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Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfilment of the 
requirement for the Degree of Doctor of Philosophy

EFFECT OF WATER RATIO AND AGING TIME ON GLASS IONOMER 
CEMENT DERIVED FROM CALCIUM FLUOROALUMINOSILICATE BASED

GLASS 

By

MOHAMMAD ZULHASIF AHMAD KHIRI

October 2021

Chair : Khamirul Amin Matori, PhD
Institute : Nanoscience and Nanotechnology

Glass ionomer cement (GIC) is produced from a reaction between calcium 
fluoroaluminosilicate (CFAS) glass powder and polyacrylic acid (PAA). These kinds of 
cement are widely used primarily in dentistry for a long time ago for various applications 
such as adhesive and tooth restorative. In this research, the GIC is designed to perform 
good in mechanical and antibacterial properties. CFAS glass system is seen as a suitable 
combination due to its structure similar with natural tooth and ability to release fluoride 
ions for inhibiting the bacterial growth. The compound of SiO2 and CaO in the glass system 
have been replaced by waste materials to achieve the usability of waste materials in this 
research. Soda lime silica (SLS) glass and clam shell (CS) are used to act as SiO2 and 
CaO sources. The SLS CS CaF2 Al2O3 P2O5 glass system was used to synthesized 
CFAS glass by the conventional melt-quench technique and act as a based-glass in the 
fabricating GIC. In this study, GIC B5 [25SLS 15CS 20CaF2 20Al2O3 20P2O5] with 
initial ratio of water at 1.2 revealed as the optimum sample based on the physical, 
structural, mechanical and antibacterial properties. From the mechanical results, the 
highest Vickers microhardness of GIC B5 is 191.33 HV while the highest compressive 
strength is 119.14 MPa at 28 days of aging time. Besides that, fluoride release by the GIC 
B5 was found directly proportional to the aging time between 1 to 28 days and recorded
range from 74.62-194.82 ppm. The GIC also shows the antibacterial activity recorded the 
average diameter of the inhibition zone range between 19.33 and 28.00 mm. The 
antibacterial activity of GIC shows it is related to the fluoride ion release. It can be 
concluded that the fluoride release by GIC to the agar medium causes the inhibition of 
bacteria (S. mutans). Therefore, the GIC derived from CFAS glass in this study has high 
potential in dental material applications especially GIC B5 sample due to its good physical, 
structural and mechanical properties as well as its antibacterial activity.
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Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai 
memenuhi keperluan untuk ijazah Doktor Falsafah

KESAN NISBAH AIR DAN MASA PENUAAN SIMEN IONOMER KACA YANG 
BERASASKAN DARI KACA KALSIUMFLUROALUMINOSILIKAT

Oleh

MOHAMMAD ZULHASIF AHMAD KHIRI

Oktober 2021

Pengerusi : Khamirul Amin Matori, PhD
Institut : Nanosains dan Nanoteknologi

Simen ionomer kaca (GIC) atau dikenali sebagai simen polialkenoat kaca dihasilkan 
daripada tindak balas antara serbuk kaca kalsium fluoroaluminosilikat (CFAS) dan asid 
poliakrilik (PAA). Simen jenis ini banyak digunakan terutamanya dalam bidang pergigian 
sejak dulu untuk pelbagai aplikasi seperti pelekat dan pemulihan gigi. Dalam penyelidikan 
ini, GIC dirancang untuk memberikan sifat mekanikal dan sifat antibakteria yang baik. 
Sistem kaca CFAS dilihat sebagai kombinasi yang sesuai kerana strukturnya yang serupa 
dengan gigi semula jadi dan mempunyai keupayaan untuk melepaskan ion fluorida bagi 
menghalang pertumbuhan bakteria. SiO2 dan CaO dalam sistem kaca telah digantikan
dengan bahan buangan untuk mencapai kebolehgunaan bahan buangan dalam penyelidikan 
ini. Kaca soda kapur silika (SLS) dan shell clam (CS) masing-masing digunakan untuk 
bertindak sebagai sumber SiO2 dan CaO. Sistem kaca SLS CS CaF2 Al2O3 P2O5
digunakan untuk mensintesiskan kaca CFAS dengan teknik peleburan peleburan 
konvensional dan bertindak sebagai gelas berdasarkan pembuatan GIC. Dalam kajian ini, 
GIC B5 [25SLS 15CS 20CaF2 20Al2O3 20P2O5] dengan nisbah awal air pada tahap 1.2 
dinyatakan sebagai sampel optimum berdasarkan sifat fizikal, struktur, mekanikal dan 
antibakteria. Dari hasil mekanikal, kekerapan mikro Vickers tertinggi GIC B5 ialah 191.33 
HV sementara kekuatan mampatan tertinggi ialah 119.14 MPa pada 28 hari masa penuaan. 
Selain itu, pelepasan fluorida oleh GIC B5 didapati berkadar terus dengan masa penuaan 
antara 1 hingga 28 hari dan direkodkan dari julat 74.62-194.82 ppm. GIC juga 
menunjukkan aktiviti antibakteria mencatatkan purata diameter julat zon perencatan antara 
19.33 dan 28.00 mm. Aktiviti antibakteria GIC menunjukkan ia berkaitan dengan 
pembebasan ion fluorida. Dapat disimpulkan bahawa pembebasan fluorida oleh GIC ke 
medium agar menyebabkan perencatan bakteria (S. mutans). Oleh itu, GIC dari kaca CFAS 
dalam kajian ini mempunyai potensi yang tinggi dalam aplikasi bahan pergigian terutama 
sampel GIC B5 kerana sifat fizikal, struktur dan mekanikalnya yang baik berserta juga 
dengan ciri aktiviti antibakterianya.
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CHAPTER 1

INTRODUCTION

1.1 General Introduction

This chapter focus on the introduction of the research background of the biomaterial,
Calcium Fluroaluminosilicate (CFAS) glass derived from vitreous waste, Fluorapatite (FA) 
and Glass Ionomer Cement (GIC). The vitreous wastes such as Soda Lime Silica (SLS)
glass and Clam Shell (CS) are used in these studies to synthesized CFAS glass and then 
fabricated the GIC for a potential material used in dental material application. The specific 
characteristic of GIC is needed to ensure the materials can function in excellent condition 
for dentistry. Thus, detailed information about the fabrication and uses of the GIC is 
explained to ensure the objectives of the studies are successful at the end of the research.

1.2 Research Background

Biomaterials are referred to as biological or synthetic materials that have replaced any 
defective part of the human body, such as cell tissue, organs and body function, by means 
of an implantation method. Many researchers have defined biomaterials in specific ways 
in terms of biological content. According to the American National Institute of Health, the 
term biomaterials is defined as any substance or combination of substances, other than 
drugs, of synthetic or natural origin, which may be used for any period of time which 
increases or replaces, in part or in whole, any tissue, organ or function of the body in order 
to maintain or improve the quality of life of the individual (Bergman and Stumpf, 2013). 
Biomaterials must be biofunctional and biocompatible in order to perform the specific 
function of the host, either as implants or devices (Patel and Gohil, 2012). Biofunctional 
term is defined as the compensation for loss of function in diseased or damaged tissues, the 
complete replacement of the function of such tissues or the use for diagnostic purposes 
(Hudecki et al., 2019). According to Williams (1987), biocompatibility in terms of 
implantable means any material that has the ability to respond appropriately to the host in 
a specific application without harm occurring in the surrounding area. The use of 
biomaterials is currently widely used in various applications such as tissue, orthopedic and 
dental engineering applications. Biomaterials are usually produced in different types of 
materials, such as natural, glass, ceramic, metallic and polymer, depending on their specific 
function in medical applications (Shackelford, 1996).

Biomaterials can be categorized into three main functions, namely inert, reactive and 
resorbable (Hulbert et al., 1982). Bioinert materials have high chemical stability that is not 
triggered by a reaction or interacts with a biological reaction. Bioinert materials have high 
chemical stability that does not initiate a response or interact when introduced into a 
biological system (Hulbert et al., 1982; Yamamuro, 2004). Simply put, the introduction of 
bioinert material into the biological system, such as the body, will not cause the host to 
react. On the other hand, bioactive materials can be defined as a material that shows 
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reactivity to the biological effect, including interfacial bonding, and allows the tissue to 
ingest into the surrounding cells. While bioresorbable materials can be explained as a 
chemical reaction by dissolving materials to the body's host, and then absorbed by the body 
(Hulbert et al., 1982). 
 
 
Bioglass is a type of biomaterials that can apply in the biosystem of living things such as 
in the human body nor animal. It also acts as a specific biological response at an interface 
of a material that results in the formation of a bond between the tissues and materials 
(Hench 1993; Hench, 1998). Bioglass 45S5 was introduced by Hench in the late 1960’s at 
University of Florida, United State. Bioglass 45S5 has been in clinical use since 1985 
(Hench, 2006). This bioglass consist of 45% SiO2, 24.5% CaO, 24.5% Na2O and 6% P2O5 
(Hench and Paschall, 1974; Hench, 2006). The formulation of Bioglass 45S5 was 
successful used as an artificial material in the human body due to its excellent 
biocompatibility and bioactivity (Li et al., 2017). Until now, various type of bioglass was 
created with different formula composition and method according to their role in biological 
function. It is seen as one of the optimal compositions in biomedical applications especially 
in orthopedic. Bioglass 45S5 is commonly used as a reference to other bioglass due to its 
ability to integrate with the biological host in suitable conditions (Hench, 2013; Fiume et 
al., 2018). However, Bioglass 45S5 has low in mechanical applications due to its intrinsic 
brittleness characteristic and poor load-bearing application (Baino et al., 2019). Thus, it 
usually will be reinforced with other materials such as metal to improve the mechanical 
properties without affecting the bioglass properties itself. The CFAS glass is seen as a 
suitable glass system that can be featured in the biological application due to its improvised 
mechanical properties by elemental addition such as fluorine and aluminum. 
 
 
The CFAS glass system is first introduced by Hill in 1991 during studies on ionomer dental 
glass as a potential bioactive glass in the biomaterial application (Hill et al., 1991). The 
CFAS glass consists of five core chemical compounds which are SiO2, CaO, CaF2, Al2O3 
and P2O5. The SiO2 and CaO are two main chemical composition that can be replaced by 
waste materials in this research. Both SiO2 and CaO are easily available everywhere due 
to their abundance dump and less used. Therefore, the idea to replace the SiO2 and CaO 
with waste materials such as SLS glass and CS in the synthesis of the CFAS glass is one 
of the novelties in this research.  
 
 
According to Sinton and Course (2001), SLS glass consists of more than 66 mol.% of 
silicon dioxide, SiO2 which is ideal for the extraction element of silicon, Si from the SLS 
glass for a new production of glassware. The development of the glass industry in Malaysia 
seen has positive economic growth for the past 5 years (Sunder, 2019). Recently, two 
largest glass producer companies from Japan and China were invested heavily in the 
Malaysian market economy for glass processing activities. Malaysia was focused on the 
factory industry to increase the financial income by participating in manufacturing glass 
production and leading to the consumption of glass containers for packaged food and 
beverages. However, the dump of glassware is also increased due to unwanted glass 
containers especially from SLS glass which is commonly used for glass sheet, window 
glass panes and glass containers (Sehgal and Ito, 1998; Sheng et al., 2002). Therefore, the 
use of SLS glass in synthesizing CFAS glass directly can overcome the dumping problem 
of glass every year. 
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The shell marine species consist of rich calcium sources in form of calcium carbonate 
(CaCO3) which is composed of more than 98 wt.% of calcium (Buasri et al., 2013). Thus, 
shell marine species are seen as an alternative source of high calcium content from waste 
materials. In Malaysia, the fisheries industry has been played an important role as a major 
supplier of animal protein sources to the Malaysian population due to the wide surface area 
of Malaysia’s sea (Oon, 1986; Mohamed et al., 2012; Hussin, 2016). The Malaysia’s 
fisheries industry has dynamic and competitive developments, and even has the potential 
to be developed, especially in contributing to the country's export earnings. High demand 
on seafood sources causes the fisheries activities in Malaysia become one of the important 
sectors (FAO, 2006). As a result, the dumping of shells from shell marine species such as 
clam shell, crab and horseshoe crab increase by the years (Chee et al., 2011). Therefore, 
the usability of the CS is provenly high in calcium sources and a suitable candidate for the 
replacement of commercial calcium in synthesizing CFAS glass for reducing the dumping 
problem of the shells. Moreover, the cost of CS is not only cheap but also easy to get in 
Malaysia.

The CFAS glass system can be crystallized to form a glass-ceramic and known as FA. The 
FA crystal is slightly similar to the chemical composition of hydroxyapatite, HA present 
in enamel composition (Wei et al., 2003; Jantová et al., 2008). The FA crystal with the 
chemical formula of (Ca10(PO4)6F) can be substituted the fluoride ion, F with hydroxide 
ion, OH to form HA crystal (Ca10(PO4)6(OH)) (Wei et al., 2003; Jantová et al., 2008; 
Rahman et al., 2019). Both FA and HA are categorized in calcium phosphate salt group 
which is widely used in biomedical applications due to excellence in biocompatibility 
properties (Tung, 1998). 

This SiO2 CaO CaF2 Al2O3 P2O5 glass system has shown a positive development in 
dentistry application, especially for dental cement purposes (Hill et al., 1991). The 
fabrication of glass ionomer cement, GIC derived from SiO2 CaO CaF2 Al2O3 P2O5
glass system is seen as an acceptable effort for considering the GIC is applied in the 
dentistry. One of the reasons is the additive of fluoride ion in the CFAS glass system act 
as an anti-cariogenic agent which is can prevent the formation of plaque on the surface of 
the enamel (Wiegand et al., 2007; Moreau and Xu, 2010). Anti-cariogenic effects of 
fluoride involved variety of mechanisms including enhancement of remineralization, 
reduction of demineralization, interference of pellicle and inhibition of microbial growth 
in the oral cavity (Featherstone and Ten Cate, 1988; Fejerskov and Ckarkson, 1996; 
Hamilton, 1996; Rölla and Ekstrand, 1996). In addition, it is also noted that fluoride ions 
present in blood plasma and saliva are essential for normal development in human body 
especially for hard tissue development (Jha et al., 1997; Stanton and Hill, 2000). 
The glass polyalkenoate cement or commonly known as GIC was first introduced in the 
late 1960’s by Wilson and Kent at the English Laboratory of the Government Chemist, 
London (Wilson and Kent, 1971; Nicholson et al, 1998; Khoroushi et al., 2013; De Caluwé 
et al., 2017). From a previous report, the GIC was invented and developed for dental 
application in the response to the increasing cases of tooth decay (Forss et al., 2013). Dental 
caries causes serious tooth problems especially pits and fissures on occlusal surfaces 
among children and adolescents. Thus, the GIC is widely used in various clinical branches 
of dental application such as restorative, sealant, luting, base and liner to prevent the caries 
effect problem (Yli-Urpo et al., 2005; Khoroushi and Keshani, 2013). 
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The GIC is water-based cement which is formed by the reaction of acid and base between 
aqueous polymer (acid) and glass powder (Wilson and Kent, 1971). According to Fennell 
and Hill (2001), the most of glasses used for GIC are based on the calcium-aluminosilicate 
glass system reported by Wilson and Kent. Commonly, the additive of fluoride ion, F  and 
PO4

3  were added to the glass system to improve the properties of the GIC for dental 
application (De Caluwé et al., 2017). The present of fluoride ion in the glass system 
increases the mechanical properties of GIC especially in compressive strength but 
decreases the setting time of cement. While, phosphate group, PO4

3  increases the working 
time and setting time but decrease the compressive strength of GIC (De Caluwé et al., 
2017).  
 
 
The setting reaction of GIC occurs as soon as the glass powder and liquid are mixed. During 
the acid-base reaction, ions such Ca2 Al3 and F are leaching out from the glass powder 
and then, cross-linking between polyacid and the surface of the calcium-aluminosilicate 
glass is immediately occurred (Nicholson et al, 1998). At this stage, the water molecule 
being an important role for hardening process. The reaction between metal ion on the glass 
surface continued to linking with polyacid slowly against the aging time up to years. As 
the reaction progress, the hydrogen bond originated from polymer acid in the liquid is 
replaced by a metal ionic bond. Then, formation of gelation is formed and the GIC started 
to hardening against aging time. From the previous researchers, the mechanical properties 
of the GIC depend on the type of the initial glass powder and aqueous polyacid (Yli-Urpo 
et al., 2005; Khoroushi and Keshani, 2013). 
 
 
1.3 Problem Statement 
 
 
In recent years, glass, glass-ceramics, and ceramics have widely attracted prodigious 
interest in a medical material application due to their properties toward the biological 
reaction (Rezaie et al., 2015). This kind of material is a biomaterial, which shows the 
compatibility properties in a biological system. In the medical, biomaterials such as 
bioglass are commonly used in various applications such as medicine, dentistry and 
orthopedic (Skallevold et al., 2019). Among the bioglass that received the most attention 
in dentistry was the CFAS glass with the SiO2 CaO CaF2 Al2O3 P2O5 glass system due 
to similarity to enamel composition crystallized into FA crystal and consist of fluoride ion 
to prevent the formation of caries from the microbial growth. 
 
 
At present, the manufacturing cost for medical applications, especially in dentistry is 
increased highly over the years due to the increasing cost of production, including the cost 
of raw materials, labor, manufacture, and development. Due to the high-cost production of 
bioglass, especially for CFAS glass, the compound of SiO2 and CaO can be replaced by 
alternative potential sources to utilize the unwanted materials as one way of recycling.  
 
 
Usually, the primary compound to produce glass is a pure raw material of SiO2 compound. 
Pure SiO2 is a very expensive cost, and it has a high melting point. Thus, by considering 
the SLS glass, it consists of a SiO2 compound with a low cost of raw materials and low 
melting point compared to the pure SiO2. According to previous research, SLS glass acts 
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as an alternative source of SiO2 to produce a new optical application production. CS is also 
a waste material that is rich in calcium sources. CS is easily obtained from various seashell 
types and not used causes it is low in cost. However, CS can be contaminated with heavy 
metals from factory waste into the sea. As a precautionary step, avoid using or collecting 
CS from the factory areas near the seaside for dental material applications. In addition, CS 
can be tested using XRF analysis to confirm the presence of heavy metals contamination.

Therefore, the usability of SLS glass and CS act as the SiO2 and CaO sources in producing 
CFAS glass is a suitable way to reduce the production cost and indirectly reduce the landfill 
waste materials. Besides, there are limited reports and systematic research of physical, 
structural, thermal, and morphology properties of CFAS glass system derived from 
vitreous waste materials such as SLS glass and CS. In addition, there are no optimum 
properties of CFAS glass has been reported especially mechanical properties which are 
important to apply in dental application.

The fabrication of GIC derived from the CFAS glass by using partially waste material is 
one of the opportunities to discover the behavior of the GIC itself. GIC is usually used 
widely in various dental applications for the past 50 years, such as luting, restorative, 
sealant, lining, and base. Before the existence of GIC, amalgam is made of alloy metal and 
mercury liquid. It is most widely used to fill a cavity caused by tooth decay. Until now, the 
uses of amalgam in dentistry are still gaining popularity due to its low cost, ease of 
application, durability against force, and high strength in mechanical properties.
Nevertheless, the uses of amalgam are declining in developed countries. One reason behind 
this is amalgam has a controversial issue due to the concern about mercury ion release and 
can cause toxicity in the human body. The GIC seen as the most advantageous and suitable 
material compared to other materials that used in the dental application. 

Basically, GIC shows impressive characteristics such as biocompatible, bioactive, 
esthetical, anti-cariogenic, rough surface texture, and low solubility. However, GIC has 
poor mechanical properties. Thus, several studies on GIC related to modifying glass phases 
to improve the GIC properties, especially in mechanical properties. Besides that, the setting 
reaction is an important part where gives an effect to the properties of GIC, especially to 
mechanical properties. The setting reaction started when the glass powder is mix with PAA 
and then aging at a specific time such as 7, 14, 21, and 28 days in the deionized water. It 
generally weak and not stable in water after setting reaction; however, as the progression 
of reaction is complete, it becomes stronger and more resistant against moisture. The 
previous research reported that the longer time aging of GIC could improve the resistance 
to moisture, the cement's compressive strength. Another factor that can be considered to 
enhance the properties of GIC is the ratio of Glass:Polymer:Water during the setting 
reaction. The ratio is very important, especially during the cement's initial reaction due to 
the fast reaction between acid and base reaction. Water is the role important in setting time 
and aging time of GIC. Thus, previous researchers' various ratio of initial water was studied
to identify water's role in the fabrication of GIC.

For that reason, this research has focused on the comprehensive study of GIC fabricated 
from precursor CFAS glass system to use as a biomaterial in dental material for wide 
application. In this study, the compound's suitable composition to produce the CFAS glass 
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with SLS CS CaF2 Al2O3 P2O5 glass system is modified based on the previous research. 
Two series of compositions prepare the CFAS glass to determine the effect of SLS glass, 
CS, and CaF2 in the glass system. Moreover, the initial water ratios while fabricating the 
GIC from the CFAS glass vary at suitable values. Furthermore, the fabricated GIC has been 
experienced an aging time from 7 to 28 days to improve the physical, structural, and 
mechanical properties of GIC. The antibacterial activity of GIC related to fluoride release 
during the aging time will identify as an excellent potential of the GIC in this research. 
Thus, this study's findings will anticipate finding a potential application as a dental material 
application for various types of tooth restoration in dentistry. 
 
 
1.4 Significant of Study 
 
 
Nowadays, the dump of waste materials generated drastically and increased by every year 
is one of the problems for every country due to the limited space area of the landfill. The 
excessive and uncontrolled dumping of waste materials causes environmental pollution 
consequently the spread of infectious diseases. The usability of waste material such as SLS 
glass and CS are widely reported by other researchers as precursor of SiO2 and CaO to 
respectively to reduce solid wastes. A great deal of research has been focused on the 
preparing and characterization of the SLS CS CaF2 Al2O3 P2O5 based glass system 
using commercial high-grade chemical composition for dental application such as 
restorative, filling, luting, liner and base for enamel defect. In this study, the CFAS glass 
based on SLS CS CaF2 Al2O3 P2O5 glass system is prepared using waste materials by 
replacing SiO2 and CaO to SLS glass and CS respectively. 
 
 
The GIC has been identified as the most widely uses of restorative material besides 
amalgam in dentistry. The major component in the GIC is consists of glass powder and 
polymer acid that can be changed based on its suitable function. The glass system 
commonly used as the glass component in the GIC is aluminosilicate glass. The additional 
elements are added to the glass system to improve the performance of the GIC such as 
calcium, fluorine, zinc, phosphate, lithium and others. Besides that, the presence of the 
crystal phase in the glass system of GIC might be can enhanced the properties of the GIC 
itself such as HA and FA crystal which is similar to the composition of enamel. According 
to the previous researches, the presence of the crystal phase in the glass system will be 
improved the mechanical properties of the GIC and it is very useful for the dental 
application. 
 
 
To the best of the author’s knowledge, there are very few available literature reports on the 
production of CFAS glass using waste materials such as SLS glass and CS. In the present 
research, the CFAS based glass system is used as the initial glass for the fabrication of 
GIC. The presence of the FA crystal phase in the CFAS glass system is expected to provide 
significant useful in the physical, structural, thermal and mechanical properties of the GIC. 
Furthermore, the GIC is fabricated with varying different initial ratios of water and aging 
times in order to enhance the properties and the quality of the GIC as the final products. 
Consequently, it is expected that the optimum physical, structural and mechanical 
properties as well as antibacterial activity properties of GIC derived from CFAS glass have 
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a high potential for various dental material applications. It is also could contribute as new 
knowledge in modifying GIC for the dentistry area. 
 
 
1.5 Research Objectives 
 
 
The main objective of this study is to develop and enhance the GIC which fabricated from 
the CFAS glass and PAA with specific ratio of water. Two series of CFAS glass based on 
SLS CS CaF2 Al2O3 P2O5 system are designed with different glass composition. The 
working objectives of this research are: 
 

1) To synthesis the CFAS glass from combination of commercial grade chemicals 
and vitreous waste materials via conventional melt-quenching technique. 

2) To study the effect of difference batch formulation of SLS glass, CS and CaF2 
toward CFAS glass system on structural, thermal and microstructural properties. 

3) To investigate the influences of initial ratios of water and aging times on physical, 
structural and mechanical properties of GIC derived from CFAS glass system. 

4) To evaluate antibacterial properties of GIC against S. mutans. 
 
 
1.6 Scope of Study 
 
 
In order to achieve the objective of this study, the scopes of the study as following: 
 

1) A series of precursor CFAS glass (Series 1) based on the stoichiometric equation 
of [(45-x)SLS∙xCS∙15CaF2∙20Al2O3∙20P2O5] where x = 5, 10, 15 and 20 (wt.%), 
has been prepared using SLS glass, CS, CaF2, Al2O3 and P2O5 powder by 
conventional melt-quenching method. 

2) A series of precursor CFAS glass (Series 2) based on the stoichiometric equation 
of [(45-x)SLS∙15CS∙xCaF2∙20Al2O3∙20P2O5] where x = 5, 10, 15 and 20 (wt.%), 
has been prepared using SLS glass, CS, CaF2, Al2O3 and P2O5 powder by 
conventional melt-quenching method. 

3) The chemical composition of SLS glass and CS are been measured using the XRF 
spectroscopy in order to confirm the percentage of the chemical oxide before use 
in the synthesis of CFAS glass. 

4) The thermal properties of CFAS glass have been measured using DSC and TGA 
spectroscopy in order to identify the glass transition temperature (Tg) and glass 
crystallization temperature (Tc) 

5) The chemical composition of the CFAS glass has been measured using XRF and 
EDX spectroscopy in order to confirm the chemical compound in weight 
percentage. 

6) The GIC has been fabricated from the CFAS glass system in Series 1 and Series 
2 at different initial ratios of water and aging times between 7 to 28 days. 

7) The physical, structural, thermal, morphology and mechanical properties of CFAS 
glass and GIC have been analyzed using the Archimedes method, molar volume 
equation, XRD, FTIR, Raman spectroscopy, DSC/TGA, FESEM, EDX, Vickers 
microhardness and Universal testing machine for compressive strength. 
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8) The optimum GIC sample based on the structural and mechanical properties has 
been measured for fluoride ion release by ion chromatography and tested for 
antibacterial activity by disk diffusion method. 
 
 

In the current study, two different series of CFAS glass are prepared from a combination 
of the high grade of commercial chemical and vitreous waste materials. Series 1 was 
varying the weight composition of SLS and CS while Series 2 varying the weight 
composition of SLS and CaF2. Both SLS glass and CS act as compound sources of SiO2 
and CaO respectively. The CFAS glass is synthesized by a conventional melt-quenching 
technique at a temperature of 1450 °C. The properties of SLS glass, CS and CFAS glass 
have been characterized such as structural, thermal and morphological in order to study the 
behaviour of CFAS glass derived from waste materials. Next, the fabrication of GIC is 
derived from CFAS glass in Series 1 and Series 2 experiences two conditions which are 
varying the initial ratios of water and the aging times. The initial ratio of water for 
fabricating GIC was controlled at 1.0, 1.2 and 1.4. While, the period of aging time for GIC 
in the deionized water was varies at 7, 14, 21 and 28 days. The temperature of aging time 
is also controlled at 37 °C. The structural, thermal, morphological, and mechanical 
properties of GIC for both Series 1 and Series 2 are characterized to determine the optimum 
properties of GIC. The optimum condition of GIC in mechanical properties is selected for 
further characterization based on the results of Vickers microhardness and compressive 
strength.  
 
 
The selected GIC was characterized with further study on physical properties, fluoride ion 
release and antibacterial activity. The structural, thermal, morphological, physical 
properties in this study were analyzed by X-ray Fluorescence (XRF), X-ray Diffraction 
(XRD), Fourier Transform Infrared (FTIR) and Raman Spectroscopy, Differential 
Scanning Calorimetry (DSC), Thermogravimetric Analysis (TGA), Field Emission 
Scanning Electron Microscopy (FESEM), Energy Dispersive X-Ray Analysis (EDX), 
density and molar volume. While, the fluoride ion release and antibacterial activity of the 
GIC was determined by Ion Chromatography and antimicrobial disk method respectively. 
 
 
1.7 Outline of Thesis 
 
 
The thesis designed and arranged as follows. Chapter 1 gives an introduction background 
of CFAS glass, FA and GIC derived from vitreous waste (SLS glass and CS). This chapter 
also including the problem statements, the objectives of research, the scopes of study and 
also the significant of the study. The review of the previous and current works reported on 
the uses of SLS glass and CS as a precursor, production of CFAS glass and fabrication GIC 
has been discussed in Chapter 2. This chapter also reviewed the physical, structural, 
thermal, mechanical and antibacterial properties of CFAS and GIC for current and previous 
works. The details on research designed, methodology and characterization used in this 
study were described in Chapter 3. Next, Chapter 4 represent the results and discussions 
concerning on the properties of CFAS glass in Series 1 and Series 2 with different chemical 
composition of SLS glass, CS and CaF2. This chapter also represent the findings and 
focusing on the properties of GIC derived from CFAS glass in Series 1 and Series 2 at 
different initial ratios of water and aging times. Besides that, the physical, structural, 
mechanical and antibacterial properties of CFAS glass and GIC are deeply discussed in 
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Chapter 4. Finally, the conclusion had been made based on the results obtained from 
Chapter 4, the suggestion and recommendation for future works presented in Chapter 5. 
The references, publications and conferences attended by the author were placed at the last 
part of the thesis.   
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