UNIVERSITI PUTRA MALAYSIA

PHYSICO-CHEMICAL TRANSFORMATION AND STABILITY OF JATROPHA POD BIOCHAR IN AN ACIDIC MINERAL SOIL AND PINEAPPLE STUMP BIOCHAR IN TROPICAL PEAT

CHEAH POH MENG

FP 2014 8
PHYSICO-CHEMICAL TRANSFORMATION AND STABILITY OF JATROPHA POD BIOCHAR IN AN ACIDIC MINERAL SOIL AND PINEAPPLE STUMP BIOCHAR IN TROPICAL PEAT

By

CHEAH POH MENG

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia in Fulfillment of the Requirements for the Degree of Doctor of Philosophy

August 2014
COPYRIGHT

All material contained within the thesis, including without limitation text, logos, icons, photographs and all other artwork, is copyright material of Universiti Putra Malaysia unless otherwise stated. Use may be made of any material contained within the thesis for non-commercial purposes from the copyright holder. Commercial use of material may only be made with the express, prior, within permission of Universiti Putra Malaysia.

Copyright © Universiti Putra Malaysia
Dear Dad, Fook Thin,

Beloved Mom, Foong Khew

Brother and Sister, Chooi Ying, Poh Weng

Grandparents, Cheah Wei and Kim Thye

Thank you for all the support and love

Special Thanks to Shir Yih
Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfillment of the requirement for the degree of Doctor of Philosophy

PHYSICO-CHEMICAL TRANSFORMATION AND STABILITY OF JATROPHA POD BIOCHAR IN AN ACIDIC MINERAL SOIL AND PINEAPPLE STUMP BIOCHAR IN TROPICAL PEAT

By

CHEAH POH MENG

August 2014

Chairman: Ahmad Husni bin Monhd. Hanif, PhD
Faculty: Agriculture

Biochar is classified as stable C sequester that can last hundreds to thousands of years. Though, it is a vague explanation as biochar experienced various transformations resulted from different climatic pattern and soil type. It is safe to assume stability of similar biochar varies depending on environmental factor. Assessing resident time of biochar in soil is a taunting task since current estimation methods are flawed and time consuming. Abiotic and biotic oxidation is the main degradation mechanisms of biochar. Moreover, biochar field decomposition study in Malaysia at acidic mineral soil and tropical peat soil are yet to be conducted. It is hypothesized biochar decomposition in Malaysia is rapid due to high amount of annual rainfall. Besides, accelerating biochar decomposition with oxidation could provide quick estimation of the biochar resident time in soil. Biochar could serve as a mean in managing the high amount of biomass waste produced from Jatropha and pineapple cultivation. The study was undertaken to examine the physico-chemical transformation of Jatropha pod (JP) biochar in an acidic mineral soil and pineapple stump (PS) biochar in tropical peat soil respectively. Furthermore, hydrogen peroxide (H₂O₂) was used to simulate the JP and PS biochars litterbag decomposition model.

The raw Jatropha pod was collected from Universiti Agriculture Park, Plot D, UPM. Meanwhile, raw pineapple stump was collected from Peninsula Plantation, Simpang Renggam, Malaysia. Both PS and JP biochars were produced by partially combusting the dried raw samples for 3 hours at 250°C and 275°C respectively in a carbolite furnace. The physico-chemical properties were characterized using surface area analyzer based on Brunauer, Emmet and Teller (BET) theory, Fourier Transform Infrared Spectroscopy (FTIR), Nuclear Magnetic Resonance Spectroscopy (NMR), Differential Scanning Calorimetry (DSC) and Scanning Electron Microscopy (SEM).
Field decomposition of JP and PS biochars was determined using the litterbag method. Furthermore, hydrogen peroxide (H_2O_2) was utilized to replicate biochar litterbag field decomposition.

The BET surface area of JP biochar increased significantly after 16 months buried in acidic mineral soil implying physical fragmentation. Adsorption of organic matter was unlikely due to the increasing BET surface area. Instead, interaction with minerals such as Fe could have contributed to the resident time of JP biochar. Increase of O functionalities (phenolic, carboxylic and hydroxyl) implied JP biochar suffered severe oxidation shown by FTIR and NMR analysis. The JP biochar litterbag field decomposition was fitted into hyperbolic decay model with 3 parameters.

However, the BET surface area of PS biochar decreased significantly after 16 months under tropical peat soil. This could be attributed to adsorption of organic matter but the declining C content indicated contrarily. This also implied PS biochar was less susceptible to physical fragmentation. Instead, increasing Fe in PS biochar overtime suggested interaction between biochar and Fe from peat by ligand bridging. Further study was needed to verify this phenomena and its effect on recalcitrance of biochar. Increasing O functionalities hinted surface oxidation shown in the FTIR spectrum of PS biochar. However, C structure of PS biochar was not oxidized or protected from degradation. This could be attributed to lower microbial activities in peat. The PS biochar litterbag field decomposition was also fitted into hyperbolic decay model with 3 parameters. The forecasted mean resident time of JP and PS biochars were 104 years in acidic mineral soil and 333 years in tropical peat respectively.

Oxidation process played a major role in biochar decomposition. Both JP and PS biochars field decomposition pattern were able to be simulated and accelerated with 30% H_2O_2. However, the estimated results might be underestimated as the H_2O_2 simulation was unable to replicate the chemisorption on biochar. Further research was needed to improve this simulation method.
TRANSFORMASI FIZIKAL KIMIA ARANG DALAM TANAH MINERAL BERACID & GAMBU TROPIKA DAN ESTIMASI KESTABILAN ARANG MELALUI SIMULASI MAKMAL

By

CHEAH POH MENG

Ogos 2014

Pengerusi: Ahmad Husni bin Mohd. Hanif, PhD
Fakulti: Pertanian

yang diisi dengan arang. Tambahan, hidrogen peroksida digunakan untuk meniru penguraian lapang arang dengan beg nilon.

ACKNOWLEDGEMENTS

I am grateful to Lord Almighty for His grace, blessings and the strength granted to him to complete his study. I wish to express my gratitude to Assoc. Prof. Dr. Ahmad Husni bin Mohd. Hanif, the Chairman of the Supervisory Committee for the keen interest, valuable contribution and tireless guidance during the preparation of this thesis. His countless support and generosity cannot be over emphasized.

I express my deepest gratitude to Dr. Samsuri Abdul Wahid and Prof. Dr. Luqman Chuah Abdullah, members of the Advisory Committee for their invaluable assistance and guidance at the various stages of the research. Their tolerance and patient throughout the whole study are very much appreciated. Special reference also goes to the management of Peninsula Plantation, Simpang Renggam, Johor for their support and commitment of partnership in this collaborative research. Financial support from the Ministry of Higher Education, Malaysia via Universiti Putra Malaysia (UPM) is acknowledged.

Appreciation goes to my family for their love, understanding, spiritual support and prayers. The author is thankful to the entire technical staff of the Land Management Department for their cooperation that led to the smooth run of all the experiments of the research. Help from my friends is acknowledged.
I certify that a Thesis Examination Committee has met on 6 August 2014 to conduct the final examination of Cheah Poh Meng on his thesis entitled "Physico-chemical Transformation and Stability of Jatropha Pod Biochar in an Acidic Mineral Soil and Pineapple Stump Biochar in Tropical Peat" in accordance with the Universities and University College Act 1971 and the Constitution of Universiti Putra Malaysia [P.U.(A) 106] 15 March 1998. The committee recommends that the student be awarded the Doctorate of Philosophy.

Members of the Thesis Examination Committee were as follows:

Shamshuddin b Jusop, PhD
Professor
Faculty of Agriculture
Universiti Putra Malaysia
(Chairman)

Christopher Teh Boon Sung, PhD
Lecturer
Faculty of Agriculture
Universiti Putra Malaysia
(Internal Examiner)

Hamdan b Jol, PhD
Associate Professor
Faculty of Agriculture
Universiti Putra Malaysia
(Internal Examiner)

Sota Tanaka, PhD
Professor
Research and Education Faculty
Kochi University
(External Examiner)

NORITAH OMAR, PhD
Associate Professor and Deputy Dean
School of Graduate Studies
Universiti Putra Malaysia

Date: 25 August 2014
This thesis was submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfillment of the requirement for the degree of Doctor of Philosophy. The members of the Supervisory Committee were as follows:

Ahmad Husni Mohd. Hanif, PhD
Associate Professor
Faculty of Agriculture
Universiti Putra Malaysia
(Chairman)

Samsuri Abdul Wahid, PhD
Senior Lecturer
Faculty of Agriculture
Universiti Putra Malaysia
(Member)

Luqman Chuah Abdullah, PhD
Professor
Faculty of Engineering
Universiti Putra Malaysia
(Member)

BUJANG BIN KIM HUAT, PhD
Professor and Dean
School of Graduate Studies
Universiti Putra Malaysia

Date: 20 October 2014
Declaration by graduate student

I hereby declare that:

- this thesis is original work;
- quotations, illustrations and citations have been duly referenced;
- this thesis has not been submitted previously or concurrently for any other degree at any other institutions;
- intellectual property from the thesis and copyright of thesis are fully-owned by Universiti Putra Malaysia, as according to the Universiti Putra Malaysia (Research) Rules 2012;
- written permission must be obtained from supervisor and the office of Deputy Vice-Chancellor (Research and Innovation) before thesis is published (in the form of written, printed or in electronic form) including books, journals, modules, proceedings, popular writings, seminar papers, manuscripts, posters, reports, lecture notes, learning modules or any other materials as stated in the Universiti Putra Malaysia (Research) Rules 2012;
- there is no plagiarism or data falsification/fabrication in the thesis, and scholarly integrity is upheld as according to the Universiti Putra Malaysia (Graduate Studies) Rules 2003 (Revision 2012-2013) and the Universiti Putra Malaysia (Research) Rules 2012. The thesis has undergone plagiarism detection software.

Signature: __________________________ Date: __________________________

Name and Matric No: __
Declaration by Members of Supervisory Committee

This is to confirm that:

- the research conducted and the writing of this thesis was under our supervision;
- supervision responsibilities as stated in the Universiti Putra Malaysia (Graduate Studies) Rules 2003 (Revision 2012-2013) are adhered to.

Signature: __________________________ Signature: __________________________
Name of Chairman of Supervisor
Chairman of Supervisory Committee: __________________________

Signature: __________________________
Name of Member of Supervisor
Member of Supervisory Committee: __________________________

Signature: __________________________
Name of Member of Supervisor
Member of Supervisory Committee: __________________________
TABLE OF CONTENTS

ABSTRACT i
ABSTRAK iii
ACKNOWLEDGEMENTS v
APPROVAL vi
DECLARATION viii
LIST OF TABLES xiii
LIST OF FIGURES xiv
LIST OF ABBREVIATIONS xvi
LIST OF SYMBOLS xvii

CHAPTER
1 INTRODUCTION 1

2 LITERATURE REVIEW 3
 2.1 Definition of Biochar 3
 2.2 Biochar for Environmental Management 3
 2.2.1 Biochar Provides Agronomic Benefits 4
 2.2.2 Biochar as Waste Management 5
 2.2.3 Biochar and Bio-energy 5
 2.2.4 Biochar to Mitigate Climate Change 6
 2.3 Pyrolysis and Biochar Production 6
 2.3.1 Fast Pyrolysis 7
 2.3.2 Slow Pyrolysis 7
 2.4 Biochar Production Mechanisms During Pyrolysis 7
 2.5 Changes of Physico-Chemical Properties Due to Pyrolysis 8
 2.5.1 Surface Area and Porosity 8
 2.5.2 Elemental Composition 9
 2.5.3 Surface Chemistry 10
 2.5.4 Chemical Structure 11
 2.5.5 Chemical Composition 12
 2.6 Assessing Biochar Decomposition 12
 2.6.1 Labile Fraction of Biochar 14
 2.6.2 Non-labile Fraction of Biochar 15
 2.7 Biochar Changes in Soil 15
 2.7.1 Biochar Physical Breakdown 15
 2.7.2 Organic Matter Adsorption on Biochar 16
 2.7.3 Changes of Elemental Composition of Biochar 16
 2.7.4 Increase of Oxygen Functionalities on Biochar 17
 2.7.5 Biochar Interaction with Minerals and Organic Matter 17
 2.7.6 Biotic Degradation of Biochar 18
2.8 Role of Hydrogen Peroxide in Biochar Decomposition 19
2.9 Acidic Mineral and Oligotrophic Peat Soil in Malaysia 19
2.10 Jatropha and Pineapple Industry in Malaysia 19
2.11 Summary 20

3 JATHROPA POD (JP) BIOCHAR PRODUCTION, CHARACTERIZATION AND DECOMPOSITION STUDY IN AN ACIDIC MINERAL SOIL
3.1 Introduction 22
3.2 Materials and Methods 23
 3.2.1 Biochar Production 23
 3.2.2 Biochar Characterization 24
 3.2.2.1 pH Value 24
 3.2.2.2 Elemental Composition 24
 3.2.2.3 Brunauer, Emmet and Teller (BET) Surface Area 25
 3.2.2.4 Chemical Composition 25
 3.2.2.5 Morphology Analysis 26
 3.2.2.6 Thermal Analysis 26
 3.2.2.7 Surface Chemistry 26
 3.2.2.8 Chemical Structure Analysis 27
 3.2.2.9 Field Decomposition 27
 3.2.3 Statistical Analysis 28
3.3 Results and Discussions 28
 3.3.1 Jathropa Pod Biochar Production and Characterization 28
 3.3.1.1 Elemental and Chemical Composition 28
 3.3.1.2 Surface Chemistry 32
 3.3.1.3 Chemical Structure 32
 3.3.1.4 Morphology Analysis 32
 3.3.1.5 Thermal Analysis 36
 3.3.1.6 Carbon Footprint of Jathropa Pod Biochar Production 38
 3.3.2 Field Decomposition of Jathropa Pod Biochar 39
 3.3.2.1 Site History 39
 3.3.2.2 Elemental Composition and Physical Changes 39
 3.3.2.3 Surface Chemistry Transformation 41
 3.3.2.4 Chemical Structure Alteration 44
 3.3.2.5 Decomposition Model 48
3.4 Conclusions 50

4 PINEAPPLE STUMP (PS) BIOCHAR PRODUCTION, CHARACTERIZATION AND DECOMPOSITION STUDY IN A TROPICAL PEAT SOIL
4.1 Introduction 51
4.2 Materials and Methods 52
 4.2.1 Biochar Production 52
 4.2.2 Field Decomposition 52
4.3 Results and Discussions 53
 4.3.1 Pineapple Stump Biochar Production and Characterization 53
 4.3.1.1 Elemental and Chemical Composition 53
 4.3.1.2 Surface Chemistry 58
 4.3.2.3 Chemical Structure 58
 4.3.2.4 Overestimation of Lignin Content in PS Biochar 59
 4.3.2.5 Morphology Analysis 59
 4.3.2.6 Thermal Analysis 61
 4.3.2.7 Carbon Footprint of Pineapple Stump Biochar Production 63
 4.3.2 Field Decomposition of Pineapple Stump Biochar 64
 4.3.2.1 Site History 64
 4.3.2.2 Elemental Composition and Physical Changes 64
 4.3.2.3 Surface Chemistry Transformation 66
 4.3.2.4 Chemical Structure Alteration 69
 4.3.2.5 Decomposition Model 73
4.4 Conclusions 75

5 ESTIMATING BIOCHAR STABILITY 76
5.1 Introduction 76
5.2 Materials and Methods 77
 5.2.1 Biochar Simulated Decomposition 77
 5.2.2 Statistical Analysis 78
5.3 Results and Discussions 78
 5.3.1 Simulation of Jathropa Pod (JP) Biochar Litterbag Field Decomposition 78
 5.3.2 Simulation of Pineapple Stump (PS) Biochar Litterbag Field Decomposition 83
5.4 Conclusions 86

6 SUMMARY, GENERAL CONCLUSION AND RECOMMENDATION FOR FUTURE RESEARCH 87
REFERENCES 89
APPENDICES 103
BIODATA OF STUDENT 105
LIST OF PUBLICATIONS 106