EFFICACY OF CENTELLA ASIATICA IN REDUCING OXIDATIVE STRESS IN HYDROGEN PEROXIDE-INDUCED SPRAGUE DAWLEY RATS

By

MAHANOM HUSSIN

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfilment of the Requirements for the Master of Science

October 2005
To my beloved husband, families and friends……
Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfilment of the requirement for the degree of Master of Science

EFFICACY OF Centella asiatica IN REDUCING OXIDATIVE STRESS IN HYDROGEN PEROXIDE-INDUCED SPRAGUE DAWLEY RATS

By

MAHANOM HUSSIN

October 2005

Chairman : Associate Professor Azizah Abdul Hamid, PhD
Faculty : Food Science and Technology

Centella asiatica is one of the local medicinal plants that have been claimed to have various medicinal effects. The study was designed to investigate the effect of Centella asiatica extract and powder on blood lipid profile, blood lipid peroxidation and antioxidant enzymes activity in oxidative stress induced male Sprague Dawley rats. In the first phase of the study, the experimental rats were fed with 0.3% (w/w) Centella asiatica extract, 1.5% (w/w) Centella asiatica powder, 5.0% (w/w) Centella asiatica powder and 0.3% (w/w) α-tocopherol for 6 weeks. Oxidative stress in these rats was induced by giving them 0.03% (v/v) hydrogen peroxide (H₂O₂) in drinking water. Normal rats were provided with commercial Gold Coin diet. Malonaldehyde (MDA) level and activities of catalase (CAT), superoxide dismutase (SOD) and glutathione peroxidase (GPx) before and during treatments were monitored. Histopathological examination of selected organs was done at the end of the study. The results showed that MDA level was significantly (p<0.05) higher in the normal rats compared to others. Dietary supplementation of Centella asiatica (extract and powder) and α-tocopherol significantly (p<0.05) reduced lipid peroxidation in the experimental rats. However, there was no significant differences in the activities of antioxidant enzymes and histopathology observations of the organs of the rats.

H₂O₂ (0.05%, 0.10% and 0.15%) were given to rats via drinking water for 6 weeks in determining effective H₂O₂ level in inducing oxidative stress in the experimental rats. At the end of the study, the experimental rats were sacrificed and organs namely heart, liver and kidney were weighed and fat
content of the organs was determined. Results showed that rats treated with 0.10% (v/v) and 0.15% (v/v) \(\text{H}_2\text{O}_2 \) had significantly (p<0.05) increased MDA level compared to that of normal and 0.05% (v/v) \(\text{H}_2\text{O}_2 \) treated rats. The finding suggested that supplementation of 0.10% (v/v) and 0.15% (v/v) \(\text{H}_2\text{O}_2 \) are sufficient in inducing oxidative stress in the experimental rats.

Second phase of the study was conducted using increase level of \(\text{H}_2\text{O}_2 \) and prolong duration of the treatments. Experimental rats were fed with 0.3% (w/w) \textit{Centella asiatica} extract, 5.0% (w/w) \textit{Centella asiatica} powder and 0.3% (w/w) \(\alpha \)-tocopherol for 25 weeks. Oxidative stress was induced by giving the rats 0.1% (v/v) \(\text{H}_2\text{O}_2 \) in drinking water. Normal rats were provided with commercial Gold Coin diet. Blood lipid profile [cholesterol, high density lipoprotein (HDL), low density lipoprotein (LDL) and triacylglycerol (TG)], MDA, CAT and SOD activities in experimental rats were monitored throughout the treatments. Histopathological examination of the heart, liver and kidney of the rats was done after the treatments ended. Results of the study indicated that \textit{Centella asiatica} extract and powder significantly (p<0.05) increased serum HDL and cholesterol level compared to normal rats. \textit{Centella asiatica} extract and powder also significantly lowered serum TG and LDL concentrations compared to normal rats at the end of the study. Results also showed lowered MDA levels in experimental rats consuming \textit{Centella asiatica} extract, powder and \(\alpha \)-tocopherol. The decrease in the activity of SOD and increase in CAT activity in \textit{Centella asiatica} and \(\alpha \)-tocopherol supplemented rats as compared to normal rats appeared to be the response towards decreased in free radical formation and prevention of \(\text{H}_2\text{O}_2 \) accumulation respectively. Histopathological examination of the heart, liver and kidney revealed no obvious changes in \textit{Centella asiatica}-fed rats. The results suggested that long-term consumption of \textit{Centella asiatica} extract and powder is not toxic to heart, liver or kidney. Results also revealed that \textit{Centella asiatica} extract and powder may ameliorate \(\text{H}_2\text{O}_2 \)-induced oxidative stress by increasing HDL concentration, decreasing the level of TG, LDL, lipid peroxidation and altering antioxidant defense system in experimental rats. These effects may be attributed to the antioxidant components and polyphenol substances present in \textit{Centella asiatica}.
Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk ijazah Master Sains

KEMUJARABAN Centella asiatica MENURUNKAN STRES OXIDATIF PADA TIKUS SPRAGUE DAWLEY YANG DIRANGSANG DENGAN HIDROGEN PEROKSIDA

Oleh

MAHANOM HUSSIN

Oktober 2005

Pengerusi : Profesor Madya Azizah Abdul Hamid, PhD
Fakulti : Sains dan Teknologi Makanan

Centella asiatica adalah sejenis tumbuhan ubatan tempatan yang telah didakwa mempunyai pelbagai kesan perubatan. Kajian dijalankan untuk menyelidik kesan ekstrak dan serbuk Centella asiatica terhadap profil lemak darah, pengoksidaan lemak darah dan aktivi enzim antioksidan dalam tikus jantan Sprague Dawley yang telah dirangsang stres oksidatif. Di dalam fasa pertama kajian, tikus ujikaji telah diberi 0.3% (berat/berat) ekstrak Centella asiatica, 1.5% (berat/berat) dan 5.0% (berat/berat) serbuk Centella asiatica dan 0.3% (berat/berat) α-tokoferol selama 6 minggu. Stres oksidatif pada tikus ini telah dirangsang dengan memberikan 0.03% (isipadu/isipadu) hidrogen peroksid (H$_2$O$_2$) dalam air minuman. Tikus normal telah dibekalkan dengan diet komersial Gold Coin. Aras malonaldehyde (MDA) dan aktiviti katalase (CAT), superoksid dismutase (SOD) dan glutation peroksida (GPx) sebelum dan semasa rawatan telah dipantau. Ujian histopatologi organ terpilih telah dilakukan di akhir kajian. Keputusan menunjukkan bahawa aras MDA tikus-tikus normal lebih tinggi berbanding dengan tikus ujikaji yang lain. Penambah Centella asiatica (ekstrak dan serbuk) dan α-tokoferol telah mengurangkan pengoksidaan lemak dengan signifikan ($p<0.05$) pada tikus ujikaji. Walaubagaimanapun tiada perubahan yang signifikan dapat dilihat pada aktiviti enzim antioksidan dan pemerhatian histopatologi organ tikus.

H$_2$O$_2$ (0.05%, 0.10% dan 0.15%) dalam air minuman telah diberi pada tikus ujikaji selama 6 minggu untuk menentukan peratus H$_2$O$_2$ yang berkesan dalam merangsangkan stres oksidatif. Pada akhir kajian, tikus telah dikorbankan dan organ seperti jantung, hati dan buah pinggang ditimbang dan
kandungan lemak dalam organ tersebut ditentukan. Keputusan menunjukkan bahawa tikus ujikaji yang dirawat dengan 0.10% (isipadu/isipadu) dan 0.15% H₂O₂ (isipadu/isipadu) telah mengalami peningkatan aras MDA dengan signifikan (p< 0.05) berbanding dengan tikus normal dan tikus yang diberi 0.05% H₂O₂. Keputusan menunjukkan bahawa penambah 0.10% dan 0.15% H₂O₂ adalah berkesan merangsangkan stres oksidatif pada tikus yang dikaji.

Fasa kedua kajian dijalankan dengan penggunaan aras H₂O₂ yang lebih tinggi dan tempoh rawatan yang lebih panjang. Tikus yang dikaji telah diberi 0.3% ekstrak Centella asiatica, 5.0% serbuk Centella asiatica dan 0.3% α-tokoferol selama 25 minggu. Stres oksidatif telah dirangsang dengan pemberian 0.1% H₂O₂ dalam air minuman tikus. Tikus normal telah dibekalkan dengan diet komersial Gold Coin. Profil lemak darah [kolesterol, lipoprotin berketumpatan tinggi (HDL), lipoprotin berketumpatan rendah (LDL) dan triasilgliserol (TG)], MDA, aktiviti CAT dan SOD di dalam tikus telah diawasi sepanjang rawatan. Pemeriksaan histopatologi terhadap organ jantung, hati dan buah pinggang tikus terbabit telah juga dilakukan selepas rawatan ditamatkan. Keputusan kajian menunjukkan peningkatan aras serum HDL dan kolesterol dengan signifikan (p<0.05) tikus yang diberi ekstrak dan serbuk Centella asiatica berbanding dengan tikus normal. Ekstrak dan serbuk Centella asiatica juga didapati merendahkan kepekatan serum TG dan LDL secara signifikan (p<0.05) tikus yang dikaji berbanding dengan tikus normal di akhir kajian. Kajian juga menunjukkan penurunan aras MDA pada tikus yang memakan ekstrak dan serbuk Centella asiatica; dan α-tokoferol. Penurunan aktiviti SOD dan peningkatan aktiviti CAT di dalam tikus yang diberi makan Centella asiatica dan α-tokoferol berbanding dengan tikus normal, telah menampakkan reaksi terhadap pengurangan pembentukan radikal bebas dan pencegahan pengumpulan H₂O₂ pada tikus ini. Pemeriksaan histopatologi terhadap jantung, hati dan buah pinggang mendedahkan bahawa tiada perubahan yang ketara pada tikus yang diberi makan Centella asiatica. Keputusan mencadangkan bahawa ekstrak dan serbuk Centella asiatica yang dimakan dalam jangka masa yang panjang didapati tidak toksik terhadap jantung, hati atau buah pinggang. Keputusan juga menunjukkan bahawa ekstrak dan serbuk Centella asiatica boleh menurunkan stres oksidatif yang dirangsang oleh kehadiran H₂O₂ dengan meningkatkan kepekatan HDL, menurunkan aras TG, LDL, pengoksidaan lemak dan mengubah sistem pertahanan antioksidan di dalam tikus yang dikaji. Kesetaraknya berkemungkinan merujuk kepada komponen antioksidan dan bahan polifenol yang terdapat di dalam Centella asiatica.
Syukur alhamdulillah to the Almighty Allah S.W.T for giving me the strength and capability to complete this research and selawat and salam to His righteous messenger, prophet Muhammad S.A.W.

I would like to take this opportunity to express my deepest appreciation and gratitude to the chairperson of my supervisory committee, Associate Professor Dr. Azizah Abdul Hamid, Head Department of Food Science, Faculty of Food Science and Technology for her invaluable guidance, advice, suggestion, discussion, constant encouragement and patience throughout the research and in completing the study. I would also like to express my deepest thanks to the other members of my supervisory committee, Professor Dr. Suhaila Mohamed, Associate Professor Dr. Nazamid Saari, from Faculty of Food Science and Technology, Associate Professor Dr. Maznah Ismail from Faculty of Medicine and Health Sciences and Associate Professor Dr. Mohd. Hair Bejo from Faculty of Veterinary Medicine for their understanding and constructive comments throughout the course of my study.

My sincere gratitude is also dedicated to all the friendly staff of Food Science, Food Technology and Biotechnology departments especially to the laboratory assistants for their helpfulness and generous cooperation. My appreciation also goes to all my fellow graduate students, labmates and friends for sharing their knowledge, ideas and given me constant encouragement and moral support to complete my graduate study at University Putra Malaysia. Sincere gratitude is also extended to the financial support provided by the IRPA fund for this research, which was awarded to Associate Professor Dr. Azizah Abdul Hamid. I would like to thank the Ministry of Science and Technology for providing me the PASCA scholarship to pursue the degree.

Finally, I wish to express my deepest appreciation to my family and my beloved husband for their patience and continuous moral support and encouragement throughout the duration of my study.
I certify that an Examination Committee met on 12 October 2005 to conduct the final examination of Mahanom Binti Hussin on her Master of Science thesis entitled “Efficacy of *Centella asiatica* in Reducing Oxidative Stress in Hydrogen Peroxide Induced *Sprague Dawley* Rats” in accordance with Universiti Pertanian Malaysia (Higher Degree) Act 1980 and Universiti Pertanian Malaysia (Higher Degree) Regulations 1981. The Committee recommends that the candidate be awarded the relevant degree. Members of the Examination Committee are as follows:

SALMAH YUSOF
Professor
Faculty of Food Science and Technology
Universiti Putra Malaysia
(Chairman)

JINAP SELAMAT, Ph.D.
Professor
Faculty of Food Science and Technology
Universiti Putra Malaysia
(Internal Examiner)

TAN CHIN PING, Ph.D.
Faculty of Food Science and Technology
Universiti Putra Malaysia
(Internal Examiner)

AMINAH ABDULLAH, Ph.D.
Professor
Faculty of Science and Technology
Universiti Kebangsaan Malaysia
(External Examiner)

GULAM RUSUL RAHMAT ALI, Ph.D.
Professor/Deputy Dean
School of Graduate Studies
Universiti Putra Malaysia

Date:
This thesis submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfilment of the requirement for the degree of Master of Science. The members of the Supervisory Committee are as follows:

AZIZAH ABDUL HAMID, PhD
Associate Professor
Faculty of Food Science and Technology
Universiti Putra Malaysia
(Chairman)

SUHAILA MOHAMED, PhD
Professor
Faculty of Food Science and Technology
Universiti Putra Malaysia
(Member)

NAZAMID SAARI, PhD
Associate Professor
Faculty of Food Science and Technology
Universiti Putra Malaysia
(Member)

MAZNAH ISMAIL, PhD
Associate Professor
Faculty of Medicine and Health Sciences
Universiti Putra Malaysia
(Member)

MOHD. HAIR BEJO, PhD
Associate Professor
Faculty of Veterinary Medicine
Universiti Putra Malaysia
(Member)

AINI IDERIS, PhD
Professor/Dean
School of Graduate Studies
Universiti Putra Malaysia

Date:
DECLARATION

I hereby declare that the thesis is based on my original work except for quotations and citations which have been duly acknowledged. I also declare that it has not been previously or concurrently submitted for any other degree at Universiti Putra Malaysia or other institutions.

MAHANOM BINTI HUSSIN

Date :
TABLE OF CONTENTS

DEDICATION ii
ABSTRACT iii
ABSTRAK v
ACKNOWLEDGEMENTS vii
APPROVAL viii
DECLARATION x
LIST OF TABLES xvii
LIST OF FIGURES xviii
LIST OF PLATES xx
LIST OF ABBREVIATIONS xxi

CHAPTER

I INTRODUCTION 1

II LITERATURE REVIEW 5
 Centella asiatica
 Nomenclature and Ecology 5
 Nutritional Value 9
 Phytochemical Constituents 10
 Food and Medicinal Uses 14
 Oxidative Stress 17
 Formation of Reactive Oxygen Species in vivo and its
 Biological Consequences 19
 Free Radicals and Human Disease 22
 Characteristics and Sources of Free Radicals 22
 Free Radicals as Mutagens, Carcinogens and
 Degenerative Diseases 28
 Hydrogen Peroxide 30
 Antioxidant Defense Systems 35
 Protection Against Reactive Oxygen
 Species-induced Damage 38
 Antioxidant Therapy 40
 Antioxidant Enzymes 41
 Biomarkers of Oxidative Damage 46
 Lipid Peroxidation 47
 Malonaldehyde Determination as Index of Lipid
 Peroxidation 49
 Obtaining Rat’s Body Fluids : Blood 52
 Cholesterol 53
 Low Density Lipoprotein 54
 High Density Lipoprotein 54
 Triacylglycerols 55

III EFFECT OF Centella asiatica ON H₂O₂ TREATED
 RATS AND DIFFERENT LEVELS OF H₂O₂ IN
 INDUCING OXIDATIVE STRESS IN RATS
 Introduction 57
 Materials and Methods 59
 Plant Materials 59
 Chemicals and Reagents 59
 Preparation of Treatments Diets 61
 Animals and Treatments 61
Preparation of Red Blood Cell and Serum 65
Determination of Lipid Peroxidation 66
Measurement of Antioxidant Enzymes Activities 66
Fat Content 68
Histopathology Observations 69
Statistical Analysis 69
Results and Discussions 70
Effect of Centella asiatica on H₂O₂ Treated Rats 70
Effect of Different Levels of H₂O₂ in Inducing Oxidative Stress in Sprague Dawley Rats 82
Conclusions 90

IV LONG TERM EFFECT OF Centella asiatica EXTRACT AND POWDER ON OXIDATIVE STRESS IN RATS
Introduction 91
Methodology 93
Experimental Set-up 93
Materials and Methods 94
Plant Materials 94
Chemicals and Reagents 94
Preparation of Red Blood Cells and Serum 95
Measurement of Lipid Profiles 95
Lipid Peroxidation Determination 96
Measurement of Free Radicals Scavenging Enzymes 96
Histopathology Examination 97
Statistical Analysis 98
Results and Discussions 99
Dietary Intake, Body Weight and Organ Weight of Rats 99
Lipid Profiles 103
Lipid Peroxidation 113
Free Radical Scavenging Enzymes 117
Histopathology 120
Conclusions 121

V CONCLUSIONS AND RECOMMENDATIONS 124

REFERENCES 126
APPENDICES 148
BIODATA OF AUTHORS 162