

UNIVERSITI PUTRA MALAYSIA

EFFECT OF COBALT OXIDE ON OPTICAL AND DIELECTRIC PROPERTIES OF WILLEMITE-BASED GLASS-CERAMICS USING WHITE RICE HUSK ASH AS SILICA SOURCE

SITI AISYAH BINTI ABDUL WAHAB

ITMA 2022 5

EFFECT OF COBALT OXIDE ON OPTICAL AND DIELECTRIC PROPERTIES OF WILLEMITE-BASED GLASS-CERAMICS USING WHITE RICE HUSK ASH AS SILICA SOURCE

By

SITI AISYAH BINTI ABDUL WAHAB

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfilment of the Requirement for the Degree of Doctor of Philosophy

June 2021

All material contained within the thesis, including without limitation text, logos, icons, photographs and all other artwork, is copyright material of Universiti Putra Malaysia unless otherwise stated. Use may be made of any material contained within the thesis for non-commercial purposes from the copyright holder. Commercial use of material may only be made with the express, prior, written permission of Universiti Putra Malaysia.

Copyright © Universiti Putra Malaysia

 \mathbf{C}

Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfillment of the requirement for the degree of Doctor of Philosophy

EFFECT OF COBALT OXIDE ON OPTICAL AND DIELECTRIC PROPERTIES OF WILLEMITE-BASED GLASS-CERAMICS USING WHITE RICE HUSK ASH AS SILICA SOURCE

By

SITI AISYAH BINTI ABDUL WAHAB

June 2021

Chairman : Khamirul Amin bin Matori, PhD Institute : Nanoscience and Nanotechnology

Nowadays, researchers are interested in the production of willemite (Zn_2SiO_4) since it has good phosphor properties in optoelectronic applications. However, still lack of study in the fabrication of cobalt oxide (Co₃O₄) doped willemite based glass-ceramics (Zn₂SiO₄: Co²⁺) derive from white rice husk ash (WRHA). The Zn₂SiO₄: Co²⁺ were fabricated based empirical formula of $(Co_3O_4)_v[(ZnO)_{0.55}(WRHA)_{0.45}]_{1-v}$ where v = 0.0, 0.1, 0.5, 1.0 wt.% heat-treated at 700-950 °C using melt-quenching technique. This research focuses on the effect of heat treatment and effect of Co₃O₄ doping on the physical, structural, optical, and dielectric properties of Zn₂SiO₄: Co²⁺. The densities of undoped-Zn₂SiO₄ and Zn₂SiO₄: Co²⁺ increased from 3.4138 to 3.4659 g/cm³ as dopant increases, also the linear shrinkage increased from 6.23 to 6.92% when dopant increased. X-ray Diffraction (XRD) shows the formation of β -Zn₂SiO₄ at 750 °C, then achieve stable state of α -Zn₂SiO₄ at 950 °C. Meanwhile, the crystallite size was increased from 74.47 to 74.68 nm then decreased to 73.18 nm as dopant increased. Field Emission Scanning Electron Microscopy (FESEM) shows no obvious changes as the dopant increased. However, at 950 °C, Zn₂SiO₄: 0.5 wt.% Co²⁺ and Zn₂SiO₄: 1.0 wt.% Co²⁺ showed a larger grain and less porosity compared to other samples. Fourier Transform Infrared (FTIR) spectroscopy showed eight significant vibrational bands of Zn_2SiO_4 at 750-950 °C for both undoped and doped samples. The presence of SiO₄ and ZnO₄ bands in the FTIR absorption spectrum prove the formation of Zn₂SiO₄. The absorption spectra of UV-Visible were recorded in the range of 220-800 nm and the absorption band of undoped- Zn₂SiO₄ shifted to lower wavelengths (370 and 349 nm) at 900 and 950 °C respectively. When Co₃O₄ was introduced to Zn₂SiO₄ two absorption spectra occurred which is at 450 -700 nm and ~325 nm attributed to ${}^{4}A_{2} \rightarrow {}^{4}T_{1}$ (⁴P) transitions. The optical band gap was increased as dopants were introduced to Zn₂SiO₄ from ~4.09 eV to 4.57 eV then decreased to 4.29 eV. Photoluminescence spectroscopy (PL) showed blue emissions at ~420, ~444, ~464 and ~485 nm and green emission at ~525 nm under 325 nm excitation which attributed to the transition of Co^{2+} from ${}^{4}\text{A}_{2} \rightarrow {}^{4}\text{T}_{1}({}^{4}\text{P})$. Besides, the dielectric constant increased from 4.84047 to 5.52423 when Co_3O_4 increase due to

enhancement of the crystallinity and decrement of the polarization at higher temperatures. The dielectric loss remained low with the increase of dopant and AC conductivity showed each sample has different range of frequency cut-off which is at ~1.2, ~1.7, ~1.3 and ~1.4 GHz for undoped-Zn₂SiO₄, Zn₂SiO₄: Co²⁺ at 0.1, 0.5 and 1.0 wt.% respectively. The differences of frequency cut-off might occur due to the difference in ability of each sample to transport the electron when electric field is applied. In conclusion, the ability of the Zn₂SiO₄: Co²⁺ to exhibit blue emission and able to operate at higher frequency, also low loss makes it suitable to be used as a phosphor material in optoelectronic applications.

Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk Ijazah Doktor Falsasah

KESAN KOBALT OKSIDA TERHADAP SIFAT OPTIK DAN DIELEKTRIK WILLEMIT-BERASASKAN KACA-SERAMIK MENGGUNAKAN ABU PUTIH SEKAM PADI SEBAGAI SUMBER SILIKA

Oleh

SITI AISYAH BINTI ABDUL WAHAB

Jun 2021

Pengerusi : Khamirul Amin bin Matori, PhD Institut : Nanosains dan Nanoteknologi

Pada masa kini, para penyelidik sangat berminat dalam penghasilan willemit (Zn_2SiO_4) memandangkan ia mempunya sifat fosfor yang baik di dalam aplikasi optoelektronik. Walau bagaimanapun, kajian dalam penghasilan kobalt oksida (Co₃O₄) dop willemit berasaskan kaca seramik (Zn₂SiO₄: Co²⁺) dihasilkan daripada abu putih sekam padi (WRHA) masih kurang. Zn₂SiO₄: Co²⁺ telah dihasilkan berdasarkan formula emperik $(Co_3O_4)_{v}[(ZnO)_{0.55}(WRHA)_{0.45}]_{1-v}$ yang mana y = 0.0, 0.1, 0.5, 1.0 wt.% dan dipanaskan pada 700-950 °C menggunakan teknik peleburan-pelindapan. Kajian ini menumpukan kesan rawatan haba dan kesan pendopan Co₃O₄ terhadap ciri-ciri fizikal, struktur, optik dan dielektrik Zn₂SiO₄: Co²⁺. Ketumpatan Zn₂SiO₄-tidak didop dan Zn₂SiO₄: Co²⁺ meningkat daripada 3.4138 kepada 3.4659 g/cm³ apabila dopan meningkat manakala pengecutan linear juga meningkat daripada 6.23 kepada 6.92% apabila dopan meningkat. Pembelaun sinar-X (XRD) menunjukkan pembentukan β -Zn₂SiO₄ pada suhu 750 °C, kemudian mencapai keadaan stabil (α-Zn₂SiO₄) pada 950 °C. Manakala, saiz kristalit meningkat daripada 74.47 kepada 74.68 nm kemudian menurun kepada 73.18 apabila dopan meningkat. Mikroskopi pancaran medan elektron penskanan (FESEM) menunjukkan tiada perubahan ketara apabila dopan meningkat. Walau bagaimanapun, pada 950 °C, Zn₂SiO₄: 0.5 wt.% Co²⁺ dan Zn₂SiO₄: 1.0 wt.% Co²⁺ menunjukkan butiran yang lebih besar dan keronggaan yang kurang berbanding sampel lain. Spektroskopi transformasi fourier inframerah (FTIR) menunjukkan bahawa terdapat lapan jalur getaran Zn₂SiO₄ yang ketara pada suhu 750-950 °C bagi sample yang tidak didop dan didop. Kehadiran jalur SiO4 dan ZnO4 di dalam spektum penyerapan FTIR membuktikan penghasilan Zn₂SiO₄. Penyerapan spectra UV cahaya nampak (UV-Vis) dirakam dalam julat 220-800 nm dan jalur penyerapan untuk Zn₂SiO₄-tidak didop berganjak kepada julat gelombang yang lebih rendah (370 dan 349 nm) pada suhu 900 dan 950 °C. Apabila Co₃O₄ diperkenalkan kepada Zn₂SiO₄, berlaku dua penyerapan spektra iaitu pada 450 -700 nm dan pada ~325 nm disebabkan peralihan ${}^{4}A_{2} \rightarrow {}^{4}T_{1}$ (⁴P). Jurang jalur optik

meningkat apabila dopan diperkenalkan kepada Zn₂SiO₄ daripada ~4.09 eV kepada 4.57 eV kemudian menurun kepada 4.29 eV. Spektroskopi kefotopendarcahayaan (PL) menunjukkan pancaran biru pada ~420, ~444, ~464 dan ~485 nm, dan pancaran hijau pada ~525 nm di bawah pengujaan 325 nm yang mana pancaran tersebut disebabkan oleh peralihan Co^{2+} daripada ${}^{4}\text{A}_{2} \rightarrow {}^{4}\text{T}_{1}({}^{4}\text{P})$. Selain itu, pemalar dielektrik meningkat daripada 4.84047 kepada 5.52423 apabila Co₃O₄ meningkat disebabkan oleh peningkatan penghabluran dan pengurangan polarisasi pada suhu yang tinggi. Kehilangan dielektik kekal rendah apabila dopan meningkat dan kekonduksian AC menunjukkan setiap sampel mempunyai julat frekuensi penggal yang berbeza iaitu masing-masing pada ~1.2, ~1.7, ~1.3 and ~1.4 GHz. Perbezaan frekuensi penggal mungkin berlaku kena perbezaan kemampuan setiap sampel untuk membawa elektron apabila medan elektrik dibekalkan. Kesimpulannya, kemampuan Zn₂SiO₄: Co²⁺ untuk memancarkan pancaran biru dan boleh beroperasi pada frekuensi yang tinggi, serta kehilangan dielektik yang rendah menjadikan ia sesuai untuk digunakan sebagai bahan fosfor di dalam aplikasi optoelektronik.

ACKNOWLEDGEMENTS

In the name of Allah, the most gracious and the most merciful, on whom we ultimately depend for sustenance and guidance. I am very grateful to Allah the Almighty for the strength and His blessing we were able to complete this research together.

My sincere appreciation and gratitude towards my supervisor Associate Professor Dr. Khamirul Amin Matori for his time, patience, advice, countless time of help, and encouragement throughout my entire research. Also, his valuable support and guidance towards the end of the research until the thesis is completed. I am grateful to have such an incredible supervisor who always is there when he is needed; to solve our problems, answer our confusions, and provide us with great opportunities to gain more knowledge in the research field. Not to forget, I would like to give my special thanks to my co-supervisors, Dr. Mohd Hafiz Mohd Zaid and Assoc. Prof. Dr. Mohd Mustafa Awang Kechik who always being supportive and encouraging. They are great researchers that I can rely on whenever any problems can't be solved. Thanks to their incredible ideas and guidance that improved my research skills. Besides, I also would like to express my unspoken thanks to Dr. Idza Riati Ibrahim for her great help and contributions throughout my research journey. She is like a sister to me, who is very helpful, and I can have an open discussion whenever I am unsure with my research.

My greatest appreciation and gratitude towards my family member, especially my mother Asiah Mat Salleh and my father Abdul Wahab Mohd Tahar who have always been supportive from the beginning of the research until the end of the journey. Their endless trust in me gives me the strength to complete my study. Thank you to my 6 brothers, 2 sisters, and my little brother who always be there, supporting me, and helping me whenever I need it. I love all of you very much till the end of my life. Without their care and support, I will not be here. A special word to my best friend Hajar Atiqah Mohd Azmy for her endless support and for keeping accompanying me whenever I need her. Advice me all along so that I can keep on track. She is one of my best friends ever whom I can count on.

I would like to extend my gratitude, to my best friend Rahayu Emilia, Izyan Nadhirah, Fatehah Nadhrah, Husna Azdiyah, and Wan Ebtisyam who always be there for me. Also, friends to keep, Adlina, Shazreen, Shafiqa Haris, Nisah, and Farhatun who always be with me and keep updating me about my research. My food mates' curls Nuraidayani, Nadia Asyiqin, Siti Nabilah, Zulhasif, and all who always help me, having a great discussion together regarding our research. Our great moments discussing, changing ideas, and chilling together will be kept in my memories. Finally, thanks to RMC UPM for the Graduate Research Fellowship (GRF) scholarship and Geran Putra IPS (IPS-927500) as the financial support in my study. Last but not least, I want to thank me for believing in myself.

This thesis was submitted to the Senate of the Universiti Putra Malaysia and has been accepted as fulfillment of the requirement for the degree of Doctor of Philosophy. The members of the Supervisory Committee were as follows:

Khamirul Amin bin Matori, PhD

Associate Professor Faculty of Science Universiti Putra Malaysia (Chairman)

Mohd Hafiz bin Mohd Zaid, PhD

Senior Lecturer Faculty of Science Universiti Putra Malaysia (Member)

Mohd Mustafa bin Awang Kechik, PhD

Associate Professor Faculty of Science Universiti Putra Malaysia (Member)

ZALILAH MOHD SHARIFF, PhD

Professor and Dean School of Graduate Studies Universiti Putra Malaysia

Date: 10 February 2022

Declaration by graduate student

I hereby confirm that:

- this thesis is my original work;
- quotations, illustrations and citations have been duly referenced;
- this thesis has not been submitted previously or concurrently for any other degree at any institutions;
- intellectual property from the thesis and copyright of thesis are fully-owned by Universiti Putra Malaysia, as according to the Universiti Putra Malaysia (Research) Rules 2012;
- written permission must be obtained from supervisor and the office of Deputy Vice-Chancellor (Research and innovation) before thesis is published (in the form of written, printed or in electronic form) including books, journals, modules, proceedings, popular writings, seminar papers, manuscripts, posters, reports, lecture notes, learning modules or any other materials as stated in the Universiti Putra Malaysia (Research) Rules 2012;
- there is no plagiarism or data falsification/fabrication in the thesis, and scholarly integrity is upheld as according to the Universiti Putra Malaysia (Graduate Studies) Rules 2003 (Revision 2012-2013) and the Universiti Putra Malaysia (Research) Rules 2012. The thesis has undergone plagiarism detection software

Signature:

Date:

Name and Matric No: Siti Aisyah binti Abdul Wahab,

Declaration by Members of Supervisory Committee

This is to confirm that:

- the research conducted and the writing of this thesis was under our supervision;
- supervision responsibilities as stated in the Universiti Putra Malaysia (Graduate Studies) Rules 2003 (Revision 2012-2013) were adhered to.

Signature: Name of		
Chairman of		
Supervisory		
Committee:	Khamirul Amin bin Matori	
Signature:		
Name of		
Member of		
Supervisory		
Committee:	Mohd Hafiz bin Mohd Zaid	
Signature:		
Name of		

Name of Member of Supervisory Committee:

Mohd Mustafa bin Awang Kechik

TABLE OF CONTENTS

	Page
ABSTRACT	i
ABSTRAK	iii
ACKNOWLEDGEMENTS	V
APPROVAL	vi
DECLARATION	viii
LIST OF TABLES	xiii
LIST OF FIGURES	xiv
LIST OF ABBREVIATIONS	xviii

CHAPTER

INT	RODUCTI	ON	1
1.1	Research	background	1
1.2	Problem s	tatement	2
1.3	Objective	s	4
1.4	Scope of t	he study	5
1.5	Outline of	the thesis	5
LITI	ERATURE	REVIEW	6
2.1	Introducti	on Rice Husk (RH)	6
	2.1.1	Glasses from RH	7
2.2	Glass		8
	2.2.1	ZnO-SiO ₂ glass binary system	9
2.3	Glass-cera	amics	11
	2.3.1	Glass-ceramics formations	12
2.4	Willemite		14
	2.4.1	Phases of willemite	15
	2.4.2	Methods of producing willemite	17
	2.4.3	Physical studies of willemite	21
	2.4.4	Structural studies of willemite	23
	2.4.5	Optical Studies of willemite	30
	2.4.6	Dielectric Studies of willemite	37
	INT 1.1 1.2 1.3 1.4 1.5 LIT 2.1 2.2 2.3 2.4	INTRODUCTIOn1.1Research1.2Problem s1.3Objective1.4Scope of t1.5Outline ofLITERATURE2.1Introducti2.1.12.22.3Glass2.3.12.42.42.4.12.4.22.4.32.4.32.4.42.4.52.4.6	INTRODUCTION1.1Research background1.2Problem statement1.3Objectives1.4Scope of the study1.5Outline of the thesisLITERATURE REVIEW2.1Introduction Rice Husk (RH) 2.1.12.1.1Glasses from RH2.2Glass 2.2.12.3.1Glass-ceramics 2.3.12.3Glass-ceramics formations2.4Willemite 2.4.12.4.1Phases of willemite 2.4.32.4.3Physical studies of willemite 2.4.42.4.4Structural studies of willemite 2.4.52.4.6Dielectric Studies of willemite

METHODOLOGY

ME	THODOL	LOGY	38
3.1	38		
3.2	38		
	3.2.1	White rice husk ash preparation	38
	3.2.2	Zinc silicate glass preparation	40
	3.2.3	Doping process	41
	3.2.4	Weighing, mixing, and milling process	42
	3.2.5	Melt and quenching technique	43
	3.2.6	Pelleting process	44
	3.2.7	Heat treatment process	45
3.3	Charact	erization	46
	3.3.1	X-ray fluorescence measurement	46
	3.3.2	Differential Scanning Calorimetry	46
	3.3.3	Density measurement	47

3.3.5 X-Ray diffraction measurement 49 3.3.6 Field emission scanning electron microscopy 50 3.3.7 Fourier transforms infrared spectroscopy 51 3.3.8 UV-Visible spectroscopy 51 3.3.9 Photoluminescence appropriate performance of the spectron of the spectroscopy 53 3.3.10 Impedance analyzer 53 4 RESULTS AND DISCUSSION 55 4.1 Introduction 55 4.2 Precursor glass analysis 55 4.2.1 Chemical composition of WRHA 55 4.2.1 Chemical composition of WRHA 55 4.2.2 Thermal properties of glasses 56 4.2.3.1 Physical appearance of glasses 58 4.2.4 Structural properties of glasses 58 4.2.4 Structural properties of glasses 59 4.2.4.2.1 I XRD analysis 60 4.2.5 Optical properties of glasses 62 4.2.5 Physical appearance of glasses 62 4.2.5 Photoluminescence analysis 65 4.3.1 UV-Visible analysis 67 4.3.1 Density analysis 67 4.3.2.1 Physical appearance of glasses 78 4.3.2.2 FIR analysis 67 4.3.2.3 Photoluminescence analysis 77 4.3.2 Structural properties of glass-ceramics 77 4.3.2 Structural properties of glass-ceramics 77 4.3.2 Structural properties of glass-ceramics 75 4.3.2 Dictal band gap analysis 77 4.3.3 Optical properties of glass-ceramics 78 4.3.2 Structural properties of glass-ceramics 78 4.3.2 Structural properties of glass-ceramics 82 4.3.4 Dielectric constant 82 4.3.4 Dielectric constant 82 4.3.4 Dielectric constant 82 4.3.4.1 Dielectric constant 82 4.3.4.2 FIESEM analysis 86 4.4.1 Physical properties of Co ³⁻ -doped willemite 86 4.4.1 Density analysis 98 4.4.2 FIESEM analysis 98 4.4.2 Optical properties of Co ³⁻ -doped willemite 101 4.4.2.3 Conta dam dap analysis 98 4.4.2 Co ³⁻ doped willemite 101 4.4.2.3 Conta dam dap analysis 98 4.4.2 Conta dam		3.3.4	Linear shrinkage measurement	48
$\begin{array}{cccc} 3.3.6 & \mbox{Field emission scanning electron microscopy} & 50 \\ 3.3.7 & \mbox{Fourier transforms infrared spectroscopy} & 51 \\ 3.3.8 & UV-Visible spectroscopy & 51 \\ 3.3.9 & \mbox{Photoluminescence spectrometer} & 53 \\ 3.3.10 & \mbox{Impedance analyzer} & 53 \\ 3.3.10 & \mbox{Impedance analyzer} & 53 \\ 3.3.10 & \mbox{Impedance analyzer} & 53 \\ 4.1 & \mbox{Introduction} & 55 \\ 4.2 & \mbox{Introduction} & 55 \\ 4.2 & \mbox{Introduction} & 55 \\ 4.2.1 & \mbox{Chemical composition of WRHA} & 55 \\ 4.2.1 & \mbox{Chemical composition of WRHA} & 55 \\ 4.2.1 & \mbox{Lorentice of glasses} & 56 \\ 4.2.2 & \mbox{Thermal properties of glasses} & 56 \\ 4.2.3 & \mbox{Physical properties of glasses} & 59 \\ 4.2.4.1 & \mbox{XRD analysis} & 59 \\ 4.2.4.1 & \mbox{XRD analysis} & 60 \\ 4.2.5 & \mbox{Optical properties of glasses} & 62 \\ 4.2.5.2 & \mbox{Optical analysis} & 61 \\ 4.2.5.3 & \mbox{Photoluminescence analysis} & 63 \\ 4.2.5 & \mbox{Optical analysis} & 67 \\ 4.3.1 & \mbox{Physical properties of glass-ceramics} & 67 \\ 4.3.1 & \mbox{Physical properties of glass-ceramics} & 67 \\ 4.3.2 & \mbox{Structural properties of glass-ceramics} & 67 \\ 4.3.2 & \mbox{Structural properties of glass-ceramics} & 67 \\ 4.3.2 & \mbox{Structural properties of glass-ceramics} & 67 \\ 4.3.2 & \mbox{Structural properties of glass-ceramics} & 75 \\ 4.3.2 & \mbox{Structural properties of glass-ceramics} & 75 \\ 4.3.3 & \mbox{Optical band gap analysis} & 71 \\ 4.3.4 & \mbox{Obtical band gap analysis} & 71 \\ 4.3.4 & \mbox{Obtical band gap analysis} & 75 \\ 4.3.4 & \mbox{Dielectric porseries of Co^2-doped willemite} & 86 \\ 4.4.1 & \mbox{Physical properties of Co^2-doped willemite} & 86 \\ 4.4.1 & \mbox{Physical properties of Co^2-doped willemite} & 86 \\ 4.4.2 & \mbox{Fucutarl properties of Co^2-doped willemite} & 86 \\ 4.4.2 & \mbox{Structural properties of Co^2-doped willemite} & 86 \\ 4.4.2 & \mbox{Structural properties of Co^2-doped willemite} & 89 \\ 4.4.2 & \mbox{Structural properties of Co^2-doped willemite} & 80 \\ 4.4.2 & Structural properties of C$		3.3.5	X-Ray diffraction measurement	49
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		3.3.6	Field emission scanning electron microscopy	50
$\begin{array}{cccc} 3.3.8 & \mathrm{UV-Visible spectroscopy} & 1 & 1 & 1 \\ 3.3.9 & \mathrm{Photoluminescence spectrometer} & 53 \\ 3.3.10 & \mathrm{Impedance analyzer} & 53 \\ 3.3.10 & \mathrm{Impedance analyzer} & 53 \\ \hline 4 & \mathbf{RESULTS AND DISCUSSION} & 55 \\ \hline 4.1 & \mathrm{Introduction} & 55 \\ \hline 4.2 & \mathrm{Precursor glass analysis} & 55 \\ \hline 4.2 & \mathrm{Chemical composition of WRHA} & 55 \\ \hline 4.2.1 & \mathrm{Chemical composition of WRHA} & 55 \\ \hline 4.2.1 & \mathrm{Chemical composition of WRHA} & 55 \\ \hline 4.2.2 & \mathrm{Thermal properties of glasses} & 56 \\ \hline 4.2.3 & \mathrm{Physical appearance of glasses} & 58 \\ \hline 4.2.4.1 & \mathrm{XRD analysis} & 59 \\ \hline 4.2.4.2 & \mathrm{Structural properties of glasses} & 56 \\ \hline 4.2.5.1 & \mathrm{UV-Visible analysis} & 60 \\ \hline 4.2.5.2 & \mathrm{Optical properties of glasses} & 62 \\ \hline 4.2.5.2 & \mathrm{Optical properties of glasses} & 62 \\ \hline 4.2.5.3 & \mathrm{Photoluminescence analysis} & 63 \\ \hline 4.2.5.2 & \mathrm{Optical properties of glass-ceramics} & 67 \\ \hline 4.3.11 & \mathrm{Density analysis} & 67 \\ \hline 4.3.2.2 & \mathrm{FIR analysis} & 71 \\ \hline 4.3.2.2 & \mathrm{FIR analysis} & 71 \\ \hline 4.3.2.3 & \mathrm{FIR analysis} & 73 \\ \hline 4.3.3.3 & \mathrm{Optical properties of glass-ceramics} & 75 \\ \hline 4.3.3.4 & \mathrm{Dielectric properties of glass-ceramics} & 75 \\ \hline 4.3.3.4 & \mathrm{Dielectric properties of glass-ceramics} & 75 \\ \hline 4.3.3.3 & \mathrm{Photoluminescene analysis} & 71 \\ \hline 4.3.4.2 & \mathrm{Dielectric properties of glass-ceramics} & 75 \\ \hline 4.3.4.1 & \mathrm{Dielectric properties of glass-ceramics} & 75 \\ \hline 4.3.3.4 & \mathrm{Coductiviy} & 85 \\ \hline 4.4.1 & \mathrm{Co^{2^n}-doped willemite} & 86 \\ \hline 4.4.1 & \mathrm{Drielcuric properties of glass-ceramics} & 86 \\ \hline 4.4.1 & \mathrm{Drielcuric properties of class-ceramics} & 86 \\ \hline 4.4.1 & \mathrm{Drielcuric properties of Co^{2^n}-doped willemite} & 86 \\ \hline 4.4.1 & \mathrm{Drielcuric properties of Co^{2^n}-doped willemite} & 86 \\ \hline 4.4.1 & \mathrm{Drielcuric properties of Co^{2^n}-doped willemite} & 86 \\ \hline 4.4.1 & \mathrm{Drielcuric properties of Co^{2^n}-doped willemite} & 89 \\ \hline 4.4.2 & \mathrm{Structural properties of Co^{2^n}-doped willemite} & 89 \\ \hline 4.4.2 $		3.3.7	Fourier transforms infrared spectroscopy	51
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		3.3.8	UV-Visible spectroscopy	51
3.3.10 Impedance analyzer 53 4 RESULTS AND DISCUSSION 55 4.1 Introduction 55 4.2 Precursor glass analysis 55 4.2.1 Chemical composition of WRHA 55 4.2.1 Chemical composition of WRHA 55 4.2.1 Decemical composition of glasses 56 4.2.2.1 DSC analysis 56 4.2.2.1 DSC analysis 56 4.2.3 Physical properties of glasses 58 4.2.4 Structural properties of glasses 59 4.2.4.1 XRD analysis 60 4.2.5 Optical properties of glasses 62 4.2.5.2 Optical band gap analysis 63 4.2.5 Optical properties of glasses 62 4.2.5.2 Optical band gap analysis 63 4.2.5 Optical properties of glass-ceramics 67 4.3.1.1 Physical apporties of glass-ceramics 67 4.3.1.1 Density analysis 71 4.3.2 Structural properties of glass-ceramics 69 4.3.2.1 XRD analysis 71 4.3.2.3 FTIR analysis 73 4.3.3 Optical properties of glass-ceramics 75 4.3.3.1 UV-Visible analysis 71 4.3.4.1 Dielectric properties of glass-ceramics 82 4.3.4.1 Dielectric properties of glass-ceramics 82 4.3.4.2 Dielectric properties of glass-ceramics 82 4.3.4.1 Dielectric properties of glass-ceramics 82 4.3.4.1 Dielectric properties of glass-ceramics 82 4.3.4.2 Dielectric properties of glass-ceramics 82 4.3.4.1 Dielectric properties of glass-ceramics 82 4.3.4.1 Dielectric properties of glass-ceramics 82 4.3.4.2 Dielectric properties of glass-ceramics 82 4.3.4.1 Dielectric properties of glass-ceramics 82 4.3.4.2 Dielectric properties of Co ⁵⁺ -doped willemite 88 4.4.2 Structural properties of Co ⁵⁺ -doped willemite 89 4.4.2.2 FIESEM analysis 98 4.4.2.2 FIESEM analysis 98 4.4.2.2 FIESEM analysis 98 4.4.3 Optical properties of Co ⁵⁺ -doped willemite 101 4.4.3.1 UV-Visible analysis 91 4.4.2.3 Coricial band gap analysis 104		3.3.9	Photoluminescence spectrometer	53
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		3.3.10	Impedance analyzer	53
4 RESULTS AND DISCUSSION 55 4.1 Introduction 55 4.2 Precursor glass analysis 55 4.2 Precursor glass analysis 55 4.2.1 Chemical composition of WRHA 55 4.2.2 Thermal properties of glasses 56 4.2.2 Thermal properties of glasses 58 4.2.3 Physical properties of glasses 58 4.2.4 Structural properties of glasses 59 4.2.4 Structural properties of glasses 60 4.2.5 Optical properties of glass-ceramics 67 4.3.1 Physical properties of glass-ceramics 67 4.3.1 Physical properties of glass-ceramics 69 4.3.2.1 XRD analysis 71 4.3.2 Structural properties of glass-ceramics 75 4.3.3 Optical properties of glass-ceramics 75 4.3.3 Optical properties of glass-ceramics 80 4.3.4 Dielectric constant 82 4.3.4 Dielectric constant 82 4.3.4.1 Dielectric constant 82 4.3.4.2 Dielectric constant 82 4.3.4.1 Dielectric constant 82 4.3.4.2 Dielectric constant 82 4.3.4.3 AC Conductivity 85 4.4.1 Physical properties of Co ²⁺ -doped willemite 86 4.4.1.1 Density analysis 80 4.4.2 FESEM analysis 80 4.4.3 Optical properties of Co ²⁺ -doped willemite 80 4.4.2 FESEM analysis 90 4.4.3 Optical properties of Co ²⁺ -doped willemite 101 4.4.3 Optical properties of Co ²⁺ -doped willemite 101 4.4.3 UV-Visible analysis 104 4.				
4.1 Introduction 55 4.2 Precursor glass analysis 55 4.2.1 Chemical composition of WRHA 55 4.2.1 Chemical composition of WRHA 55 4.2.2 Thermal properties of glasses 56 4.2.2.1 DSC analysis 56 4.2.3.1 Physical appearance of glasses 58 4.2.4 Structural properties of glasses 59 4.2.4.1 XRD analysis 60 4.2.5 Optical properties of glasses 62 4.2.5.1 UV-Visible analysis 60 4.2.5.2 Optical band gap analysis 63 4.2.5.3 Photoluminescence analysis 67 4.3.1 Physical properties of glass-ceramics 67 4.3.1.1 Density analysis and linear shrinkage 67 4.3.2 Structural properties of glass-ceramics 69 4.3.2.1 XRD analysis 71 4.3.2 Structural properties of glass-ceramics 75 4.3.3 Optical properties of glass-ceramics 82 4.3.4 Dielectric properties of glass-ceramics 82 4.3.4 Dielectric properties of glass-ceramics 82 4.3.4 Dielectric properties of glass-ceramics 82 4.3.4.1 Dielectric constant 82 4.3.4.2 Dielectric loss 84 4.3.4.3 Dielectric loss 84 4.3.4.1 Dielectric of set 84 4.3.4.2 Dielectric set 88 4.4.1 Physical properties of glass-ceramics 82 4.3.4 Dielectric set 88 4.4.1 Physical properties of glass-ceramics 82 4.3.4.3 Dielectric loss 84 4.3.4.3 Dielectric loss 84 4.3.4.3 Dielectric set 88 4.4.1 Physical properties of glass-ceramics 82 4.3.4.3 Dielectric set 88 4.4.1 Physical properties of Co ³⁺ -doped willemite 86 4.4.1.2 Linear shrinkage analysis 88 4.4.2.3 FTIR analysis 98 4.4.2.3 FTIR analysis 98 4.4.3 Optical properties of Co ³⁺ -doped willemite 101 4.4.3.1 UV-Visible analysis 104 4.4.3.1 UV-Visible analysis 104 4.4.3.1 UV-Visible analysis 104 4.4.3.2 Optical band aga analysis 104 4.4.3.1 UV-Visible analysis 104 4.4.3.1 UV-Visible analysis 104 4.4.3 Optical band aga analysis 104 4.4.3 Optical band aga analysi	4 REA	SULTS A	ND DISCUSSION	55
4.2 Precursor glass analysis 55 4.2.1 Chemical composition of WRHA 55 4.2.2 Thermal properties of glasses 56 4.2.2 Thermal properties of glasses 58 4.2.3 Physical properties of glasses 58 4.2.4 Structural properties of glasses 59 4.2.4.2 FTIR analysis 60 4.2.5 Optical properties of glasses 62 4.2.5.1 UV-Visible analysis 65 4.2.5 Optical properties of glasses 62 4.2.5.2 Optical properties of glasses 62 4.2.5.3 Photoluminescence analysis 65 4.3 Glass-ceramics analysis 67 4.3.1 Physical properties of glass-ceramics 67 4.3.1 Physical properties of glass-ceramics 69 4.3.2 Structural properties of glass-ceramics 69 4.3.2 FESEM analysis 71 4.3.3 Optical properties of glass-ceramics 75 4.3.3 Optical properties of glass-ceramics 75 4.3.3 Optical properties of glass-ceramics 75 4.3.4 Dielectric properties of glass-ceramics 82 4.3.4 Dielectric properties of glass-ceramics 82 4.3.4 Dielectric properties of glass-ceramics 82 4.3.4 Dielectric ronstant 82 4.3.4 Dielectric ronstant 82 4.3.4 Dielectric is 8 4.3.4 Dielectric is 8 4.3.4 Dielectric fors 84 4.3.4 Dielectric sof glass-ceramics 82 4.3.4 Dielectric fors 884 4.3.4 Dielectric sof glass-ceramics 82 4.3.4 Dielectric properties of Grass-ceramics 82 4.3.4 Dielectric properties of glass-ceramics 82 4.3.4 Dielectric properties of Grass-ceramics 82 4.3.4 Dielectric properties of Grass-ceramics 82 4.3.4 Dielectric properties of Grass-ceramics 82 4.4.1 Physical properties of Grass-ceramics 82 4.4.2 FESEM analysis 89 4.4.2 FESEM analysis 98 4.4.2 FESEM analysis 98 4.4.2 Optical band eap analysis 104 4.4.3 Optical band eap analysis 104	4.1	Introdu	ction	55
4.2.1 Chemical composition of WRHA 55 4.2.1 Chemical composition of WRHA 55 4.2.2 Thermal properties of glasses 56 4.2.3 Physical properties of glasses 58 4.2.3 Physical appearance of glasses 58 4.2.4 Structural properties of glasses 59 4.2.4.1 XRD analysis 60 4.2.5 Optical properties of glasses 62 4.2.5.2 Optical band gap analysis 63 4.2.5.3 Photoluminescence analysis 65 4.3 Glass-ceramics analysis 67 4.3.1 Physical properties of glass-ceramics 67 4.3.1 Density analysis 61 4.3.2 Structural properties of glass-ceramics 69 4.3.2.1 XRD analysis 71 4.3.2 Structural properties of glass-ceramics 75 4.3.3 Optical properties of glass-ceramics 82 4.3.4 Dielectric properties of glass-ceramics 82 4.3.4 Dielectric properties of glass-ceramics 82 4.3.4 Dielectric properties of glass-ceramics 82 4.3.4.1 Dielectric properties of glass-ceramics 82 4.3.4.2 Dielectric properties of glass-ceramics 82 4.3.4.1 Dielectric properties of glass-ceramics 82 4.3.4.2 Dielectric properties of glass-ceramics 88 4.4.4.1.1 Density analysis 88 4.4.2 Structural properties of Co ²⁺ -doped willemite 86 4.4.1.1 Density analysis 88 4.4.2 FESEM analysis 93 4.4.2 FESEM analysis 93 4.4.3 Optical band gap analysis	4.2	Precurs	or glass analysis	55
4.2.1 XRF analysis 55 4.2.2 Thermal properties of glasses 56 4.2.3 Physical properties of glasses 58 4.2.4 Structural properties of glasses 59 4.2.4.1 XRD analysis 59 4.2.4.2 FTIR analysis 60 4.2.5 Optical properties of glasses 62 4.2.5.1 UV-Visible analysis 63 4.2.5.2 Optical band gap analysis 63 4.2.5.3 Photoluminescence analysis 67 4.3.1 Physical properties of glass-ceramics 67 4.3.1 Physical properties of glass-ceramics 67 4.3.2 Structural properties of glass-ceramics 69 4.3.2.3 FTIR analysis 71 4.3.2 Structural properties of glass-ceramics 75 4.3.3 Optical properties of glass-ceramics 82 4.3.4.2 Dielectric properties of glass-ceramics 82 4.3.4.1 Dielectric properties of glass-ceramics 82 4.3.4.2 Dielectric properties of glass-ceramics 82 4.3.4.1 Dielectric properties of glass-ceramics 82 4.3.4.2 Dielectric properties of glass-ceramics 82 4.3.4.1 Dielectric properties of glass-ceramics 82 4.3.4.2 Dielectric properties of glass-ceramics 82 4.3.4.2 Dielectric properties of glass-ceramics 82 4.3.4.1 Dielectric properties of glass-ceramics 82 4.3.4.2 Dielectric properties of glass-ceramics 82 4.3.4.3 AC Conductivity 85 4.3.4.3 AC Conductivity 85 4.4.4 Co ²⁺ doped willemite analysis 86 4.4.1.1 Linear shrinkage analysis 88 4.4.2 FISEM analysis 93 4.4.2 FISEM analysis 93 4.4.3 Optical properties of Co ²⁺ -doped willemite 101 4.4.3.1 UV-Visible analysis 93 4.4.3 Optical properties of Co ²⁺ -doped willemite 101 4.4.3.2 Obtical band gap analysis 104		4.2.1	Chemical composition of WRHA	55
4.2.2 Thermal properties of glasses 56 4.2.3 Physical properties of glasses 58 4.2.3 Physical appearance of glasses 58 4.2.4 Structural properties of glasses 59 4.2.4.1 XRD analysis 59 4.2.4.2 FTIR analysis 60 4.2.5 Optical properties of glasses 62 4.2.5.1 UV-visible analysis 61 4.2.5.2 Optical band gap analysis 63 4.2.5.3 Photoluminescence analysis 67 4.3.1 Physical properties of glass-ceramics 67 4.3.1 Physical properties of glass-ceramics 67 4.3.1 Physical properties of glass-ceramics 69 4.3.2.2 FTEEM analysis 71 4.3.2 Structural properties of glass-ceramics 75 4.3.3 Optical properties of glass-ceramics 75 4.3.3 Optical properties of glass-ceramics 75 4.3.4 Dielectric properties of glass-ceramics 80 4.3.4 Dielectric properties of Co ²⁺ -doped willemite 80 4.4.1 Physical properties of Co ²⁺ -doped willemite 80 4.4.2 FESEM analysis 93 4.4.2 FESEM analysis 93 4.4.2 FESEM analysis 93 4.4.2 FESEM analysis 93 4.4.2 FESEM analysis 93 4.4.3 Optical properties of Co ²⁺ -doped willemite 101 4.4.3.1 UV-Visible analysis 93 4.4.3 Optical properties of Co ²⁺ -doped willemite 101 4.4.3.2 Optical band gap analysis 104			4.2.1.1 XRF analysis	55
4.2.2.1 DSC analysis 56 4.2.3 Physical properties of glasses 58 4.2.4.1 Physical appearance of glasses 58 4.2.4 Structural properties of glasses 59 4.2.4.2 FTIR analysis 60 4.2.5 Optical properties of glasses 62 4.2.5.1 UV-Visible analysis 62 4.2.5.2 Optical band gap analysis 63 4.2.5.3 Photoluminescence analysis 65 4.3 Glass-ceramics analysis 71 4.3.1 Physical properties of glass-ceramics 69 4.3.2.1 KRD analysis 71 4.3.2 Structural properties of glass-ceramics 69 4.3.2.2 FESEM analysis 71 4.3.2 FTIR analysis 71 4.3.2 Optical properties of glass-ceramics 75 4.3.3 Optical properties of glass-ceramics 75 4.3.3 Optical properties of glass-ceramics 82 4.3.4.1 Dielectric properties of glass-ceramics 82 4.3.4.1 Dielectric constant 82 4.3.4.2 Dielectric constant 82 4.3.4.1 Dielectric constant 82 4.3.4.3 AC Conductivity 85 4.4.1 Physical properties of Co ²⁺ -doped willemite 86 4.4.1.1 Density analysis 88 4.4.2 Structural properties of Co ²⁺ -doped willemite 86 4.4.1.2 Linear shrinkage analysis 88 4.4.2 Structural properties of Co ²⁺ -doped willemite 86 4.4.1.1 Density analysis 93 4.4.2.3 FTIR analysis 93 4.4.2.3 FTIR analysis 93 4.4.2.3 Conductivity 85 4.4.1 Physical properties of Co ²⁺ -doped willemite 86 4.4.1.1 UN-Visible analysis 93 4.4.2.3 FTIR analysis 93 4.4.2.3 Contical properties of Co ²⁺ -doped willemite 89 4.4.2.1 TIR analysis 93 4.4.2.3 Contical properties of Co ²⁺ -doped willemite 89 4.4.2.3 Contical properties of Co ²⁺ -doped willemite 80 4.4.2.3 Contical properties of Co ²⁺ -doped willemite 80 4.4.3 Optical properties of Co ²⁺ -doped willemite 80 4.4.3 Optical properties of Co ²⁺ -doped willemite 80 4.4.3 Optical propert		4.2.2	Thermal properties of glasses	56
4.2.3 Physical properties of glasses 58 4.2.3.1 Physical appearance of glasses 58 4.2.4 Structural properties of glasses 59 4.2.4.2 FTIR analysis 59 4.2.4.2 FTIR analysis 60 4.2.5 Optical properties of glasses 62 4.2.5.1 UV-Visible analysis 63 4.2.5.2 Optical band gap analysis 63 4.2.5.3 Photoluminescence analysis 67 4.3.1 Physical properties of glass-ceramics 67 4.3.1 Physical properties of glass-ceramics 67 4.3.1 Density analysis 67 4.3.2 Structural properties of glass-ceramics 69 4.3.2.1 XRD analysis 71 4.3.2 Structural properties of glass-ceramics 75 4.3.3 Optical properties of glass-ceramics 75 4.3.3 Optical properties of glass-ceramics 75 4.3.3.2 Optical band gap analysis 77 4.3.3.2 Optical band gap analysis 80 4.3.4 Dielectric properties of glass-ceramics 82 4.3.4.1 Dielectric constant 82 4.3.4.2 Dielectric loss 84 4.3.4.3 AC Conductivity 85 4.4.1 Physical properties of Co ²⁺ -doped willemite 86 4.4.1.1 Density analysis 88 4.4.2 Structural properties of Co ²⁺ -doped willemite 89 4.4.2.1 KRD analysis 89 4.4.2.3 FTIR analysis 89 4.4.2.3 FTIR analysis 99 4.4.2.1 FTIR analysis 99 4.4.2.1 FTIR analysis 99 4.4.2.1 FTIR analysis 99 4.4.2.1 FTIR analysis 99 4.4.2.2 FESEM analysis 99 4.4.2.3 Optical properties of Co ²⁺ -doped willemite 89 4.4.2.1 FTIR analysis 99 4.4.2.2 FTIR analysis 99 4.4.2.3 Optical properties of Co ²⁺ -doped willemite 89 4.4.2.1 KRD analysis 99 4.4.2.3 FTIR analysis 99 4.4.3 Optical properties of Co ²⁺ -doped willemite 89 4.4.3 Optical properties of Co ²⁺ -doped willemite 101 4.4.3.1 UV-Visible analysis 91 4.4.3.2 Optical properties of Co ²⁺ -doped willemite 101 4.4.3.2 Optical properties of Co ²⁺ -doped willemite 101 4.4.3.1 UV-Visible analysis 91 4.4.3.2 Optical properties of Co ²⁺ -doped willemite 101 4.4.3.2 Optical properties of Co ²⁺ -doped willemite 101 4.4.3.			4.2.2.1 DSC analysis	56
4.2.3.1 Physical appearance of glasses 58 4.2.4 Structural properties of glasses 59 4.2.4.2 KID analysis 59 4.2.4.2 FTIR analysis 60 4.2.5 Optical properties of glasses 62 4.2.5.1 UV-Visible analysis 63 4.2.5.2 Optical band gap analysis 63 4.2.5.3 Photoluminescence analysis 67 4.3.1 Physical properties of glass-ceramics 67 4.3.1 Physical properties of glass-ceramics 67 4.3.2 Structural properties of glass-ceramics 69 4.3.2.1 XRD analysis 69 4.3.2.2 FESEM analysis 71 4.3.2 Structural properties of glass-ceramics 75 4.3.3 Optical properties of glass-ceramics 75 4.3.3 Optical properties of glass-ceramics 75 4.3.3.1 UV-Visible analysis 71 4.3.2 Optical band gap analysis 71 4.3.3 Optical properties of glass-ceramics 82 4.3.4.1 Dielectric properties of glass-ceramics 82 4.3.4.1 Dielectric constant 82 4.3.4.2 Dielectric properties of glass-ceramics 82 4.3.4.1 Dielectric constant 82 4.3.4.2 Dielectric properties of Co ²⁺ -doped willemite 86 4.4.1.1 Linear shrinkage analysis 88 4.4.2 Structural properties of Co ²⁺ -doped willemite 89 4.4.2.1 KRD analysis 99 4.4.2.1 FIR analysis 99 4.4.2.3 FTIR analysis 99 4.4.2.3 FTIR analysis 99 4.4.2.1 KRD analysis 99 4.4.2.3 FTIR analysis 99 4.4.2.3 Optical properties of Co ²⁺ -doped willemite 89 4.4.2.1 FTIR analysis 99 4.4.2.3 FTIR analysis 99 4.4.2.3 Optical properties of Co ²⁺ -doped willemite 89 4.4.2.1 KRD analysis 99 4.4.2.3 Optical properties of Co ²⁺ -doped willemite 89 4.4.2.1 KRD analysis 99 4.4.2.3 FTIR analysis 99 4.4.3 Optical properties of Co ²⁺ -doped willemite 101 4.4.3.1 UV-Visible analysis 104		4.2.3	Physical properties of glasses	58
4.2.4 Structural properties of glasses 59 4.2.4.1 XRD analysis 59 4.2.4.2 FTIR analysis 60 4.2.5 Optical properties of glasses 62 4.2.5.1 UV-Visible analysis 63 4.2.5.2 Optical band gap analysis 63 4.2.5.3 Photoluminescence analysis 65 4.3 Glass-ceramics analysis 67 4.3.1 Physical properties of glass-ceramics 67 4.3.1 Physical properties of glass-ceramics 69 4.3.2.2 Structural properties of glass-ceramics 69 4.3.2.3 FTIR analysis 71 4.3.2 Optical properties of glass-ceramics 75 4.3.3 Optical properties of glass-ceramics 75 4.3.3 Optical properties of glass-ceramics 80 4.3.4.1 Dielectric properties of glass-ceramics 82 4.3.4 Dielectric properties of glass-ceramics 82 4.3.4.1 Dielectric constant 82 4.3.4.2 Dielectric loss 84 4.3.4.3 AC Conductivity 85 4.4.1 Physical properties of Co ²⁺ -doped willemite 86 4.4.1.1 Density analysis 88 4.4.2 Structural properties of Co ²⁺ -doped willemite 89 4.4.2.1 XRD analysis 93 4.4.2.3 FTIR analysis 93 4.4.2.3 FTIR analysis 98 4.4.2 Structural properties of Co ²⁺ -doped willemite 89 4.4.2.1 XRD analysis 89 4.4.2.3 FTIR analysis 98 4.4.3 Optical properties of Co ²⁺ -doped willemite 89 4.4.2.1 XRD analysis 98 4.4.3 Optical properties of Co ²⁺ -doped willemite 89 4.4.3 Optical properties of Co ²⁺ -doped willemite 89 4.4.3 Optical properties of Co ²⁺ -doped willemite 89 4.4.2.1 VRD analysis 98 4.4.3 Optical properties of Co ²⁺ -doped willemite 89 4.4.3 Optical properties of Co ²⁺ -doped willemite 89 4.4.3 Optical properties of Co ²⁺ -doped willemite 101 4.4.3.1 UV-Visible analysis 98 4.4.3 Optical properties of Co ²⁺ -doped willemite 101 4.4.3.1 UV-Visible analysis 91 4.4.3.2 Optical band gap analysis 101 4.4.3.3 UV-Visible analysis 101 4.4.3.4 Optical properties of Co ²⁺ -doped willemite 101 4.4.3.3 UV-Visible analysis 101 4.4.3.3 UV-Visible			4.2.3.1 Physical appearance of glasses	58
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		4.2.4	Structural properties of glasses	59
4.2.4.2 FTIR analysis 60 4.2.5.1 UV-Visible analysis 62 4.2.5.2 Optical properties of glasses 63 4.2.5.3 Photoluminescence analysis 65 4.3 Glass-ceramics analysis 67 4.3.1 Physical properties of glass-ceramics 67 4.3.1 Density analysis and linear shrinkage 67 analysis 69 4.3.2.1 XRD analysis 69 4.3.2.2 FESEM analysis 71 4.3.2.3 FTIR analysis 73 4.3.3 Optical properties of glass-ceramics 75 4.3.3.1 UV-Visible analysis 75 4.3.3.1 Optical properties of glass-ceramics 75 4.3.3.2 Optical band gap analysis 77 4.3.3.3 Photoluminescence analysis 77 4.3.3.3 Photoluminescence analysis 80 4.3.4 Dielectric properties of glass-ceramics 82 4.3.4.1 Dielectric constant 82 4.3.4.2 Dielectric loss 84 4.3.4.3 AC Conductivity 85 4.4 Co ²⁺ doped willemite analysis 86 4.4.1.1 Density analysis 86 4.4.1.2 Linear shrinkage analysis 88 4.4.2 Structural properties of Co ²⁺ -doped willemite 86 4.4.1.2 Linear shrinkage analysis 93 4.4.2.3 FTIR analysis 93 4.4.2.3 Cotical band gap analysis 93 4.4.2.3 Optical properties of Co ²⁺ -doped willemite 101 4.4.3.1 UV-Visible analysis 93 4.4.2.3 Cotical band gap analysis 93 4.4.2.3 Optical properties of Co ²⁺ -doped willemite 101 4.4.3.2 Optical band gap analysis 104			4.2.4.1 XRD analysis	59
4.2.5 Optical properties of glasses 62 4.2.5.2 Optical band gap analysis 63 4.2.5.3 Photoluminescence analysis 65 4.3 Glass-ceramics analysis 67 4.3.1 Physical properties of glass-ceramics 67 4.3.1 Density analysis and linear shrinkage analysis 69 4.3.2 Structural properties of glass-ceramics 69 4.3.2.1 XRD analysis 71 4.3.2 Structural properties of glass-ceramics 75 4.3.3 Optical properties of glass-ceramics 75 4.3.3 Optical properties of glass-ceramics 75 4.3.3 Optical properties of glass-ceramics 75 4.3.3.1 UV-Visible analysis 71 4.3.3 Optical properties of glass-ceramics 82 4.3.4 Dielectric properties of glass-ceramics 82 4.3.4.1 Dielectric constant 82 4.3.4.2 Dielectric loss 84 4.3.4.3 AC Conductivity 85 4.4.1 Physical properties of Co ²⁺ -doped willemite 86 4.4.1.1 Density analysis 88 4.4.2 Structural properties of Co ²⁺ -doped willemite 89 4.4.2.2 FESEM analysis 93 4.4.2.3 FTIR analysis 93 4.4.2.3 Optical properties of Co ²⁺ -doped willemite 101 4.4.3.2 Optical band gap analysis 101 4.4.3.4 ANA ANA ANA ANA ANA ANA ANA ANA ANA AN			4.2.4.2 FTIR analysis	60
4.2.5.1 UV-Visible analysis 4.2.5.2 Optical band gap analysis 4.3.2.5.3 Photoluminescence analysis 65 4.3 Glass-ceramics analysis 4.3.1 Physical properties of glass-ceramics 4.3.1.1 Density analysis and linear shrinkage analysis 4.3.2 Structural properties of glass-ceramics 4.3.2.2 FESEM analysis 4.3.2 FESEM analysis 4.3.3 Optical properties of glass-ceramics 4.3.3.1 UV-Visible analysis 4.3.3 Optical properties of glass-ceramics 4.3.3.2 Optical band gap analysis 4.3.4 Dielectric properties of glass-ceramics 4.3.4.1 Dielectric constant 4.3.4.2 Dielectric loss 4.3.4.2 Dielectric loss 4.3.4.3 AC Conductivity 4.4.4.1 Physical properties of Co ²⁺ -doped willemite 4.4.1.1 Density analysis 4.4.2 FESEM analysis 4.4.1 Physical properties of Co ²⁺ -doped willemite 4.4.2.1 XRD analysis 4.4.2 FESEM analysis 4.4.2 FESEM analysis 4.4.3 Optical properties of Co ²⁺ -doped willemite 4.4.2.1 KRD analysis 4.4.3 Optical properties of Co ²⁺ -doped willemite 4.4.2.3 FTIR analysis 4.4.3 Optical properties of Co ²⁺ -doped willemite 4.4.2.3 FTIR analysis 4.4.3 Optical properties of Co ²⁺ -doped willemite 4.4.3 Optical properties of Co		4.2.5	Optical properties of glasses	62
4.2.5.2 Optical band gap analysis 4.2.5.3 Photoluminescence analysis 4.3.1 Physical properties of glass-ceramics 4.3.1 Physical properties of glass-ceramics 4.3.1 Density analysis and linear shrinkage analysis 4.3.2 Structural properties of glass-ceramics 4.3.2.1 XRD analysis 4.3.2.2 FESEM analysis 4.3.2.3 FTIR analysis 4.3.3 Optical properties of glass-ceramics 4.3.3.1 UV-Visible analysis 4.3.4 Dielectric properties of glass-ceramics 4.3.4.1 Dielectric constant 4.3.4.2 Dielectric constant 4.3.4.3 AC Conductivity 4.3.4.3 AC Conductivity 4.4.1.1 Density analysis 4.4.1 Physical properties of Co ²⁺ -doped willemite 4.4.1.2 Linear shrinkage analysis 4.4.2 FESEM analysis 4.4.2 FESEM analysis 4.4.3 FTIR analysis 4.4.1 UV-Visible analysis 4.4.2 FESEM analysis 4.4.2 FESEM analysis 4.4.3 Optical properties of Co ²⁺ -doped willemite 4.4.2.1 XRD analysis 4.4.2.3 FTIR analysis 4.4.3 Optical properties of Co ²⁺ -doped willemite 4.4.2.3 FTIR analysis 4.4.3 Optical properties of Co ²⁺ -doped willemite 4.4.3.1 UV-Visible analysis 4.4.2.3 FTIR analysis 4.4.3 Optical properties of Co ²⁺ -doped willemite 4.4.3.1 UV-Visible analysis 4.4.3 Optical properties of Co ²⁺ -doped willemite 4.4.3.2 Optical band gap analysis 4.4.3 Optical properties of Co ²⁺ -doped willemite 4.4.3.2 Optical band gap analysis 4.4.3 Optical properties of Co ²⁺ -doped willemite 4.4.3.2 Optical properties of Co ²⁺ -doped willemite 4.4.3.3 Optical properties of Co ²⁺ -doped willemite 4.4.			4.2.5.1 UV-Visible analysis	62
4.2.5.3 Photoluminescence analysis 65 4.3 Glass-ceramics analysis 67 4.3.1 Density analysis and linear shrinkage 67 analysis 69 4.3.2 Structural properties of glass-ceramics 69 4.3.2.1 XRD analysis 69 4.3.2.2 FESEM analysis 71 4.3.2.3 FTIR analysis 71 4.3.3 Optical properties of glass-ceramics 75 4.3.3 Optical properties of glass-ceramics 75 4.3.3.1 UV-Visible analysis 75 4.3.3.2 Optical band gap analysis 75 4.3.4 Dielectric properties of glass-ceramics 82 4.3.4.1 Dielectric constant 82 4.3.4.2 Dielectric loss 84 4.3.4.3 AC Conductivity 85 4.4.1 Physical properties of Co ²⁺ -doped willemite 86 4.4.1.1 Density analysis 86 4.4.1.2 Linear shrinkage analysis 88 4.4.2 Structural properties of Co ²⁺ -doped willemite 89 4.4.2 FESEM analysis 93 4.4.2.3 FTIR analysis 93 4.4.2.3 FTIR analysis 93 4.4.3 Optical properties of Co ²⁺ -doped willemite 89 4.4.3 Optical properties of Co ²⁺ -doped willemite 101 4.4.3.1 UV-Visible analysis 93 4.4.2.3 FTIR analysis 98 4.4.3 Optical properties of Co ²⁺ -doped willemite 101 4.4.3.1 UV-Visible analysis 93 4.4.2.3 FTIR analysis 98 4.4.3 Optical properties of Co ²⁺ -doped willemite 101 4.4.3.2 Optical band gap analysis 91 4.4.3.2 Optical properties of Co ²⁺ -doped willemite 101 4.4.3.2 Optical properties of Co ²⁺			4.2.5.2 Optical band gap analysis	63
4.3 Glass-ceramics analysis 67 4.3.1 Physical properties of glass-ceramics 67 4.3.1 Density analysis and linear shrinkage 67 analysis 67 4.3.1 Density analysis and linear shrinkage 67 4.3.2.1 XRD analysis 69 4.3.2.2 FESEM analysis 71 4.3.2.3 FTIR analysis 73 4.3.3 Optical properties of glass-ceramics 75 4.3.3.1 UV-Visible analysis 75 4.3.3.2 Optical band gap analysis 77 4.3.3.3 Photoluminescence analysis 80 4.3.4 Dielectric properties of glass-ceramics 82 4.3.4.1 Dielectric constant 82 4.3.4.2 Dielectric constant 82 4.3.4.3 AC Conductivity 85 4.4.1 Physical properties of Co ²⁺ -doped willemite 86 4.4.1 Physical properties of Co ²⁺ -doped willemite 86 4.4.1 Physical properties of Co ²⁺ -doped willemite 86 4.4.2 Structural properties of Co ²⁺ -doped willemite 89 4.4.2 Structural properties of Co ²⁺ -doped willemite 89 4.4.2 FESEM analysis 93 4.4.2.3 FTIR analysis 98 4.4.3 Optical properties of Co ²⁺ -doped willemite 101 4.4.3.1 UV-Visible analysis 98 4.4.3 Optical properties of Co ²⁺ -doped willemite 101 4.4.3.1 UV-Visible analysis 98			4.2.5.3 Photoluminescence analysis	65
4.3.1 Physical properties of glass-ceramics 67 4.3.1.1 Density analysis and linear shrinkage 67 analysis 69 4.3.2 Structural properties of glass-ceramics 69 4.3.2.1 XRD analysis 69 4.3.2.2 FESEM analysis 71 4.3.2.3 FTIR analysis 73 4.3.3 Optical properties of glass-ceramics 75 4.3.3.1 UV-Visible analysis 75 4.3.3.2 Optical band gap analysis 77 4.3.3.3 Photoluminescence analysis 80 4.3.4 Dielectric properties of glass-ceramics 82 4.3.4.1 Dielectric constant 82 4.3.4.2 Dielectric loss 84 4.3.4.3 AC Conductivity 85 4.4.1 Physical properties of Co ²⁺ -doped willemite 86 4.4.1 Physical properties of Co ²⁺ -doped willemite 86 4.4.1.2 Linear shrinkage analysis 88 4.4.2 Structural properties of Co ²⁺ -doped willemite 89 4.4.2 Optical properties 07 Co ²⁺ -doped willemite 89 4.4.2 Optical properties 07 Co ²⁺ -doped willemite 89 4.4.3 Optical properties 07 Co ²⁺ -doped willemite 89 4.4.3 Optical properties 07 Co ²⁺ -doped willemite 101 4.4.3.1 UV-Visible analysis 98 4.4.3 Optical properties 07 Co ²⁺ -doped willemite 101 4.4.3.2 Optical band gap analysis 104	4.3	Glass-c	eramics analysis	67
4.3.1.1 Density analysis and linear shrinkage analysis 4.3.2 Structural properties of glass-ceramics 4.3.2.1 XRD analysis 69 4.3.2.2 FESEM analysis 69 4.3.2.2 FESEM analysis 73 4.3.3 Optical properties of glass-ceramics 75 4.3.3.1 UV-Visible analysis 71 4.3.3 Optical band gap analysis 71 4.3.3 Photoluminescence analysis 80 4.3.4 Dielectric properties of glass-ceramics 82 4.3.4.1 Dielectric constant 82 4.3.4.2 Dielectric loss 84 4.3.4.3 AC Conductivity 85 4.4 Co ²⁺⁻ doped willemite analysis 86 4.4.1 Physical properties of Co ²⁺ -doped willemite 86 4.4.1 Density analysis 81 4.4.2 Structural properties of Co ²⁺ -doped willemite 82 4.4.2 Structural properties of Co ²⁺ -doped willemite 83 4.4.2 Structural properties of Co ²⁺ -doped willemite 84 4.4.2 Structural properties of Co ²⁺ -doped willemite 84 4.4.2 FESEM analysis 84 4.4.2 FESEM analysis 84 4.4.3 Optical properties of Co ²⁺ -doped willemite 84 4.4.3 FTIR analysis 84 4.4.3 Optical properties of Co ²⁺ -doped willemite 84 4.4.3 UV-Visible analysis 98 4.4.3 Optical band gap analysis 98 4.4.3 Optical properties of Co ²⁺ -doped willemite 91 4.4.3 UV-Visible analysis 92 4.4.3 Optical properties of Co ²⁺ -doped willemite 93 4.4.3 Optical properties of Co ²⁺ -doped willemite 94 4.4.3 Optical properties of Co ²⁺ -doped willemite 95 4.4.3 Optical properties of Co ²⁺ -doped willemite 96 4.4.3 Optical properties of Co ²⁺ -doped willemite 97 4.4.3 Optical properties of Co ²⁺ -doped willemite 98 4.4.3 Optical properties of Co ²⁺ -doped willemite 98 4.4.3 Optical properties of Co ²⁺ -doped willemite 94 4.4.3 Optical properties of Co ²⁺ -doped willemite 94 4.4.3 Optical properties of Co ²⁺ -doped willemite 95 95 95 96 96 97 97 97 97 97 97 97 97 97 97 97 97 97		4.3. <mark>1</mark>	Physical properties of glass-ceramics	67
4.3.2 Structural properties of glass-ceramics 69 4.3.2.1 XRD analysis 69 4.3.2.2 FESEM analysis 71 4.3.2.3 FTIR analysis 73 4.3.3 Optical properties of glass-ceramics 75 4.3.3.1 UV-Visible analysis 75 4.3.3.2 Optical band gap analysis 77 4.3.3.3 Photoluminescence analysis 80 4.3.4 Dielectric properties of glass-ceramics 82 4.3.4.1 Dielectric constant 82 4.3.4.2 Dielectric loss 84 4.3.4.2 Dielectric loss 88 4.3.4.3 AC Conductivity 85 4.4.1 Physical properties of Co^{2+} -doped willemite 86 4.4.1.1 Density analysis 86 4.4.1.2 Linear shrinkage analysis 88 4.4.2 Structural properties of Co^{2+} -doped willemite 89 4.4.2.1 XRD analysis 88 4.4.2 FESEM analysis 93 4.4.2.3 FTIR analysis 98 4.4.3 Optical properties of Co^{2+} -doped willemite 89 4.4.2.1 XRD analysis 98 4.4.3 Optical properties of Co^{2+} -doped willemite 89 4.4.2.3 FTIR analysis 98 4.4.3 Optical properties of Co^{2+} -doped willemite 101 4.4.3.1 UV-Visible analysis 98 4.4.3 Optical properties of Co^{2+} -doped willemite 101 4.4.3.1 UV-Visible analysis 101			4.3.1.1 Density analysis and linear shrinkage	67
4.3.2 Fisher of the second properties of glass certaints (5) 4.3.2.1 XRD analysis (6) 4.3.2.2 FESEM analysis (7) 4.3.2.3 FTIR analysis (7) 4.3.3 Optical properties of glass-ceramics (7) 4.3.3.1 UV-Visible analysis (7) 4.3.3.2 Optical band gap analysis (7) 4.3.3.3 Photoluminescence analysis (80) 4.3.4 Dielectric properties of glass-ceramics (82) 4.3.4.1 Dielectric constant (82) 4.3.4.2 Dielectric loss (84) 4.3.4.3 AC Conductivity (85) 4.4.1 Physical properties of Co^{2+} -doped willemite (86) 4.4.1.1 Density analysis (86) 4.4.1.2 Linear shrinkage analysis (86) 4.4.2 Structural properties of Co^{2+} -doped willemite (86) 4.4.2 Structural properties of Co^{2+} -doped willemite (89) 4.4.2.3 FTIR analysis (93) 4.4.2.3 FTIR analysis (93) 4.4.3 Optical properties of Co^{2+} -doped willemite (101) 4.4.3.1 UV-Visible analysis (93) 4.4.3.2 Optical properties of Co^{2+} -doped willemite (101) 4.4.3.1 UV-Visible analysis (101) 4.4.3.2 Optical properties of Co ²⁺ -doped willemite (101) 4.4.3.1 UV-Visible analysis (104) 4.4.3.2 Optical properties of Co ²⁺ -doped willemite (101) 4.4.3.2 Optical properties of Co ²⁺ -doped willemite (101) 4.4.3.3 Coptical properties of Co ²⁺ -doped willemite (101) 4.4.3.3 Coptical properties of Co ²⁺ -doped willemite (101) 4.4.3.4 Optical properties of Co ²⁺ -doped willemite (101) 4.4.3.3 Coptical properties of Co ²⁺ -doped willemite (101) 4.4.3.4 Coptical properties of Co ²⁺ -doped willemite (101) 4.4.3.3 Coptical band gap analysis (104) 4.4.3.4 Coptical band gap analysis (104) 4.4.3 Coptical band gap analysis (104) 4.4.3 Coptical band ga		432	Structural properties of glass-ceramics	69
$\begin{array}{c ccccc} 4.3.2.1 & \text{FESEM analysis} & & & & & & & & & & & & & & & & & & &$		7.3.2	A 3 2 1 XRD analysis	69
4.3.2.3 FTIR analysis 73 4.3.2.3 Optical properties of glass-ceramics 75 4.3.3.1 UV-Visible analysis 75 4.3.3.2 Optical band gap analysis 77 4.3.3.3 Photoluminescence analysis 80 4.3.4 Dielectric properties of glass-ceramics 82 4.3.4.1 Dielectric constant 82 4.3.4.2 Dielectric loss 84 4.3.4.3 AC Conductivity 85 4.4 Co ²⁺⁻ doped willemite analysis 86 4.4.1 Physical properties of Co ²⁺ -doped willemite 86 4.4.1 Physical properties of Co ²⁺ -doped willemite 86 4.4.1.2 Linear shrinkage analysis 88 4.4.2 Structural properties of Co ²⁺ -doped willemite 89 4.4.2.1 XRD analysis 89 4.4.2.3 FTIR analysis 93 4.4.2.3 FTIR analysis 93 4.4.3 Optical properties of Co ²⁺ -doped willemite 101 4.4.3.1 UV-Visible analysis 93 4.4.3 Optical properties of Co ²⁺ -doped willemite 101 4.4.3.1 UV-Visible analysis 101 4.4.3.2 Optical band gap analysis 104			4.3.2.2 FESEM analysis	71
4.3.3 Optical properties of glass-ceramics 75 4.3.3 Optical band gap analysis 75 4.3.3.1 UV-Visible analysis 75 4.3.3.2 Optical band gap analysis 77 4.3.3.3 Photoluminescence analysis 80 4.3.4 Dielectric properties of glass-ceramics 82 4.3.4.1 Dielectric constant 82 4.3.4.2 Dielectric loss 84 4.3.4.3 AC Conductivity 85 4.4 Co ²⁺⁻ doped willemite analysis 86 4.4.1 Physical properties of Co ²⁺ -doped willemite 86 4.4.1 Physical properties of Co ²⁺ -doped willemite 86 4.4.1.2 Linear shrinkage analysis 88 4.4.2 Structural properties of Co ²⁺ -doped willemite 89 4.4.2.1 XRD analysis 89 4.4.2.3 FTIR analysis 93 4.4.2.3 FTIR analysis 93 4.4.3 Optical properties of Co ²⁺ -doped willemite 101 4.4.3.1 UV-Visible analysis 101 4.4.3.2 Optical band gap analysis 101			4.3.2.3 FTIR analysis	73
4.3.3 UV-Visible analysis 4.3.4 UV-Visible analysis 4.3.3 Photoluminescence analysis 4.3.4 Dielectric properties of glass-ceramics 4.3.4.1 Dielectric constant 4.3.4.2 Dielectric loss 4.3.4.3 AC Conductivity 4.4 $Co^{2+}doped$ willemite analysis 4.4.1 Physical properties of $Co^{2+}doped$ willemite 4.4.1.1 Density analysis 4.4.2 Structural properties of $Co^{2+}doped$ willemite 4.4.2.1 XRD analysis 4.4.2.2 FESEM analysis 4.4.3 Optical properties of $Co^{2+}doped$ willemite 4.4.2.3 FTIR analysis 4.4.3 Optical properties of $Co^{2+}doped$ willemite 4.4.3.1 UV-Visible analysis 4.4.3 Optical properties of $Co^{2+}doped$ willemite 4.4.3 Optical band gap analysis		133	Optical properties of glass-ceramics	75
4.3.3.2 Optical band gap analysis 77 4.3.3.3 Photoluminescence analysis 80 4.3.4 Dielectric properties of glass-ceramics 82 4.3.4.1 Dielectric constant 82 4.3.4.2 Dielectric loss 84 4.3.4.3 AC Conductivity 85 4.4 Co^{2+} doped willemite analysis 86 4.4.1 Physical properties of Co^{2+} -doped willemite 86 4.4.1 Disting analysis 86 4.4.1.2 Linear shrinkage analysis 88 4.4.2 Structural properties of Co^{2+} -doped willemite 89 4.4.2 Structural properties of Co^{2+} -doped willemite 89 4.4.2 FESEM analysis 93 4.4.2.3 FTIR analysis 98 4.4.3 Optical properties of Co^{2+} -doped willemite 101 4.4.3.1 UV-Visible analysis 101 4.4.3.2 Optical band gap analysis 104		ч.5.5	4 3 3 1 LIV Visible analysis	75
4.3.3.3 Photoluminescence analysis 80 4.3.4 Dielectric properties of glass-ceramics 82 4.3.4.1 Dielectric constant 82 4.3.4.2 Dielectric loss 84 4.3.4.3 AC Conductivity 85 4.4 Co ²⁺⁻ doped willemite analysis 86 4.4.1 Physical properties of Co ²⁺ -doped willemite 86 4.4.1.2 Linear shrinkage analysis 88 4.4.2 Structural properties of Co ²⁺ -doped willemite 89 4.4.2 FESEM analysis 89 4.4.2.3 FTIR analysis 93 4.4.3 Optical properties of Co ²⁺ -doped willemite 101 4.4.3.1 UV-Visible analysis 98 4.4.3 Optical properties of Co ²⁺ -doped willemite 101 4.4.3.1 UV-Visible analysis 101 4.4.3.2 Optical band gap analysis 104			4.3.3.2 Optical band gap analysis	75 77
4.3.4 Dielectric properties of glass-ceramics 4.3.4.1 Dielectric constant 4.3.4.2 Dielectric constant 4.3.4.2 Dielectric loss 4.4 Co^{2+} doped willemite analysis 4.4 Co^{2+} doped willemite analysis 4.4 Co^{2+} doped willemite analysis 4.4.1 Physical properties of Co^{2+} -doped willemite 4.4.1.2 Linear shrinkage analysis 4.4.2 Structural properties of Co^{2+} -doped willemite 4.4.2.1 XRD analysis 4.4.2.2 FESEM analysis 4.4.2.3 FTIR analysis 4.4.3 Optical properties of Co^{2+} -doped willemite 4.4.3.1 UV-Visible analysis 4.4.3.2 Optical band gap analysis 104			4333 Photoluminescence analysis	20 20
4.3.4.1 Dielectric constant 4.3.4.2 Dielectric constant 4.3.4.2 Dielectric loss 4.3.4.3 AC Conductivity 4.4 Co^{2+-} doped willemite analysis 4.4.1 Physical properties of Co^{2+-} doped willemite 4.4.1.1 Density analysis 4.4.2 Structural properties of Co^{2+-} doped willemite 4.4.2 Structural properties of Co^{2+-} doped willemite 4.4.2 FESEM analysis 4.4.2.2 FESEM analysis 4.4.2.3 FTIR analysis 4.4.3 Optical properties of Co^{2+-} doped willemite 4.4.3 UV-Visible analysis 4.4.3.1 UV-Visible analysis 4.4.3.2 Optical band gap analysis 104		131	Dielectric properties of glass_ceramics	82
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		7.3.7	4341 Dielectric constant	82
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			4342 Dielectric loss	84
4.4 $Co^{2+}doped$ willemite analysis 4.4 $Co^{2+}doped$ willemite analysis 4.4 $Co^{2+}doped$ willemite analysis 4.4.1 Physical properties of $Co^{2+}-doped$ willemite 4.4.1.1 Density analysis 4.4.2 Linear shrinkage analysis 4.4.2 Structural properties of $Co^{2+}-doped$ willemite 4.4.2.1 XRD analysis 4.4.2.2 FESEM analysis 4.4.2.3 FTIR analysis 93 4.4.2.3 FTIR analysis 98 4.4.3 Optical properties of $Co^{2+}-doped$ willemite 4.4.3.1 UV-Visible analysis 101 4.4.3.2 Optical band gap analysis 104			4343 AC Conductivity	85
4.4.1 Physical properties of Co^{2+} -doped willemite 86 4.4.1 Density analysis 86 4.4.1.2 Linear shrinkage analysis 88 4.4.2 Structural properties of Co^{2+} -doped willemite 89 4.4.2.1 XRD analysis 89 4.4.2.2 FESEM analysis 93 4.4.2.3 FTIR analysis 98 4.4.3 Optical properties of Co^{2+} -doped willemite 101 4.4.3.1 UV-Visible analysis 101 4.4.3.2 Optical band gap analysis 104	4.4	Co ²⁺⁻ do	ned willemite analysis	86
1.1.11.1.1 Josted properties of Co $^{-1}$ doped which the3004.4.1.1Density analysis864.4.1.2Linear shrinkage analysis884.4.2Structural properties of Co^{2+} -doped willemite894.4.2.1XRD analysis894.4.2.2FESEM analysis934.4.2.3FTIR analysis984.4.3Optical properties of Co^{2+} -doped willemite1014.4.3.1UV-Visible analysis1014.4.3.2Optical band gap analysis104	1.1	441	Physical properties of Co^{2+} -doped willemite	86
$\begin{array}{c ccccc} & & & & & & & & & & & & & & & & &$		1.1.1	4 4 1 1 Density analysis	86
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			4412 Linear shrinkage analysis	88
4.4.2.1XRD analysis894.4.2.2FESEM analysis934.4.2.3FTIR analysis984.4.3Optical properties of Co2+ doped willemite1014.4.3.1UV-Visible analysis1014.4.3.2Optical band gap analysis104		442	Structural properties of Co^{2+} -doped willemite	89
$\begin{array}{c ccccc} 4.4.2.2 & FESEM analysis & 93 \\ 4.4.2.3 & FTIR analysis & 98 \\ 4.4.3 & Optical properties of Co^{2+}-doped willemite & 101 \\ 4.4.3.1 & UV-Visible analysis & 101 \\ 4.4.3.2 & Optical band gap analysis & 104 \\ \end{array}$		1. T. <i>L</i>	4421 XRD analysis	89
4.4.2.3FTIR analysis934.4.3Optical properties of Co2+-doped willemite1014.4.3.1UV-Visible analysis1014.4.3.2Optical band gap analysis104			4422 FESEM analysis	03
4.4.3Optical properties of Co^{2+} -doped willemite1014.4.3.1UV-Visible analysis1014.4.3.2Optical band gap analysis104			4423 FTIR analysis	98
4.4.3.2 Optical properties of Contradiction of Contradict		443	Ontical properties of Co^{2+} -doped willemite	101
4.4.3.2 Optical band gap analysis 104		1. 7.3	4431 UV-Visible analysis	101
			4.4.3.2 Optical band gap analysis	104

			4.4.3.3	Photoluminescent analysis	109
		4.4.4	Dielectri	c properties of Co ²⁺ -doped willemite	114
			4.4.4.1	Dielectric constant	114
			4.4.4.2	Dielectric loss	118
			4.4.4.3	AC Conductivity	121
5	CON	CLUSIO	N AND RE	COMMENDATIONS	124
	5.2	Conclus	ion		124
	5.3	Recomm	nendations f	or future research	126
RE	FERE	NCES			127
AP	PEND	ICES			143
BIC	DDAT	A OF STU	JDENT		147
LIS	ST OF	PUBLIC	ATIONS		148

 \bigcirc

LIST OF TABLES

Table		Page
2.1	The advantages and disadvantages of producing Zn_2SiO_4 by various methods.	20
2.2	Summary on densities and linear shrinkage of Zn_2SiO_4 due to effect of heat treatment and doping percentage.	22
2.3	Summary on structural properties of zinc silicate glasses and Zn ₂ SiO ₄ .	27
2.4	Summary on effect of heat treatment process to the structural properties of Zn_2SiO_4 .	28
2.5	Summary on effect of dopant concentration to the structural properties of Zn_2SiO_4 .	29
2.6	Summary on effect of different ZnO content and effect of heat treatment process to the optical properties of Zn_2SiO_4 .	35
2.7	Summary on effect of dopant concentration to the optical properties of Zn_2SiO_4 .	36
3.1	Chemical compositions of zinc-silicate glass.	40
4.1	The chemical composition of WRHA.	56
4.2	DSC values of zinc silicate glasses with different ratios.	58
4.3	FTIR band assignations of zinc silicate glasses with different ratio.	61
4.4	Variation optical band gap values of zinc silicate glasses with different ratio.	64
4.5	Comparison of bulk and true density of willemite.	68
4.6	Average crystallite size of $(ZnO)_{0.55}$ (WRHA) _{0.45} glass-ceramics at various heat treatment temperatures.	71
4.7	The FTIR band assignation of of $(ZnO)_{0.55}(WRHA)_{0.45}$ glass and glass-ceramics.	74
4.8	Absorption edge of $(ZnO)_{0.55}$ (WRHA) _{0.45} glass and glass-ceramics at various heat treatment temperatures.	76
4.9	Variation of optical band gap zinc silicate glass and glass-ceramics heat treated at various heat treatment temperature.	79
4.10	Values for densities of undoped- Zn_2SiO_4 and Zn_2SiO_4 : Co^{2+} with different dopant and heat treated at various heat treatment temperatures.	87

 $\overline{\mathbb{C}}$

- 4.11 Percentage of linear shrinkage Zn₂SiO₄: Co²⁺ heat treated at various heat 89 treatment temperatures.
- 4.12 Average crystallite size and FWHM values of undoped- Zn_2SiO_4 and 93 Zn_2SiO_4 : Co^{2+} at various heat treatment temperatures.
- 4.13 Band assignation of Zn_2SiO_4 : Co^{2+} heat treated at various temperatures. 101
- 4.14 Extinction coefficient of Zn_2SiO_4 : Co^{2+} heat treated at various 108 temperatures.
- 4.15 Variation of optical band gap Zn_2SiO_4 : Co^{2+} for $n = \frac{1}{2}$ heat treated at 108 various temperatures.
- 4.16 Variation of optical band gap Zn_2SiO_4 : Co^{2+} for n = 3/2 heat treated at 108 various temperatures.
- 4.17 Dielectric contant values of undoped-Zn₂SiO₄ and Zn₂SiO₄: Co²⁺ with 117 different dopant and heat treated at various heat treatment temperatures.

LIST OF FIGURES

I	Figure		Page
	1.1	(a) Perspective view and b) top view of multi-LED-chip white LED consisting of green, red, and blue die for formation of white light (Cho et al., 2017).	4
	2.1	Equilibrium phase diagram of $ZnO \square SiO_2$ binary system (Bunting, 1930).	10
	2.2	Figure 2.2: Schematic diagram of double-stage heat-treatment process (a) Rate of nucleation growth (b) Temperature against time (Rawlings et al., 2006).	13
	2.3	Figure 2.3: Schematic diagram of single-stage heat-treatment process (a) Rate of nucleation growth (b) Temperature against time (Rawlings et al., 2006).	13
	2.4	Crystalline structure of α -Zn ₂ SiO ₄ (Takesue et al., 2009).	15
	2.5	Crystal system of triclinic and orthorhombic.	16
	2.6	Temperature and pressure (T-P) conditions for producing Zn_2SiO_4 according to each category (Takesue et al., 2009).	19
	3.1	Washing rice husk to remove stains.	39
	3.2	Drying rice husk using oven at 120 °C.	39
	3.3	Burning rice husk using electrical furnace at 1000 °C.	39
	3.4	The obtained WRHA after burned at 1000 °C.	39
	3.5	Grinding WRHA using mortar and pestle.	39
	3.6	Sieving the WRHA into 45 µm.	39
	3.7	Schematic diagram describing the process of producing zinc silicate glasses.	40
	3.8	Schematic diagram on fabrication of Zn ₂ SiO ₄ : Co ²⁺ .	41
	3.9	The digital electronic weighing machine used to measure the weight of samples.	42
	3.10	The dry milling process at 80 rpm for homogenous mixing.	42

3.11	a) The quenching process of the molten glass and b) the glass frits collected at the bottom of the pail with stainless steel siever.	43
3.12	The obtained glass frits based empirical formula $(ZnO)_x(WRHA)_{1-x}$ where x = 0.50, 0.52, 0.55, 0.57 and 0.60 wt.% after melt and quenching process.	43
3.13	The obtained glass frits based empirical formula $(Co_3O_4)_y[(ZnO)_{0.55}(WRHA)_{0.45}]_{1-y}$ where $y = 0.1, 0.5$, and 1.0 wt.% after melt and quenching process.	43
3.14	Picture of grounded Zn ₂ SiO ₄ : Co ²⁺ using mortar and pestle.	44
3.15	The process of pressing powder into pellet using stainless stell mould.	44
3.16	Picture of a) the pelleted zinc silicate glass was put into alumina boat b) the zinc silicate glass was ready for the heat treatment	45
3.17	Picture of $(Co_3O_4)_y[(ZnO)_{0.55}(WRHA)_{0.45}]_{1-y}$ where $y = 0.0, 0.1, 0.5, and 1.0$ wt.% heat treated at 27, 700, 750, 800, 850, 900 and 950 °C respectively.	45
3.18	a) The electronic densimeter used to measure the bulk densityb) the gas pycnometer machine used to measure the true density.	48
3.19	Schematic diagram of linear shrinkage measurement using vernier calliper.	48
3.20	Illustration of X-Ray diffraction phenomena which obey the Bragg's Law.	49
3.21	Example of samples being coated with platinum to avoid charging.	50
3.22	The impedance analyser used to measure the dielectric properties.	54
4.1	DSC curve of zinc silicate glasses with different ratios.	57
4.2	The picture of zinc silicate glasses with different ratios.	58
4.3	The X-ray diffraction pattern of zinc silicate glasses with different ratios.	59
4.4	The FTIR spectra of zinc silicate glasses with different ratios.	61
4.5	The absorption spectra of zinc silicate glasses with different ratios.	62

4.6	The optical band gap of zinc silicate glasses with different ratios against hv.	64
4.7	The emission spectra of zinc silicate glasses with different ratio excited at 400 nm.	66
4.8	The density and linear shrinkage of $(ZnO)_{0.55}(WRHA)_{0.45}$ glass and glass-ceramics at various heat treatment temperatures.	68
4.9	The X-ray diffraction patterns of $(ZnO)_{0.55}$ (WRHA) _{0.45} glass and glass-ceramics at various heat treatment temperatures from 700 °C to 950 °C.	70
4.10	The surface morphology of $(ZnO)_{0.55}$ (WRHA) _{0.45} glass and glass-ceramics heated at various heat treatment temperatures: (a) 27 °C, (b) 700 °C, (c) 750 °C, (d) 800 °C, (e) 850 °C, (f) 900 °C and (g) 950 °C.	72
4.11	Fourier transform infrared spectra of (ZnO) _{0.55} (WRHA) _{0.45} glass and glass-ceramics at various heat treatment temperatures.	74
4.12	Absorption spectra of (ZnO) _{0.55} (WRHA) _{0.45} glass and glass- ceramics at various heat treatment temperatures.	76
4.13	Extinction coefficient of (ZnO) _{0.55} (WRHA) _{0.45} glass and glass- ceramics at various heat treatment temperatures.	78
4.14	Optical band gap of $(ZnO)_{0.55}$ (WRHA) _{0.45} glass and glass- ceramics at various heat treatment temperatures (n=3/2).	79
4.15	Emission spectra of (ZnO) _{0.55} (WRHA) _{0.45} glass and glass- ceramics at various heat treatment temperatures.	81
4.16	Dielectric constant of (ZnO) _{0.55} (WRHA) _{0.45} glass and glass- ceramics at various heat treatment temperatures.	83
4.17	Dielectric loss of $(ZnO)_{0.55}(WRHA)_{0.45}$ glass and glass- ceramics at various heat treatment temperatures.	84
4.18	AC Conductivity of (ZnO) _{0.55} (WRHA) _{0.45} glass and glass- ceramics at various heat treatment temperatures.	85
4.19	Densities of undoped- Zn_2SiO_4 and Zn_2SiO_4 : Co^{2+} with different dopant and heat treated at various heat treatment temperatures.	87
4.20	Linear shrinkage of Zn_2SiO_4 : Co^{2+} heat treated at various heat treatment temperatures.	88
4.21	X-ray diffraction pattern of undoped-Zn ₂ SiO ₄ at various heat treatment temperatures.	91

	4.22	X-ray diffraction pattern of Zn_2SiO_4 : 0.1 wt. % Co^{2+} at various heat treatment temperatures.	91
	4.23	X-ray diffraction pattern of Zn_2SiO_4 : 0.5 wt. % Co^{2+} at various heat treatment temperatures.	92
	4.24	X-ray diffraction pattern of Zn_2SiO_4 : 1.0 wt. % Co^{2+} at various heat treatment temperatures.	92
	4.25	FESEM micrographs of undoped- Zn_2SiO_4 heat treated at (a) 27 °C (b) 750 °C (c) 800 °C (d) 850 °C (e) 900 °C and (f) 950 °C.	94
	4.26	FESEM micrographs of Zn_2SiO_4 : 0.1 wt. % Co^{2+} heat treated at (a) 27 °C (b) 750 °C (c) 800 °C (d) 850 °C (e) 900 °C and (f) 950 °C.	95
	4.27	FESEM micrographs of Zn_2SiO_4 : 0.5 wt. % Co^{2+} heat treated at (a) 27 °C (b) 700 °C (c) 750 °C (d) 800 °C (e) 850 °C (f) 900 °C and (g) 950 °C.	96
	4.28	FESEM micrographs of Zn_2SiO_4 : 1.0 wt. % Co ²⁺ heat treated at (a) 27 °C (b) 700 °C (c) 750 °C (d) 800 °C (e) 850 °C (f) 900 °C and (g) 950 °C.	97
	4.29	Fourier transform infrared spectra of undoped-Zn ₂ SiO ₄ glass- ceramics at various heat treatment temperatures.	99
	4.30	Fourier transform infrared spectra of Zn_2SiO_4 : 0.1 wt. % Co^{2+} glass-ceramics at various heat treatment temperatures.	99
	4.31	Fourier transform infrared spectra of Zn ₂ SiO ₄ : 0.5 wt. % Co ²⁺ at various heat treatment temperatures.	100
	4.32	Fourier transform infrared spectra of Zn ₂ SiO ₄ : 1.0 wt. % Co ²⁺ at various heat treatment temperatures.	100
	4.33	Optical absorption band of undoped- Zn_2SiO_4 at various heat treatment temperatures.	102
	4.34	Optical absorption band of Zn_2SiO_4 : 0.1 wt. % Co^{2+} at various heat treatment temperatures.	103
	4.35	Optical absorption band of Zn_2SiO_4 : 0.5 wt. % Co^{2+} at various heat treatment temperatures.	103
	4.36	Optical absorption band of Zn_2SiO_4 : 1.0 wt. % Co^{2+} at various heat treatment temperatures.	104
	4.37	Optical band gap of undoped- Zn_2SiO_4 at various heat treatment temperatures.	106

	4.38	Optical band gap of Zn_2SiO_4 : 0.1 wt. % Co^{2+} at various heat treatment temperatures.	106
	4.39	Optical band gap of Zn_2SiO_4 : 0.5 wt. % Co^{2+} at various heat treatment temperatures.	107
	4.40	Optical band gap of Zn_2SiO_4 : 1.0 wt. % $Co^{2+}at$ various heat treatment temperatures.	107
	4.41	Emission spectra of undoped-Zn ₂ SiO at various heat treatment temperatures excited at 375 nm.	110
	4.42	Emission spectra of Zn_2SiO_4 : 0.1 wt. % Co^{2+} at various heat treatment temperatures. excited at 325 nm.	111
	4.43	Emission spectra of Zn ₂ SiO ₄ : 0.5 wt. % Co ²⁺ at various heat treatment temperatures excited at 325 nm.	111
	4.44	Emission spectra of Zn_2SiO_4 : 1.0 wt. % $Co^{2+}at$ various heat treatment temperatures excited at 325 nm.	112
	4.45	Emission spectra of Zn_2SiO_4 : 0.1 wt. % Co^{2+} at various heat treatment temperatures excited at 400 nm.	112
	4.46	Emission spectra of Zn_2SiO_4 : 0.5 wt. % Co^{2+} at various heat treatment temperatures excited at 400 nm.	113
	4.47	Emission spectra of Zn_2SiO_4 : 1.0 wt. % Co^{2+} at various heat treatment temperatures excited at 400 nm.	113
	4.48	Dielectric constant of undoped- Zn_2SiO_4 at various heat treatment temperatures.	115
	4.49	Dielectric constant of Zn_2SiO_4 : 0.1 wt. % Co^{2+} at various heat treatment temperatures.	116
	4.50	Dielectric constant of Zn_2SiO_4 : 0.5 wt. % Co^{2+} at various heat treatment temperatures.	116
	4.51	Dielectric constant of Zn_2SiO_4 : 1.0 wt. % Co^{2+} at various heat treatment temperatures.	117
0	4.52	Dielectric loss of undoped- Zn_2SiO_4 at various heat treatment temperatures.	118
	4.53	Dielectric loss of Zn_2SiO_4 : 0.1 wt. % Co^{2+} at various heat treatment temperatures.	119
	4.54	Dielectric loss of Zn_2SiO_4 : 0.5 wt. % Co^{2+} at various heat treatment temperatures.	119

- 4.55 Dielectric loss of Zn_2SiO_4 : 1.0 wt. % Co^{2+} at various heat 120 treatment temperatures.
- 4.57 AC Conductivity of Zn_2SiO_4 : 0.1 wt. % Co^{2+} at various heat 122 treatment temperatures.
- 4.58 AC Conductivity of Zn_2SiO_4 : 0.5 wt. % Co^{2+} at various heat 123 treatment temperatures.
- 4.59 AC Conductivity of Zn_2SiO_4 : 1.0 wt. % Co^{2+} at various heat 123 treatment temperatures.

LIST OF ABBREVIATIONS

CB	Conduction band
DSC	Differential Scanning Calorimetry
FESEM	Field emission scanning electron microscopy
FTIR	Fourier transform infrared
FWHM	Full width half maximum
LED	Light-emitting diodes
NBOs	Non-bridging oxygen
Oi	Oxygen interstitial
PDPs	Plasma display panels
PL	Photoluminescence
PVA	Polyvinyl alcohol
RE	Rare earth
RH	Rice husk
RHA	Rice husk ash
SRO	Short-range order
T _c	Crystallization peak temperature
Tg	Glass transition temperature
T _m	Melting temperature
ТМ	Transition metal
UV-Vis	Ultra-violet Visible
VB	Valance band
Vo	Oxygen vacancies
V _{zn}	Zinc vacancy
W-LEDS	White light-emitting diodes

G

WRHA White rice husk ash

XRD X-ray diffraction

 $Zn_2SiO_4: Co^{2+}$ Willemite doped cobalt oxide

Zn₂SiO₄ Willemite

6

CHAPTER 1

INTRODUCTION

1.1 Research background

Nowadays, silicate glasses that have high zinc oxide (ZnO) content are attractive due to their various applications, from both technical glasses and glass-ceramics to highperformance optical glasses (Bondioli et al., 2010). In this research, the fabrication of zinc silicate glasses and glass-ceramics will be done and investigated. The major components that made up zinc silicate glass and glass-ceramics are ZnO and silicon dioxide, SiO₂ (Khaidir et al., 2020). Rice husk (RH) is one of the agricultural by-products that can be used to produce SiO₂. Burning of RH at a certain temperature can produce white rice husk ash (WRHA) with approximately 87 to 97% silica and a small amount of other metallic impurities (Yalcin & Sevinc, 2001; Tuscharoen et al., 2013). Lee et al., (2017b) reported that burning RH at 1000 °C for 2 hours produced about 95.60% of silica (SiO₂) without any acid leaching process. This high in silica content from WRHA, making it the most compatible replacer of commercial silica to produce zinc silicate glass and glass-ceramics (Khaidir et al., 2019a).

Zinc silicate or its mineral name willemite (Zn_2SiO_4) is very familiar amid researchers as the best and most favourable host matrix in glass phosphor for the optoelectronic application due to its phenakite structure (Tarafder et al., 2014). Besides, this rigid lattice of Zn_2SiO_4 also permits it to be utilized as the enhancer for generating the light inside the fluorescent lamp, neon discharged lamps, colour television, black-and-white television. waveguides, laser technology, optical fibre amplifiers, optical communications, oscilloscopes, and light-emitting diodes (LED) (Sarrigani et al., 2015a; Zaid et al., 2015; Effendy et al., 2017). Several studies had been done by previous researchers regarding Zn₂SiO₄ doped transition metal (TM) and rare earth (RE) (Tarafder et al., 2013; Sarrigani et al., 2015a; Effendy et al., 2016; Samsudin et al., 2016a; Babu et al., 2017; Mohamed et al., 2017; Rasdi et al., 2017a; Omar et al., 2017; Zaid et al., 2017a; Zamratul et al., 2017; Azman et al., 2018; Khaidir et al., 2019b). In this research, fabrication, and characterization of Zn₂SiO₄ based glass-ceramics derived from WRHA doped with cobalt oxide (Co_3O_4) by using conventional melt-quenching methods were done.

 Zn_2SiO_4 doped Co_3O_4 (Zn_2SiO_4 : Co^{2+}) is a promising blue ceramic pigment (Ozel et al., 2010). The deep blue colour of the Zn_2SiO_4 : Co^{2+} crystals and the characteristic threeband systems around 2632, 1429 and 588 nm in the corresponding absorption spectra are typical for tetrahedral Co^{2+} (Brunold et al., 1996). As in the case of the well-known spinel pigment, deep blue colour is obtained by doping the Zn_2SiO_4 structure with cobalt, that replaces zinc ions in tetrahedral positions (Ozel et al., 2010) wherein groups of tetrahedral $Co(II)O_4$, the first two spins allowed bands fall in the infrared region ~1400 nm and 1600 nm, only the third allowed band available in the visible region and usually triple-band around 540 nm (green region), 590 nm (yellow-orange region) and 640 nm (red region) that gives rise to the blue colour (Babu & Buddhudu, 2014). In terms of emission spectroscopy, Zn_2SiO_4 : Co^{2+} sol-gel revealed a red emission at 631 nm (Babu & Buddhudu, 2014) while Rasdi et al., (2017b) reported Zn_2SiO_4 : Co^{2+} prepared by sol-gel methods exhibit blue emission (420 and 480 nm) and green emission (525 nm) when excited at 350 nm. Those peaks were attributed to the d-d transition of Co^{2+} from ${}^{4}A_2 \rightarrow {}^{4}T_1$ (⁴P) (Choudhury A & Choudhury B, 2012; Rasdi et al., 2017b). These excellent optical properties of Zn_2SiO_4 : Co^{2+} make it a good candidate to be used as blue and green phosphors for luminescence optical materials.

Aside from that, dielectric properties also give good information for Zn_2SiO_4 to be a phosphor material. According to Sukriti and co-workers, the material that has a lower dielectric constant and dielectric loss in the higher frequency section will be much suitable to be used in devices that have a high-frequency application such as LED (Sukriti & Chand, 2019b). Therefore, to investigate more on the capability of Zn_2SiO_4 : Co²⁺ to be used as a phosphor material, hence its optical and dielectric properties needed to be studied. In this study the Zn_2SiO_4 : Co²⁺ will be fabricated and characterized after undergoing heat treatment at several temperatures starting from 750 °C to 950 °C to observe the formation of willemite. After that, the physical, structural, optical, and dielectric properties of Zn_2SiO_4 : Co²⁺ based glass-ceramics will be studied.

1.2 Problem statement

In recent years, the abundance of rice husk waste had been a huge concern among environmentalists. Thus, various ways had been introduced to utilize the uses of RH such as admixture for cement, the source for energy in rural areas, filler, carbon capture, adsorbent materials, and source of SiO₂ (Pode, 2016). WRHA had been talked by the researchers as its high amount of silica content which can be very beneficial towards the development of current technology (Yalcin & Sevinc, 2001; Tuschareon et al., 2013; Ruengsri et al., 2015; Bakar et al., 2016; Fernandes et al., 2017). According to Bondioli et al., (2010), using SiO₂ from WRHA, the same type of industrial glass can be produced with the same glass characteristic made from commercial silica. SiO₂ from WRHA was acknowledged to be the substituent of commercial silica due to its high silica content. The commercial silica is very expensive (Azman et al., 2018), hence, using WRHA as the substituent, will reduce the cost of production as well as reduce the pollution if the RH were burned in an open space (Bakar et al., 2016).

Glass plays an important role in optical applications such as data transmission, sensor detection, sensor technology and is a good candidate for solid-state lasers (Zaid et al., 2016). ZnO–SiO₂ glasses are among the glasses that had been extensively studied by many researchers due to their great luminescence properties. However, the effect of zinc oxide (ZnO) content on the physical, structural, and optical properties of zinc silicate glasses derived from WRHA of ZnO–SiO₂ glasses are rarely to be found. This is because most of the researchers are focusing on the studies of zinc silicate glass and glass-ceramics doped transition metal or rare-earth. Therefore, in this present study, an extensive discussion regarding the photoluminescence studies of ZnO–SiO₂ glass will be presented.

Apart from that, nowadays glass-ceramics had been great attention among researchers due to their attractive properties. The transformation of glass into glass-ceramics has progressively become an important technique to improve the quality and properties of the zinc silicate glass such as the physical endurance and the luminescene properties. To produce $ZnO-SiO_2$ glass-ceramics, the zinc silicate glasses need to be heat treated at a certain temperature. Therefore, the heat treatment process needs to be conducted to form the glass-ceramcis. After the heat treatment process, $ZnO-SiO_2$ glass will form zinc silicate glass-ceramics also known as willemite (Zn₂SiO₄). Zn₂SiO₄ is a promising phosphor for optoelectronic devices (Azman et al., 2018). Among oxide-based phosphor, Zn_2SiO_4 was identified as one of the most compatible host matrixes for many transitions metal (TM) and rare-earth (RE) ions (Rasdi et al., 2017a). The doping of Zn₂SiO₄ is no longer new (Sariggani et al., 2015; Azman et al., 2018). Among the dopant that had used are europium oxide (Eu_2O_3), manganese oxide (Mn_2O_3), erbium oxide (Er_2O_3), thulium oxide (Tm_2O_3) , neodymium oxide (Nd_2O_3) and praseodymium oxide (Pr_6O_{11}) (Tarafder et al., 2013; Sarrigani et al., 2015a; Effendy et al., 2016; Samsudin et al., 2016a; Babu et al., 2017; Mohamed et al., 2017; Rasdi et al., 2017a; Omar et al., 2017; Zaid et al., 2017a; Zamratul et al., 2017; Azman et al., 2018; Khaidir et al., 2019b). These dopants had enhanced the luminescence properties of Zn_2SiO_4 , allowing it to emit various visible colours such as green, yellow, red, and blue.

Green emission can be acquired using Eu₂O₃, Mn₂O₃, Pr₆O₁₁ and Er₂O₃ as a dopant. In contrast, yellow emission can be obtained by doping Zn_2SiO_4 with Eu₂O₃ and Mn₂O₃, while red emission was usually acquired by doping Zn₂SiO₄ with Eu₂O₃, Mn₂O₃, Pr₆O₁₁ (Samsudin et al., 2015; Omar et al., 2016d; Zaid et al., 2017a; Khaidir et al., 2019b; Mohamed et al., 2017; Effendy et al., 2016). From here, it can be concluded that the green, yellow, and red emissions of Zn₂SiO₄ doped TM or RE ions are widespread and possible to get. However, the blue emission of Zn₂SiO₄ is quite low in number to be found. Other authors reported that Co²⁺-doped ZnO also could give blue emission (Sujinnapram et al., 2009). The same result had been found by Li et al., (2010), where the Co²⁺-doped ZnO also gives arise to blue emission corresponding to the near band edge (NBE) transition and due to oxygen vacancies (Li et al., 2010). Another research that used Co_3O_4 as a dopant had been carried out by Manickam et al., (2016), and the research findings were the visible blue emission had been produced centred at 446 nm. The research regarding the origin of blue emission still had been continued since the blue emission is vital to make white light-emitting diodes (W-LEDs). According to Cho et al., (2017), white light formation includes three primary colours; green, red, and blue (Figure 1.1a and 1.1b). Thus, this shows the importance of blue emission in the progression of current technology that mostly used white light. Zamratul et al., (2017) reported blue emission findings in Zn_2SiO_4 by doping it with Nd₂O₃. Still, the blue emission is not the primary emission, and it is just a shoulder of emission accompanied by other emissions such as green and yellow emission. Other than that, Rasdi et al., (2017b) also reported willemite doped Co_3O_4 able to produce blue light at 420 and 480 nm when excited at 350 nm. However, the author is using the sol-gel method, and it is quite expensive since it used pure chemicals. Based on the previous research, the blue emission of any host materials is possible to be produced by using Co_3O_4 as the dopant. Therefore, in this research, the author would like to introduce studies regarding the Zn₂SiO₄ based glassceramics doped Co₃O₄ derived from WRHA. Since our aim is also to utilize the uses of WRHA, thus conventional melt and quenching methods are the best ways that can be used.

1.3 Objectives

In this research, the study's focus is to fabricate and enhance the optical and dielectric properties of Zn_2SiO_4 based glass-ceramics from WRHA. Thus, this project includes producing the glass phosphor, heat-treating the precursor glass, and doping the Zn_2SiO_4 with Co_3O_4 .

The objectives of the research are:

- 1. To synthesize the zinc silicate glass and Zn₂SiO₄ based glass-ceramics doped Co₃O₄ using WRHA as silica source.
- 2. To study the impact of different ZnO content on the thermal, physical, structural, and optical properties of zinc silicate glass.
- 3. To investigate the effect of heat treatment on the physical, structural, optical, and dielectric properties of zinc silicate glass and glass-ceramics.
- 4. To analyze the influence of Co₃O₄ doping on the physical, structural, optical, and dielectric properties of Zn₂SiO₄ based glass-ceramics derived from WRHA.

1.4 Scope of the study

At first, five series of precursor glasses were fabricated, then the chosen precursor glass will be heat-treated and lastly, the chosen glasses will be doped with Co_3O_4 . Therefore, the scope of the study of this research are as follows:

- 1. A series of ZnO–WRHA glasses were fabricated based on empirical formula $(ZnO)_x(WRHA)_{1-x}$ where x = 0.50, 0.52, 0.55, 0.57 and 0.60 wt.%
- 2. The precursor glasses were analyzed by using DSC, XRD, FTIR, UV-Vis and PL.
- 3. The precursor glass was subjected to a heat treatment process at 700 °C to 950 °C to produce Zn₂SiO₄ based glass-ceramics.
- 4. Four series of Zn_2SiO_4 based glass-ceramics derived from WRHA doped Co_3O_4 were fabricated based on the empirical formula $(Co_3O_4)_y[(ZnO)_{0.55}(WRHA)_{0.45}]_{1-y}$ where $y = 0.0 \ 0.1, \ 0.5, \ and \ 1.0 \ wt.\%$ by using conventional melt-quenching and control heat treatment method.
- 5. The physical, structural, optical, and dielectric properties of Zn₂SiO₄ based glassceramics doped Co₃O₄ were analysed by using bulk density, true density, linear shrinkage, XRD, FESEM, FTIR, UV-Vis, PL and impedance analyzer.

1.5 Outline of the thesis

In this study, Chapter 1 gave information about the element that had been used as the silica source which is WRHA. Then, continued with then ZnO-WRHA glasses, glass-ceramics and Zn_2SiO_4 based glass-ceramics doped Co_3O_4 . Meanwhile, in Chapter 2, the RH literature review, types of oxide glasses and previous studies of Zn_2SiO_4 doped glass-ceramics had been referred. Besides, the common characterization of Zn_2SiO_4 dopes glass-ceramics also had been observed. In Chapter 3, the method of carrying out the research, calculation of the result and type of characterization had been discussed. Further discussion regarding the ZnO-WRHA precursor glasses, the effect of heat treatment on the zinc silicate glass-ceramics, and cobalt dopant influence on the Zn_2SiO_4 based glass-ceramics were reported in Chapter 4. Lastly, in Chapter 5, the conclusion from the overall research was done. Some suggested future work is also written in this chapter.

REFERENCES

- Alemi, A. A., Sedghi, H., Mirmohseni, A. R., & Golsanamlu, V. (2006). Synthesis and characterization of cadmium doped lead-borate glasses. *Bulletin of Materials Science*, 29(1), 55-58.
- Alibe, I. M., Matori, K. A., Yaakob, Y., Rashid, U., Alibe, A. M., Zaid, M. H. M., Nasir, S., & Nasir, M. M. (2019). Effects of polyvinylpyrrolidone on structural and optical properties of willemite semiconductor nanoparticles by polymer thermal treatment method. *Journal of Thermal Analysis and Calorimetry*, 136(6), 2249-2268.
- Aljawfi, R. N., Rahman, F., Batoo, K. M. (2014). Effect of grain size and grain boundary defects on electrical and magnetic properties of Cr doped ZnO nanoparticles. *Journal of Molecular Structure*, 1065, 199-204.
- Al-Nidawi, A. J. A., Matori, K. A., Zakaria, A., & Zaid, M. H. M. (2017). Effect of MnO₂ doped on physical, structure and optical properties of zinc silicate glasses from waste rice husk ash. *Results in Physics*, 7, 955-961.
- Alvi, N. H., Ul Hasan, K., Nur, O., & Willander, M. (2011). The origin of the red emission in n-ZnO nanotubes/p-GaN white light emitting diodes. *Nanoscale Research Letters*, 6(1), 130-137.
- Angell, C. A. (1995). Formation of glasses from liquids and biopolymers. *Science*, 267(5206), 1924-1935.
- Anuar, M. F., Fen, Y. W., Zaid, M. H. M., & Omar, N. A. S. (2020a). Optical studies of crystalline ZnO–SiO₂ developed from pyrolysis of coconut husk. *Materials Research Express*, 7(5), 055901-055907.
- Anuar, M. F., Fen, Y. W., Zaid, M. H. M., Omar, N. A. S., & Khaidir, R. E. M. (2020b). Sintering temperature effect on structural and optical properties of heat treated coconut husk ash derived SiO₂ mixed with ZnO nanoparticles. *Materials*, 13(11), 2555-2565.
- Avinash, B. S., Chaturmukha, V. S., Jayanna, H. S., Naveen, C. S., Rajeeva, M. P., Harish, B. M., Suresh, S. & Lamani, A. R. (2016, May). Effect of particle size on band gap and DC electrical conductivity of TiO₂ nanomaterial. *AIP Conference Proceedings*, 1728, 1-4.
- Azlan, M. N., Halimah, M. K., Shafinas, S. Z., & Daud, W. M. (2014). Polarizability and optical basicity of Er³⁺ ions doped tellurite based glasses. *Chalcogenide Letters*, 11(7), 319-335.
- Azman, A. Z. K., (2019). Effect of ZnO/B₂O₃ and ZnO/SiO₂ Ratio on physical, structural and optical properties of willemite based glass-ceramics from waste rice husk. Master Thesis, Universiti Putra Malaysia.

- Azman, A. Z. K., Matori, K. A., Ab Aziz, S. H., Zaid, M. H. M., Wahab, S. A. A., & Khaidir, R. E. M. (201). Comprehensive study on structural and optical properties of Tm₂O₃ doped zinc silicate based glass-ceramics. *Journal of Materials Science: Materials in Electronics*, 29(23), 19861-19866.
- Babu, B. C., & Buddhudu, S. (2014). Spectral analysis of Cu²⁺: Zn₂SiO₄, Ni²⁺: Zn₂SiO₄ and Co²⁺: Zn₂SiO₄ nanocomposites by a sol-gel method. *Indian Journal of Physics*, 88(6), 631-640.
- Babu, B. C., Kumar, K. N., Rudramadevi, B. H., & Buddhudu, S. (2014). Synthesis, structural and dielectric properties of Co²⁺, Ni²⁺ and Cu²⁺: Zn₂SiO₄ nanoceramics by a sol-gel method. *Ferroelectrics Letters Section*, 41(1-3), 28-43.
- Babu, B. C., Rao, B. V., Ravi, M., & Babu, S. (2017). Structural, microstructural, optical, and dielectric properties of Mn²⁺: Willemite Zn₂SiO₄ nanocomposites obtained by a sol-gel method. *Journal of Molecular Structure*, 1127, 6-14.
- Bray, C. (2001). *Dictionary of glass: materials and techniques*. University of Pennsylvania Press, United States.
- Beall, G. H., & Pinckney, L. R. (1999). Nanophase glass-ceramics. Journal of the American Ceramic Society, 82(1), 5-16.
- Beall, G. H. (1992). Design and properties of glass-ceramics. Annual Review of Materials Science, 22(1), 91-119.
- Bakar, R. A., Yahya, R., & Gan, S. N. (2016). Production of high purity amorphous silica from rice husk. *Procedia Chemistry*, *19*, 189-195.
- Baki, S. O., Tan, L. S., Kan, C. S., Kamari, H. M., Noor, A. S. M., & Mahdi, M. A. (2014). Spectroscopic studies of Er³⁺-Yb³⁺ codoped multicomposition tellurite oxide glass. *Advanced Materials Research*, 895, 323-333.
- Bansal, N. P., & Doremus, R. H. (2013). Handbook of glass properties. London. Academic Press.
- Bharat, LK., Jeon, Y. II & Yu. J.s (2014). Synthesis and luminescent properties of trivalent rare-earth (Eu³⁺, Tb³⁺) ions doped nanocrystallie AgLa(PO₃)₄ polyphosphates. *Journal of Alloys and Compounds*. 614, 443-447.
- Belostotsky, V. (2007). Defect model for the mixed mobile ion effect. *Journal of Non-crystalline Solids*, 353(11-12), 1078-1090.
- Bondioli, F., Barbieri, L., Ferrari, A. M., & Manfredini, T. (2010). Characterization of rice husk ash and its recycling as quartz substitute for the production of ceramic glazes. *Journal of the American Ceramic Society*, 93(1), 121-126.
- Brunold, T. C., Güdel, H. U., & Cavalli, E. (1996). Absorption and luminescence spectroscopy of Zn₂SiO₄ willemite crystals doped with Co²⁺. *Chemical Physics Letters*, 252(1-2), 112-120.

- Bunting, E. N. (1930). Phase equilibria in the system SiO₂–ZnO. Journal of the American Ceramic Society, 13(1), 5-10.
- Chen, G. H., & Liu, X. Y. (2007). Sintering, crystallization and properties of MgO-Al₂O₃-SiO₂ system glass-ceramics containing ZnO. *Journal of Alloys and Compounds*, 431(1), 282-286.
- Chen, H., Wang, W., Martin, J. C., Oliphant, A. J., Doerr, P. A., Xu, J. F., DeBorn, K. M., Chen, C., & Sun, L. (2013). Extraction of lignocellulose and synthesis of porous silica nanoparticles from rice husks: a comprehensive utilization of rice husk biomass. ACS Sustainable Chemistry & Engineering, 1(2), 254-259.
- Cho, J., Park, J. H., Kim, J. K., & Schubert, E. F. (2017). White light-emitting diodes: History, progress, and future. *Laser & Photonics Reviews*, 11(2), 1-17.
- Choudhury, A., & Choudhury, B. (2012). Luminescence characteristics of cobalt doped TiO₂ nanoparticles. *Journal of Luminescence*, *132*(1), 178-184.
- Cormier, L. (2014). Nucleation in glasses-new experimental findings and recent theories. *Procedia Materials. Science*, 7, 60-71.
- Cui, H., Zayat, M., & Levy, D. (2005). Nanoparticle synthesis of willemite doped with cobalt ions (Co_{0.05}Zn_{1.95}SiO₄) by an epoxide-assisted sol-gel method. *Chemistry of Materials*, *17*(22), 5562-5566.
- Dong, M., Yue, Z., Zhuang, H., Meng, S., & Li, L. (2008). Microstructure and microwave dielectric properties of TiO₂-doped Zn₂SiO₄ ceramics synthesized through the sol-gel process. *Journal of the American Ceramic Society*, 91(12), 3981-3985.
- Duan, X., Yuan, D., Cheng, X., Sun, Z., Sun, H., Xu, D., & Lv, M. (2003). Spectroscopic properties of Co²⁺: ZnAl₂O₄ nanocrystals in sol-gel derived glassceramics. *Journal of Physics and Chemistry of Solids*, 64(6), 1021-1025.
- Effendy, N., Wahab, Z. A., Kamari, H. M., Matori, K. A., Ab Aziz, S. H., & Zaid, M. H. M. (2016). Structural and optical properties of Er³⁺-doped willemite glassceramics from waste materials. *Optik*, 127(24), 11698-11705.
- Effendy, N., Wahab, Z. A., Ab Aziz, S. H., Matori, K. A., Zaid, M. H. M., & Rashid, S. S. A. (2017). Characterization and optical properties of erbium oxide doped ZnO–SLS glass for potential optical and optoelectronic materials. *Materials Express*, 7(1), 59-65.
- Effendy, N., Ab Aziz, S. H., Kamari, H. M., Matori, K. A., & Zaid, M. H. M. (2019). Enhanced green photoluminescence of erbium doped Zn₂SiO₄ glass-ceramics as phosphor in optoelectronic devices. *Journal of Alloys and Compounds*, 783, 441-447.
- Ehrt, D., & Flügel, S. (2011). Properties of zinc silicate glasses and melts. Journal of Materials Science and Engineering. A, 1(3A), 312-320.

- El-Falaky, G. E., Guirguis, O. W., & Abd El-Aal, N. S. (2012). AC conductivity and relaxation dynamics in zinc-borate glasses. *Progress in Natural Science: Materials International*, 22(2), 86-93.
- El Mir, L., Amlouk, A., Barthou, C., & Alaya, S. (2007). Synthesis and luminescence properties of ZnO/Zn₂SiO₄/SiO₂ composite based on nanosized zinc oxide-confined silica aerogels. *Physica B: Condensed Matter*, *388*(1-2), 412-417.
- El Nahrawy, A. M., Abou Hammad, A. B., Youssef, A. M., Mansour, A. M., & Othman,
 A. M. (2019). Thermal, dielectric and antimicrobial properties of polystyreneassisted/ITO: Cu nanocomposites. *Applied Physics A*, 125(1), 46-55.
- El-Mallawany, R. A. (2011). *Tellurite glasses handbook: Physical properties and data*. United States of America. CRC press.
- El-Shamy, A. G., Attia, W. M., Abd El Kader, K. M. (2017) Enhancement of the conductivity and dielectric properties of PVA/Ag nanocomposite films using gamma irradiation. *Materials Chemical Physics*, 191, 225-229.
- Feldman, C., & O'Hara, M., (1958). Luminescent phases in willemite films. Journal of the Optical Society of America, 48(11), 816-820.
- Fernandes, I. J., Calheiro, D., Sánchez, F. A., Camacho, A. L. D., Rocha, T. L. A. D. C., Moraes, C. A. M., & Sousa, V. C. D. (2017). Characterization of silica produced from rice husk ash: comparison of purification and processing methods. *Materials Research*, 20, 512-518.
- Fonda, G. R. (1940). The yellow and red zinc silicate phosphors. *The Journal of Physical Chemistry*, 44(7), 851-861.
- Forés, A., Llusar, M., Badenes, J. A., Calbo, J., Tena, M. A., & Monrós, G. (2000). Cobalt minimisation in willemite (Co_xZn_{2-x}SiO₄) ceramic pigments. *Green Chemistry*, 2(3), 93-100.
- Fu, Z., Yang, B., Li, L., Dong, W., Jia, C., & Wu, W. (2003). An intense ultraviolet photoluminescence in sol-gel ZnO–SiO₂ nanocomposites. *Journal of Physics: Condensed Matter*, 15(17), 2867-2873.
- Fudzi, F. M., Kamari, H. M., Muhammad, F. D., Latif, A. A., & Ismail, Z. (2018). Structural and optical properties of zinc borotellurite glass co-doped with lanthanum and silver oxide. *Journal of Materials Science and Chemical Engineering*, 6(4), 18-23.
- Fujihara, S., Naito, H., & Kimura, T. (2001). Visible photoluminescence of ZnO nanoparticles dispersed in highly transparent MgF₂ thin-films via sol-gel process. *Thin Solid Films*, 389(1-2), 227-232.
- Fummala, R. R. (1978). *Borate glasses: structure, properties, and applications*. New York. Plenum Press.

- Gaafar, M. S., Abd El-Aal, N. S., Gerges, O. W., & El-Amir, G. (2009). Elastic properties and structural studies on some zinc-borate glasses derived from ultrasonic, FT-IR and X-ray techniques. *Journal of Alloys and Compounds*, 475(1-2), 535-542.
- Ghosh, R., & Bhattacherjee, S. (2013). A review study on precipitated silica and activated carbon from rice husk. *Journal of Chemical Engineering Process and Technology*, 4(4), 1-7.
- Goldstein, J., Newbury, D.E., Echlin, P., Joy, D.C., Romig Jr, A.D., Lyman, C.E., Fiori, C. & Lifshin, E. (2012). Scanning electron microscopy and X-ray microanalysis: a text for biologists, materials scientists, and geologists. Springer Science & Business Media.
- Goswami, M., Deshpande, S. K., Kumar, R., & Kothiyal, G. P. (2010). Electrical behaviour of Li₂O–ZnO–SiO₂ glass and glass-ceramics system. *Journal of Physics and Chemistry of Solids*, 71(5), 739-744.
- Guo, Y., Ohsato, H., & Kakimoto, K. I. (2006). Characterization and dielectric behavior of willemite and TiO₂-doped willemite ceramics at millimeter-wave frequency. *Journal of the European Ceramic Society*, 26(10-11), 1827-1830.
- Halimah, M. K., Azlan, M. N., & Shafinas, S. Z. (2015). Optical properties of erbium doped borotellurite glass system. *Advanced Materials Research*, 1112, 7-10.
- Halimah, M. K., Umar, S. A., Chan, K. T., Latif, A. A., Azlan, M. N., Abu bakar, A. I., & Hamza, A. M. (2019). Study of rice husk silicate effects on the elastic, physical and structural properties of borotellurite glasses. *Materials Chemistry* and Physics, 238, 121891.
- Han, J., Zhu, Z., Ray, S., Azad, A. K., Zhang, W., He, M., Li, S., & Zhao, Y. (2006). Optical and dielectric properties of ZnO tetrapod structures at terahertz frequencies. *Applied Physics Letters*, 89(3), 031107.
- Hansson, R., Zhao, B., Hayes, P. C., & Jak, E. (2005). A reinvestigation of phase equilibria in the system Al₂O₃-SiO₂-ZnO. *Metallurgical and Materials Transactions B*, *36*(2), 187-193.
- Hegde, V., Viswanath, C. D., Upadhyaya, V., Mahato, K. K., & Kamath, S. D. (2017). Red light emission from europium doped zinc sodium bismuth borate glasses. *Physica B: Condensed Matter*, 527, 35-43.
- Hisam, R., Yahya, A. K., Kamari, H. M., Talib, Z. A., & Subban, R. H. Y. (2016). Anomalous dielectric constant and AC conductivity in mixed transition-metal-ion $_xFe_2O_3-(_{20-x})$ MnO₂- $_{80}$ TeO₂ glass system. *Materials Express*, 6(2), 149-160.
- Husung, R. D., & Doremus, R. H. (1990). The infrared transmission spectra of four silicate glasses before and after exposure to water. *Journal of Materials Research*, *5*(10), 2209-2217.

- Jaafar, S. H., Zaid, M. H. M., Matori, K. A., Aziz, S. H., Mohamed Kamari, H., Honda, S., & Iwamoto, Y. (2021). Influence of Calcination Temperature on Crystal Growth and Optical Characteristics of Eu³⁺ Doped ZnO/Zn₂SiO₄ Composites Fabricated via Simple Thermal Treatment Method. *Crystals*, 11(2), 115-131.
- Janotti, A., & Van de Walle, C. G. (2009). Fundamentals of zinc oxide as a semiconductor. *Reports on Progress in Physics*, 72(12), 1-29.
- James, R. W. (1963). The dynamical theory of X-ray diffraction. *Solid State Physics*, *15*, 53-220.
- Kaewkhao, J., & Limsuwan, P. (2012). Utilization of rice husk fly ash in the color glass production. *Procedia Engineering*, 32, 670-675.
- Kang, S. J. L. (2004). *Sintering: densification, grain growth and microstructure*. Butterworth-Heinemann. Elsevier.
- Kauzmann, W. (1948). The nature of the glassy state and the behavior of liquids at low temperatures. *Chemical Reviews*, *43*(2), 219-256.
- Kawamura, J., & Shimoji, M. (1986). The AC conductivity of superionic conducting glasses $(AgI)_x$ - $(Ag_4P_2O_7)_{1-x}$ (x= 0.8, 0.75, 0.7): Experiment and analysis based on the generalized Langevin equation. *Journal of Non-crystalline Solids*, 79(3), 367-381.
- Khaidir, R. E. M., Fen, Y. W., Zaid, M. H. M., Matori, K. A., Omar, N. A. S., Anuar, M. F., Wahab, S. A. A., & Azman, A. Z. K. (2019a). Exploring Eu³⁺-doped ZnO-SiO₂ glass derived by recycling renewable source of waste rice husk for white-LEDs application. *Results in Physics*, 15, 102596-102603.
- Khaidir, R. E. M., Fen, Y. W., Zaid, M. H. M., Matori, K. A., Omar, N. A. S., Anuar, M. F., Wahab, S. A. A., & Azman, A. Z. K. (2019b). Optical band gap and photoluminescence studies of Eu³⁺-doped zinc silicate derived from waste rice husks. *Optik*, 182, 486-495.
- Khaidir, R. E. M., Fen, Y. W., Zaid, M. H. M., Matori, K. A., Omar, N. A. S., Anuar, M. F., Wahab, S. A. A., & Azman, A. Z. K. (2020). Addition of ZnO nanoparticles on waste rice husk as potential host material for red-emitting phosphor. *Materials Science in Semiconductor Processing*, *106*, 104774-104785.
- Khalil, E. M. A., ElBatal, F. H., Hamdy, Y. M., Zidan, H. M., Aziz, M. S., & Abdelghany, A. M. (2010). Infrared absorption spectra of transition metals-doped soda lime silica glasses. *Physica B: Condensed Matter*, 405(5), 1294-1300.
- Kılıç, Ç., & Zunger, A. (2002). Origins of coexistence of conductivity and transparency in SnO₂. *Physical Review Letters*, 88(9), 095501.
- Klaska, K. H., Eck, J. C., & Pohl, D. (1978). New investigation of willemite. Acta Crystallographica Section B: Structural Crystallography and Crystal Chemistry, 34(11), 3324-3325.

- Kodaira, K., Ito, S., & Matsushita, T. (1975). Hydrothermal growth of willemite single crystals in acidic solutions. *Journal of Crystal Growth*, 29(1), 123-124.
- Kohara, S., Suzuya, K., Takeuchi, K., Loong, C. K., Grimsditch, M., Weber, J. K. R., Tangeman J. A., & Key, T. S. (2004). Glass formation at the limit of insufficient network formers. *Science*, 303(5664), 1649-1652.
- Lee, C. S., Amin Matori, K., Ab Aziz, S. H., Kamari, H. M., Ismail, I., & Mohd Zaid, M. H. (2017a). Comprehensive study on elastic moduli prediction and correlation of glass and glass ceramic derived from waste rice husk. *Advances in Materials Science and Engineering*, 2017, 1-7.
- Lee, C. S., Matori, K. A., Ab Aziz, S. H., Kamari, H. M., Ismail, I., & Zaid, M. H. M. (2017b). Fabrication and characterization of glass and glass-ceramic from rice husk ash as a potent material for opto-electronic applications. *Journal of Materials Science: Materials in Electronics*, 2017(28), 17611-17621.
- Lee, C. S., Matori, K. A., Ab Aziz, S. H., Kamari, H. M., Ismail, I., & Zaid, M. H. M. (2017c). Influence of zinc oxide on the physical, structural and optical band gap of zinc silicate glass system from waste rice husk ash. *Optics*, 136, 129-135.
- Leverenz, H.W. (1950). An introduction to luminescence of solids. John Wiley & Sons, Inc., New York.
- Li, Z.Y., & Zhang, Z.Q. (2000) Fragility of photonic band gaps in inverse opal photonic crystals. *Physical Review B*, 62(3), 1516-1519
- Li, J. & Kuwabara, M. (2003) Preparation and luminescent properties of Eu-doped BaTiO₃ thin films by sol-gel process. *Sciences Technology Advanced Materials*, 4, 143-148.
- Li, J., Fan, H., Jia, X., Yang, W., & Fang, P. (2010). Enhanced blue-green emission and ethanol sensing of Co-doped ZnO nanocrystals prepared by a solvothermal route. *Applied Physics A*, 98(3), 537-542.
- Lin, C. C., & Shen, P. (1994). Sol-gel synthesis of zinc orthosilicate. Journal of Non-Crystalline Solids, 171(3), 281-289.
- Lima, S. A. M., Sigoli, F. A., Jafelicci, M., Jr., Davolos, M. R. (2001). Luminescent properties and lattice defects correlation on zinc oxide. *International Journal of Inorganic Materials*, 3, 749-754.
- Llusar, M., Forés, A., Badenes, J. A., Calbo, J., Tena, M. A., & Monrós, G. (2001). Colour analysis of some cobalt-based blue pigments. *Journal of the European Ceramic Society*, 21(8), 1121-1130.
- Liu, M., Kitai, A. H., & Mascher, P. (1992). Point defects and luminescence centres in zinc oxide and zinc oxide doped with manganese. *Journal of Luminescence*, 54(1), 35-42.

- Manavbasi A., & LaCombe J. C. (2007). Synthesis of pure Zn₂SiO₄: Mn green phosphors by simple PVA-metal complex route. *Journal of Materials Science*, *42*, 252-258.
- Menazea, A. A., Abdelghany, A. M., Hakeem, N. A., Osman, W. H., & Abd El-kader, F. H. (2020). Nd: YAG nanosecond laser pulses for precipitation silver nanoparticles in silicate glasses: AC conductivity and dielectric studies. *Silicon*, 12(1), 13-20.
- Manickam, M., Ponnuswamy, V., Sankar, C., Mariappan, R., & Suresh, R. (2016). Influence of substrate temperature on the properties of cobalt oxide thin films prepared by nebulizer spray pyrolysis (NSP) technique. *Silicon*, 8(3), 351-360.
- Matori, K. A., Haslinawati, M. M., Wahab, Z. A., Sidek, H. A. A., Ban, T. K., & Ghani, W. A. W. A. K. (2009). Producing amorphous white silica from rice husk. *MASAUM Journal of Basic and Applied Sciences*, 1(3), 512-515.
- Matori, K. A., Zaid, M. H. M., Sidek, H. A. A., Halimah, M. K., Wahab, Z. A., & Sabri, M. G. M. (2010). Influence of ZnO on the ultrasonic velocity and elastic moduli of soda lime silicate glasses. *International Journal of Physical Sciences*, 5(14), 2212-2216.
- Matusita, K., Komatsu, T., & Yokota, R. (1984). Kinetics of non-isothermal crystallization process and activation energy for crystal growth in amorphous materials. *Journal of Materials Science*, 19(1), 291-296.
- Mohamed, N. B., Yahya, A. K., Deni, M. S. M., Mohamed, S. N., Halimah, M. K., & Sidek, H. A. A. (2010). Effects of concurrent TeO₂ reduction and ZnO addition on elastic and structural properties of (90-x) TeO₂-10Nb₂O_{5-(x)} ZnO glass. *Journal of Non-Crystalline Solids*, *356*(33-34), 1626-1630.
- Mohamed, N., Hassan, J., Matori, K. A., Wahab, Z. A., Ismail, Z. M. M., Baharuddin, N. F., & Rashid, S. S. A. (2017). Influence of Pr doping on the thermal, structural, and optical properties of novel SLS-ZnO glasses for red phosphor. *Results in physics*, 7, 1202-1206.
- Montazerian, M., Singh, S. P., & Zanotto, E. D. (2015). An analysis of glass-ceramic research and commercialization. *American Ceramic Society Bulletin*, 94, 30-35.
- Omar, N. A. S., Fen, Y. W., & Matori, K. A. (2017). Europium doped low cost Zn₂SiO₄ based glass ceramics: a study on fabrication, structural, energy band gap and luminescence properties. *Materials Science in Semiconductor Processing*, 61, 27-34.
- Omar, N. A. S., Fen, Y. W., & Matori, K. A. (2016a). Photoluminescence properties of Eu³⁺-doped low cost zinc silicate based glass ceramics. *Optik*, 127(8), 3727-3729.
- Omar, N. A. S., Fen, Y. W., Matori, K. A., Aziz, S. H. A., Alassan, Z. N., & Samsudin, N. F. (2016b). Development and characterization studies of Eu³⁺-doped Zn₂SiO₄ phosphors with waste silicate sources. *Procedia Chemistry*, 19, 21-29.

- Omar, N. A. S., Fen, Y. W., Matori, K. A., Zaid, M. H. M., & Samsudin, N. F. (2016c). Structural and optical properties of Eu³⁺ activated low cost zinc soda lime silica glasses. *Results in Physics*, 6, 640-644.
- Omar, N. A. S., Fen, Y. W., Matori, K. A., Zaid, M. H. M., Norhafizah, M. R., Nurzilla, M., & Zamratul, M. I. M. (2016d). Synthesis and optical properties of europium doped zinc silicate prepared using low cost solid-state reaction method. *Journal* of Materials Science: Materials in Electronics, 27(2), 1092-1099.
- Omri, K., El Ghoul, J., Alyamani, A., Barthou, C., & El Mir, L. (2013). Luminescence properties of green emission of SiO₂/Zn₂SiO₄: Mn nanocomposite prepared by sol–gel method. *Physica E: Low-Dimensional Systems and Nanostructures*, 53, 48-54.
- Ozel, E., Yurdakul, H., Turan, S., Ardit, M., Cruciani, G., & Dondi, M. (2010). Co-doped willemite ceramic pigments: Technological behaviour, crystal structure and optical properties. *Journal of the European Ceramic Society*, 30(16), 3319-3329.
- Pascuta, P., & Culea, E. (2011). Structural and thermal properties of some zinc borate glasses containing gadolinium ions. *Journal of Materials Science: Materials in Electronics*, 22(8), 1060-1066.
- Pode, R. (2016): Potential applications of rice husk ash waste from rice husk biomass power plant. *Renewable and Sustainable Energy Reviews*, 53, 1468-1485.
- Ponmalar, V., & Abraham, R. A. (2015). Study on effect of natural and ground Rice-Husk Ash concrete. KSCE Journal of Civil Engineering, 19(6), 1560-1565.
- Pozas, R., Orera, V. M., & Ocana, M. (2005). Hydrothermal synthesis of Co-doped willemite powders with controlled particle size and shape. *Journal of the European Ceramic Society*, 25(13), 3165-3172.
- Prado, M. O., Nascimento, M. L. F., & Zanotto, E. D. (2008). On the sinterability of crystallizing glass powders. *Journal of Non-Crystalline Solids*, 354(40-41), 4589-4597.
- Rahmat, F. I., Fen, Y. W., Anuar, M. F., Omar, N. A. S., Zaid, M. H. M., Matori, K. A., & Khaidir, R. E. M. (2021). Synthesis and Characterization of ZnO–SiO² Composite Using Oil Palm Empty Fruit Bunch as a Potential Silica Source. *Molecules*, 26(4), 1061-1072.
- Raju, G. N., Reddy, M. S., Sudhakar, K. S. V., & Veeraiah, N. (2007). Spectroscopic properties of copper ions in ZnO–ZnF₂–B₂O₃ glasses. *Optical Materials*, 29(11), 1467-1474.
- Ramachari, D., Moorthy, L. R., & Jayasankar, C. K. (2014). Optical absorption and emission properties of Nd³⁺-doped oxyfluorosilicate glasses for solid state lasers. *Infrared Physics & Technology*, 67(1), 555-559.

- Ramanachalam, M. S., Rohatgi, A., Carter, W. B., Schaffer, J. P., & Gupta, T. K. (1995). Photoluminescence study of ZnO varistor stability. *Journal of Electronic Materials*, 24(4), 413-419.
- Rasdi, N.M., Fen, Y.W., Azis, R.S., & Omar, N.A.S. (2017a). Photoluminescence studies of cobalt (II) doped zinc silicate nanophosphors prepared via sol-gel method. *Optik.* 149, 409-415.
- Rasdi, N.M., Fen, Y.W., Omar, N.A.S., Azis, R.S., & Zaid, M.H.M. (2017b). Effects of cobalt doping on structural, morphological, and optical properties of Zn₂SiO₄ nanophosphors prepared by sol-gel method. *Results in Physics*. 7, 3820-3825.
- Rashid, S.S.A., Aziz, S.H.A., Matori, K.A., Zaid, M.H.M., & Mohamed, N. (2017). Comprehensive study on effect of sintering temperature on the physical, structural and optical properties of Er³⁺ doped ZnO-GSLS glasses. *Results in Physics*. 7, 2224-2231.
- Rawlings, R. D., Wu, J. P., & Boccaccini, A. R. (2006). Glass-ceramics: their production from wastes- A review. *Journal of Materials Science*, 41(3), 733-761.
- Renuka, C., Reddy, N. S., Reddy, M. S., Viswanatha, R., & Reddy, C. N. (2015). Optical properties of microwave prepared glasses containing manganese ions. *International Journal of Lumininescence and Applications*, 5, 121-124.
- Ruengsri, S., Insiripong, S., Sangwaranatee, N., & Kaewkhao, J. (2015). Development of barium borosilicate glasses for radiation shielding materials using rice husk ash as a silica source. *Progress in Nuclear Energy*, 83, 99-104.
- Riehl, N. (1981). Intrinsic defects and luminescence in II-VI-compounds. Journal of Luminescence, 24(1), 335-342.
- Rivera-Enríquez, C. E., Fernández-Osorio, A., & Chávez-Fernández, J. (2016). Luminescence properties of α-and β-Zn₂SiO₄: Mn nanoparticles prepared by a coprecipitation method. *Journal of Alloys and Compounds*, 688, 775-782.
- Robson, H. (2001). Verified synthesis of zeolitic materials. Amsterdam, Netherlands. Elsevier.
- Rooksby, H. P., & McKeag, A. H. (1941). The yellow fluorescent form of zinc silicate. *Transactions of the Faraday Society*, 37, 308-311.
- Rosenthal, A. B., & Garofalini, S. H. (1987). Structural role of zinc oxide in silica and soda-silica glasses. *Journal of the American Ceramic Society*, 70(11), 821-826.
- Max Roser, Hannah Ritchie and Esteban Ortiz-Ospina (2019) "World Population Growth". *Published online at OurWorldInData.org*. Retrieved from: https://ourworldindata.org/world-population-growth' [Online Resource]
- Ruangtaweep, Y., Kaewkhao, J., Kirdsiri, K., Kedkaew, C., & Limsuwan, P. (2011). Properties of CoO doped in glasses prepared from rice hush fly ash in Thailand. *IOP Conference Series: Materials Science and Engineering*, 18, 112008.

- Sahu, S. N., & Nanda, K. K. (2001). Nanostructure semiconductors: physics and applications. *Proceedings-Indian National Science Academy Part A*, 67(1), 103-130.
- Samsudin, N. F., Matori, K. A., Liew, J. Y. C., Wing Fen, Y., Mohd Zaid, M. H., & Nadakkavil Alassan, Z. (2015). Investigation on structural and optical properties of willemite doped Mn²⁺ based glass-ceramics prepared by conventional solidstate method. *Journal of Spectroscopy*, 2015, 1-7.
- Samsudin, N. F., Matori, K. A., Fen, Y. W., Chyi, J. L. Y., Omar, N. A. S., & Alassan, Z. N. (2016a). Optical and structural properties of Zn₂SiO₄:Mn²⁺ from SLS waste bottle obtained by a solid state method. *Proceedia Chemistry*, 19, 57-67.
- Samsudin, N. F., Matori, K. A., Wahab, Z. A., Fen, Y. W., Liew, J. Y. C., Lim, W. F., Zaid, M. H. M., & Omar, N. A. S. (2016b). Manganese modified structural and optical properties of zinc soda lime silica glasses. *Applied Optics*, 55(9), 2182-2187.
- Samsudin, N. F., Matori, K. A., Wahab, Z. A., Liew, J. Y. C., Fen, Y. W., Ab Aziz, S. H., & Zaid, M. H. M. (2016c). Low cost phosphors: Structural and photoluminescence properties of Mn²⁺-doped willemite glass-ceramics. *Optik*, 127(19), 8076-8081.
- Sanad, M. M. S., Rashad, M. M., Abdel-Aal, E. A., & Powers, K. (2015). Novel cordierite nanopowders of new crystallization aspects and its cordierite-based glass ceramics of improved mechanical and electrical properties for optimal use in multidisciplinary scopes. *Materials Chemistry and Physics*, 162, 299-307.
- Sarrigani, G. V., Matori, K. A., Lim, W. F., Kharazmi, A., Quah, H. J., Bahari, H. R., & Hashim, M. (2015a). Structural and optical properties of erbium-doped willemitebased glass-ceramics. *Applied Optics*, 54(33), 9925-9929.
- Sarrigani, G. V., Quah, H. J., Lim, W. F., Matori, K. A., Mohd Razali, N. S., Kharazmi, A., Hashim, M., & Bahari, H. R. (2015b). Characterization of waste material derived willemite-based glass-ceramics doped with erbium. *Advances in Materials Science and Engineering*, 2015, 1-7.
- Saudi, H. A., Salem, S. M., Mohammad, S. S., Mostafa, A. G., & Hassaan, M. Y. (2015). Utilization of pure silica extracted from rice husk and FTIR structural analysis of the prepared glasses. *Semiconductors*, *3*(3), 97-105.
- Schmitt, J., & Flemming, H. C. (1998). FTIR-spectroscopy in microbial and material analysis. *International Biodeterioration & Biodegradation*, 41(1), 1-11.
- Segets, D., Gradl, J., Taylor, R. K., Vassilev, V., & Peukert, W. (2009). Analysis of optical absorbance spectra for the determination of ZnO nanoparticle size distribution, solubility, and surface energy. ACS Nano, 3(7), 1703-1710.
- Shahbandeh, M. (2020, 7 May). Principal rice exporting countries worldwide 2018/2019. Retrieved from https://www.statista.com/statistics/255947/top-rice-exportingcountries-worldwide-2011/#statisticContainer.

- Shaker, A., & Zekry, A. (2010). A new and simple model for plasma-and doping-induced band gap narrowing. *Journal of Electronic and Devices*, 8, 293-299.
- Shelby, J. E. (1981). Effect of crystal content on the properties of willemite glassceramics. *Journal of Non-Crystalline Solids*, 43(2), 255-265.
- Shelby, J. E. (2005). *Introduction to glass science and technology*. Cambridge. Royal Society of Chemistry.
- Shinkai, N., Bradt, R. C., & Rindone, G. E. (1982). Elastic Modulus and Fracture Toughness of Ternary PbO-ZnO-B₂O₃ Glasses. *Journal of the American Ceramic Society*, 65(2), 123-126.
- Singh, S., & Singh, K. (2015). Nanocrystalline glass ceramics: structural, physical and optical properties. *Journal of Molecular Structure*, *1081*, 211-216.
- Stechert, T. R., Rushton, M. J. D., & Grimes, R. W. (2013). Predicted mechanism for enhanced durability of zinc containing silicate glasses. *Journal of the American Ceramic Society*, 96(5), 1450-1455.
- Stefan, R., Culea, E., & Pascuta, P. (2012). The effect of copper ions addition on structural and optical properties of zinc borate glasses. *Journal of Non-Crystalline Solids*, 358(4), 839-846.
- Soni, J., & Koser, A.A. (2015). Synthesis of ZnO nanoparticle using different concentration of capping agent. *Open International Journal of Technology Innovations and Research*, 16,1-7.
- Stookey, S. D. (1959). Catalyzed crystallization of glass in theory and practice. *Industrial & Engineering Chemistry*, *51*(7), 805-808.
- Sujinnapram, S., Onreabroy, W., & Nantawisarakul, T. (2009). XRD, photoluminescence and optical absorption investigations of cobalt-doped ZnO. *AIP Conference Proceedings*, 1150(1), 340-343.
- Sukriti & Chand, P. (2019a). Effect of pH values on the structural, optical and electrical properties of SnO₂ nanostructures. *Optik*, 181, 768-778.
- Sukriti & Chand, P. (2019b). Influence of different solvents on the structural, optical, impedance and dielectric properties of ZnO nanoflakes. *Chinese Journal of Physics*, 57, 28-46.
- Suzuki, T., Horibuchi, K., & Ohishi, Y. (2005). Structural and optical properties of ZnO– Al₂O₃–SiO₂ system glass–ceramics containing Ni²⁺-doped nanocrystals. *Journal* of Non-crystalline Solids, 351(27-29), 2304-2309.
- Švančárek, P., Klement, R., & Galusek, D. (2016). Photoluminescence of $(ZnO)_{XZ}(SiO_2)_Y$:(MnO)_Z green phosphors prepared by direct thermal synthesis: The effect of ZnO/SiO₂ ratio and Mn²⁺ concentration on luminescence. *Ceramics International*, 42(15), 16852-16860.

- Syamimi, N. F., Matori, K. A., Lim, W. F., Sidek H. A. A., & Zaid, M. H. M., (2014). Effect of sintering temperature on structural and morphological properties of europium (III) oxide doped willemite, *Journal of Spectroscopy*, 2014, 1-7.
- Takagi, Katsuki. (1962). On the synthesis of zinc silicate phosphor activated with manganese by the solid-state reaction between zinc oxide and silica. *Journal of the Society of Chemical Industry*, 65(6), 847-855.
- Takesue, M., Hayashi, H., & Smith, R. L. (2009). Thermal and chemical methods for producing zinc silicate (willemite): a review. *Progress in Crystal Growth and Characterization of Materials*, 55(3), 98-124.
- Tammann, G., Westerhold, F., Garre, B., Kordes, E., & Kalsing, H. (1925). Chemical reactions in powdery mixtures of two types of crystals. *Journal of Inorganic and General Chemistry*, 149(1), 21-98.
- Tang, C. W., Wang, C. B., & Chien, S. H. (2008). Characterization of cobalt oxides studied by FT-IR, Raman, TPR and TG-MS. *Thermochimica Acta*, 473(1-2), 68-73.
- Tarafder, A., Molla, A. R., Dey, C., & Karmakar, B. (2013). Thermal, structural, and enhanced photoluminescence properties of Eu³⁺-doped transparent willemite glass-ceramic nanocomposites. *Journal of the American Ceramic Society*, *96*(8), 2424-2431.
- Tarafder, A., Molla, A.R., Mukhopadhyay, S., Karmakar, B. (2014). Fabrication and enhanced photoluminescence properties of Sm³⁺-doped ZnO–Al₂O₃–B₂O₃–SiO₂ glass derived willemite glass-ceramic nanocomposites, *Optic Materials, 36*, 1463-1470.
- Taylor, H. F. W. (1962). The dehydration of hemimorphite. *American Mineral*. 47, 932-944.
- Turnbull, D., & Cohen, M. H. (1961). Free-volume model of the amorphous phase: glass transition. *The Journal of Chemical Physics*, 34(1), 120-125.
- Tuscharoen, S., Ruengsri, S., & Kaewkhao, J. (2013). Development of barium borosilicate glass using rice husk ash: effect of BaO. Advanced Materials Research, 770, 201-204.
- Umar, S. A., Halimah, M. K., Chan, K. T., & Latif, A. A. (2017). Physical, structural and optical properties of erbium doped rice husk silicate borotellurite (Er-doped RHSBT) glasses. *Journal of Non-Crystalline Solids*, 472, 31-38.

Varshneya, A.K. (2013). Fundamental of inorganic glasses. New York. Elsevier.

Volanti, D. P., Rosa, I. L., Paris, E. C., Paskocimas, C. A., Pizani, P. S., Varela, J. A., & Longo, E. (2009). The role of the Eu³⁺ ions in structure and photoluminescence properties of SrBi₂Nb₂O₉ powders. *Optical Materials*, *31*(6), 995-999.

- Williamson, J., & Glasser, F. P. (1964). Crystallisation of zinc silicate liquids and glasses. *Physics and Chemistry of Glasses*, 5(1), 52-59.
- Wu, Y., Sun, Z., Ruan, K., Xu, Y., & Zhang, H. (2014). Enhancing photoluminescence with Li-doped CaTiO₃:Eu³⁺ red phosphors prepared by solid state synthesis. *Journal of Luminescence*, 155, 269-274.
- Xia, L., Liu, Z., & Taskinen, P. A. (2015). Experimental determination of the liquidus temperatures of the binary (SiO₂–ZnO) system in equilibrium with air. *Journal of the European Ceramic Society*, 35(14), 4005-4010.
- Yalcin, N., & Sevinc, V. (2001). Studies on silica obtained from rice husk. *Ceramics International*, 27(2), 219-224.
- Yang, J., Dai, S., Dai, N., Wen, L., Hu, L., & Jiang, Z. (2004). Investigation on nonradiative decay of $4I^{13/2} \rightarrow 4I^{15/2}$ transition of Er^{3+} -doped oxide glasses. *Journal of Luminescence*, 106(1), 9-14.
- Yeriskin S. A., Balbas M., & Tataroglu, A. (2016). Frequency and voltage dependence of dielectric properties, complex electric modulus, and electrical conductivity in Au/7% graphene doped-PVA/n-Si (MPS) structures. *Journal of Applied Polymer Science*, 133(33). 1-7.
- Yue, Z., Dong, M., Meng, S., & Li, L. (2009). Phase characterization and dielectric properties of Zn₂SiO₄ ceramics derived from a sol-gel process. *Ferroelectrics*, 387(1), 184-188.
- Zachariasen, W. H. (1932). The atomic arrangement in glass. *Journal of the American Chemical Society*, 54(10), 3841-3851.
- Zaid, M. H. M. (2017). Physical, structural, and optical properties of willemite glassceramics doped with manganese oxide. PhD Thesis. Universiti Putra Malaysia.
- Zaid, M. H. M., Matori, K. A., Abdul Aziz, S. H., Zakaria, A., & Mohd Ghazali, M. S. (2012). Effect of ZnO on the physical properties and optical band gap of soda lime silicate glass. *International Journal of Molecular Sciences*, 13(6), 7550-7558.
- Zaid, M. H. M., Matori, K. A., Quah, H. J., Lim, W. F., Sidek, H. A. A., Halimah, M. K., Yunus, W.M.M. & Wahab, Z. A. (2015). Investigation on structural and optical properties of SLS–ZnO glasses prepared using a conventional melt quenching technique. *Journal of Materials Science: Materials in Electronics*, 26(6), 3722-3729.
- Zaid, M. H. M., Matori, K. A., Abdul Aziz, S. H., Kamari, H. M., Mat Yunus, W. M., Abdul Wahab, Z., & Samsudin, N. F. (2016a). Fabrication and crystallization of ZnO-SLS glass derived willemite glass-ceramics as a potential material for optics applications. *Journal of Spectroscopy*, 2016. 1-7.

- Zaid, M. H. M., Matori, K. A., Ab Aziz, S. H., Kamari, H. M., Wahab, Z. A., Effendy, N., & Alibe, I. M. (2016b). Comprehensive study on compositional dependence of optical band gap in zinc soda lime silica glass system for optoelectronic applications. *Journal of Non-Crystalline Solids*, 449, 107-112.
- Zaid, M. H. M., Matori, K. A., Aziz, S. H. A., Kamari, H. M., Wahab, Z. A., Fen, Y. W., & Alibe, I. M. (2016c). Synthesis and characterization of low cost willemite based glass-ceramic for opto-electronic applications. *Journal of Materials Science: Materials in Electronics*, 27(11), 11158-11167.
- Zaid, M. H. M., Matori, K. A., Ab Aziz, S. H., Kamari, H. M., Ismail, I., Samsudin, N. F., & Rashid, S. S. A. (2017a). Enhanced luminescence properties of low-cost Mn²⁺ doped willemite based glass–ceramics as potential green phosphor materials. *Journal of Materials Science: Materials in Electronics*, 28(16), 12282-12289.
- Zaid, M. H. M., Matori, K. A., Ab, A. S. H., Wahab, Z. A., & Rashid, S. S. A. (2017b). Effect of sintering on crystallization and structural properties of soda lime silica glass. *Science of Sintering*, 49(4), 409-417.
- Zaid, M. H. M., Matori, K. A., Ab Aziz, S. H., Kamari, H. M., Fen, Y. W., Yaakob, Y., Sa'at, N.K., & Şakar, E. (2019). Effect of heat treatment temperature to the crystal growth and optical performance of Mn₃O₄ doped α-Zn₂SiO₄ based glassceramics. *Results in Physics*, 15, 102569-102575.
- Zaitizila, I., Halimah, M. K., Muhammad, F. D., & Nurisya, M. S. (2018). Effect of heat treatment on structural properties of silica borotellurite glasses containing MnO. *JPhCS*, 1083(1), 1-7.
- Zamratul, M. I. M., Zaidan, W. A., Khamirul, A. M., Halim, S. A., Raba'ah, S. A., Nurzilla, M., & Fadilah, B. N. (2017). Novel eco-friendly synthesis of neodymium doped zinc silicate phosphor-based waste glass ceramic: structural, thermal and luminescence properties. *Journal of Materials Science: Materials in Electronics*, 28(13), 9395-9402.
- Zangina, T., Hassan, J., Matori, K. A., See, A., Alibe, I. M., & Umar, S. (2018). Structural, electrical conductivity and dielectric relaxation behavior of LiHf₂(PO₄)₃ ceramic powders. *Journal of the Australian Ceramic Society*, 54(2), 307-316.
- Zanotto, E. D. (2010). Bright future for glass-ceramics. American Ceramics Society Bulletin, 89(8), 19-27.
- Zarifah, N. A., Halimah, M. K., Hashim, M., Azmi, B. Z., & Daud, W. M. (2010). Magnetic behaviour of $(Fe_2O_3)_x(TeO_2)_1$ glass system due to iron oxide. *Chalcogenide Letters*, 7(9), 565-571.
- Zelikin, Y. M., & Zhukovskii, A. M. (1961) Yellow luminescence of zinc oxide. Optics and. Spectroscopy, 11(2), 212-215.

- Zeng, D., Liu, S., Gong, W., Chen, H., & Wang, G. (2014). A nano-sized solid acid synthesized from rice hull ash for biodiesel production. *Research Advances*, 4(39), 20535-20539.
- Zhang, X., Zhang, M., Zhang, J., Li, Y., Gu, Y., & Qi, X. (2019). Photoluminescence, transmittance and electrical properties of Eu³⁺-doped Al₂O₃-SrO glasses synthesized by an aerodynamic levitation technique. *Journal of Luminescence*, 206, 79-83.
- Zhou, L., Lin, H., Chen, W., & Luo, L. (2008). IR and Raman investigation on the structure of _(100-x)B₂O_{3-x}[_{0.5}BaO-_{0.5}ZnO] glasses. *Journal of Physics and Chemistry of Solids*, 69(10), 2499-2502.

