Preparation 77
3.4 Polymer Blends Preparation 77
3.5 Fourier Transform Infrared (FT-IR) 78
3.6 Differential Scanning Calorimetry 79
3.7 Thermo gravimetric Analysis 79
3.8 Viscosity 79
3.9 Tensile Properties 80
3.10 Samples Laminate Preparation 81
 3.10.1 Surface Preparation For Bonding 81
 3.10.2 Laminate Specimen Preparation 82
 3.10.3 Pre-press 84
 3.10.4 Hot press 84
 3.10.5 Determination of Density and Moisture Content 84
 3.10.6 Flexural Properties 85
3.11 Parameters Studies 86
 Curing Time 86
 Curing Temperature 87
 Temperature Setting 87
 Pressure Setting 87
3.12 Surface Morphology Study 88

IV RESULTS AND DISCUSSION

4.1 Fourier Transform Infrared (FT-IR) 90
 4.1.1 Phenol Formaldehyde Resin 90
 4.1.2 Poly(vinyl alcohol) 91
 4.1.3 Reaction of Phenolic Resin with PVA 92
 4.1.4 Mixture Behaviour 93