
 
 

UNIVERSITI PUTRA MALAYSIA 
 

SYNTHESIS AND CHARACTERZATION OF CARBON NANOTUBE AND 
GRAPHENATED CARBON NANOTUBE SUPERFIBRE VIA FLOATING 

CATALYST CHEMICAL VAPOUR DEPOSITION METHOD 
 

 
 
 
 
 
 
 
 
 

NUR IZZAITI BINTI IBRAHIM 
 
 
 
 
 
 
 
 
 
 
 
 

ITMA 2021 16 



© C
OPYRIG

HT U
PMSYNTHESIS AND CHARACTERZATION OF CARBON NANOTUBE AND 

GRAPHENATED CARBON NANOTUBE SUPERFIBRE VIA FLOATING 

CATALYST CHEMICAL VAPOUR DEPOSITION METHOD 

By

NUR IZZAITI BINTI IBRAHIM 

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in 

Fulfilment of the Requirements for the Degree of Master of Science 

November 2020 



© C
OPYRIG

HT U
PM

All material contained within the thesis, including without limitation text, logos, icons, 

photographs and all other artwork, is copyright material of Universiti Putra Malaysia 

unless otherwise stated. Use may be made of any material contained within the thesis 

for non-commercial purposes from the copyright holder. Commercial use of material 

may only be made with the express, prior, written permission of Universiti Putra 

Malaysia. 

Copyright © Universiti Putra Malaysia 



© C
OPYRIG

HT U
PM

i  

Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfilment of 

the requirement for the degree of Master of Science 

 

SYNTHESIS AND CHARACTERIZATION OF CARBON NANOTUBE AND 

GRAPHENATED CARBON NANOTUBE SUPERFIBRE VIA FLOATING 

CATALYST CHEMICAL VAPOUR DEPOSITION METHOD 

 

 

By 

 

 

NUR IZZAITI BINTI IBRAHIM 
 

 

November 2020 

 

 

Chairman : Ismayadi bin Ismail, PhD 

Institute : Institute of Advanced Technology 

 

 

The objective of this research is to develop carbon nanotubes (CNTs) sheet superfibre 

materials with comparable or exceed properties of existing ones. Superfibres is formed 

by synthesizing long CNTs using direct-spinning method in horizontal furnace and 

make them into sheet form. Presently, the superfibres has modest properties but 

potentially to be strongest fiber known and commonly synthesized using arrays of 

aligned CNTs and limited studies using direct-spinning method. The interest of 

producing CNT sheet superfibres is due to no ready industrial format of macroscopic 

CNTs, since individual CNTs cannot grow longer. Hence, one of the proposed 

methods to overcome this hindrance is to assemble CNTs into continuous fibres as 

nanotube superfibre material. Many routes to attain this nanotube superfibre material 

with outstanding properties but mostly through the post-processing method. In this 

study, macro assembly of CNTs sheet superfibres was achieved directly from floating 

catalyst chemical vapour deposition process without post-processing methods. Herein, 

our interest is to synthesis CNTs and graphenated CNTs sheet superfibres and study 

their properties. The CNT sheets were directly spun from a hot reactor of the horizontal 

furnace using floating catalyst chemical vapour deposition. To obtain CNT sheets, 

three main parameters were used as variables which were reaction temperature (from 

1050 °C to 1250 °C), injection rate of precursors (1 ml/hr to 20 ml/hr), and gas flow 

rate of hydrogen gas (200 sccm to 400 sccm). The spinnability of CNT sheets was 

observed to highly dependable on the gas flow rate of carrier gas followed by other 

parameters. The morphological characteristics of CNT sheets showed the synthesized  

CNTs were multi-walled with a diameter of 17 nm to 49 nm. It was also revealed that, 

high reaction temperature at 1250 °C and low gas flow rate of hydrogen, (200 sccm 

and 250 sccm) led to the formation of g-CNTs. TGA analysis showed that high 

decomposition temperature indicated the presence of multi-walled CNT with purity as 

high as 98%. Furthermore, high degree of graphitization of the CNT sheets increases 

with increases of temperature. The highest graphitization of CNT sheet was obtained 

at temperature 1200 °C with a ratio of ID/IG of 0.37. Besides, the bulk conductivities of 
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CNT sheets were measured and found that CNT sheet synthesized at 350 sccm has 

ttthighest electrical conductivity due to the highest packing density of CNTs with a 

value of 10.72 S cm-1. This research is important because it will enable industries to 

manufacture new fiber materials which will change engineering designs of potential 

application such as supercapacitor. 
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Objektif penyelidikan ini adalah untuk membangunkan serat lembaran karbon nanotuib. 

dengan sifat-sifat setara atau mengatasi yang sedia ada. Super-serat nanotiub dibentuk 

dengan sintesis KNTs panjang menggunakan kaedah putaran langsung dalam relau 

memanjang dan dibuat dalam bentuk lembaran. Pada masa kini, super- serat menpunyai 

sifat-sifat yang sederhana tapi berpotensi menjadi serat yang kuat dan kebiasaannya 

disintesis menggunakan KNTs susunan berjajar dan kajian terhad menggunakan kaedah 

putaran langsung. Kecenderungan untuk menghasilkan lembaran serat KNTs kerana 

ketiadaan format tersedia makroskopik CNTs, kerana individu KNTs tak boleh tubuh 

secara panjang. Oleh itu, salah satu cara dicadangkan adalah untuk mengatasi halangan 

untuk himpunan KNTs kepada serat berterusan sebagai bahan super-serat. Pelbagai cara 

juga telah dibangunkan untuk mencapai sifat luarbiasa ini tetapi kebanyakan melalui 

keadah rawatan-selepas. Dalam kajian ini, himpunan makro serat lembaran karbon 

nanotuib dicapai secara langsung menerusi proses pemangkin apungan pemendapan wap 

kimia tanpa kaedah rawatan-selepas. Di sini, adalah menjadi tujuan untuk sistesis 

lembaran KNTs dan g-KNT dan mengkaji sifat-sifatnya. Lembaran KNT itu diputar 

daripada rektor panas relau melintang menggunakan keadah pemangkin apungan 

pemendapan wap kimia. Untuk mendapatkan lembaran KNTs, tiga parameter utama 

telah digunakan sebagai pembolehubah iaitu suhu tindakbalas, (dari 1050 °C hingga 

1250 °C), kadar suntikan prekursor (1 ml/hr hingga 20 ml/hr), dan kadar aliran gas 

hidrogen (200 sccm hingga 400 sccm). Kebolehan-berputar lembaran KNT didapati 

sangat bergantung kepada kadar aliran gas pembawa, diikuti oleh parameter yang lain. 

Ciri-ciri morfologi lembaran KNT menunjukkan KNT yang disintesis merupakan KNT 

yang berbilang dinding berdiameter di antara 17 nm hingga 49 nm. Ianya juga 

menunjukkan bahawa, suhu tindak balas yang tinggi iaitu 1250 °C dan kadar aliran gas 

hidrogen yang rendah, 200 sccm dan 250 sccm menyebabkan pembentukan karbon 

nanotiub bergrafen (g- CNT). Analisis TGA menunjukkan suhu penguraian yang tinggi 

menyatakan kehadiran KNT berbilang dinding dengan ketulenan setinggi 98%. 

Tambahan lagi, darjah grafitisasi lembaran KNT meningkat dengan peningkatan dalam 
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suhu tindakbalas sehingga 1200 
o

C. Grafitisasi tertinggi lembaran KNT diperolehi suhu

1200 
o

C, dengan nisbah ID/IG adalah 0.37. Sebagai tambahan, konduksi lembaran KNT

diukur dan didapati lembaran KNT yang disintesis pada 350 sccm mempunyai 

kekonduksi elektrik yang tertinggi kerana ketumpatan KNTs dengan nilai 10.72 S cm-1. 

Penyelidikan ini adalah penting kerana ianya akan membolehkan industri untuk 

membuat bahan serat baru yang akan mengubah reka bentuk kejuruteraan untuk potensi 

aplikasi seperti super-kapasitor. 
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CHAPTER 1 

 

 

     INTRODUCTION 

 

 

1.1 General Overview 

 

 

Carbon nanotubes (CNTs) was first discovered by Iijima in 1991, and this discovery 

piques great interest among researchers to date due to their important physical 

properties such as mechanical strength, electrical and thermal conductivities 

(Baughman et al., 2002). Although CNTs exhibit excellent features, however, the ability 

to transfer the mechanical and electrical properties of individual CNTs into macroscopic 

assemblies is still a challenge to the research world. Presently, the general synthesis 

methods of CNTs include arc discharge, laser ablation, floating catalyst, and  chemical 

vapour deposition. In this work, a floating catalyst chemical vapour deposition 

(FCCVD) method was used where catalyst travels through a quartz reactor, and resulted 

in the nucleation of CNTs. Usually, ferrocene is used as an iron catalyst, while sulfur is 

used as a reaction promoter. This method provides high yield, material      efficiency, and 

continuous production. Thus, large scale production is easier to achieve (Su, 2015; Ma et 

al., 2016; Hoecker et al., 2017). This method is chosen used due to its simplicity as a 

single-step synthesis method production of CNT sheets superfibre with high capability 

of producing a continuous collection of CNTs in macroscale form for industrial. Most 

studies of CNT sheets superfibre have been carried out using powder-like CNTs or 

supported on different substrates. Meanwhile, to our best knowledge limited studies on 

sheet form of CNT using FCCVD which usually focused on fibre form of CNT. 

 

 

In comparison to FCCVD, directly synthesized CNT sheets in gaseous feedstock 

mixture formed in a quartz tube are seldom discussed. Currently, catalytic chemical 

vapour deposition (CVD) method has become a popular choice in both research and 

industry field due to its many advantages such as simple processing, low cost, high 

degrees of control, and scalability (Hoecker et al., 2016). Large scale production of 

macroscopic assemblies of CNTs for industrialization is essential for industrial 

applications of CNTs. 

 

 

The current issues is to control CNT synthesis and processing to fabricate CNT 

superfibre material with properties that exceed those existing fiber materials. The 

technical challenge for manufacturing of CNTs superfibers is defect occur during 

growing long nanotubes. The properties of the superfibre material is relatively low and the 

process is not continuous and repeatable. Hence, technical efforts and improvements 

are needed to produce extraordinary properties of short nanotubes to bulk fibrous 

materials. To remove the defect during process by controlling processing  conditions. 

The fabrication of macroscopic assemblies or superfibre material such as sheets and 

fibres is an essential approach toward industrial applications (Schulz et al., 2013).  

 

 

However, there is the complexity to grow macroscopic assemblies of these long 

continuous CNTs, and the growth of ultralong carbon nanotubes (>1 mm) required basic 
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comprehension of experimental factors on CNTs growth (Joshi, 2010). This ultralong 

CNTs is also defined as superfibre material, whereby include both CNT aerogel and 

CNT sheet in this study. The ultralong CNTs were first proposed by Kim  et al. (2002), 

where ultralong single-walled carbon nanotube (SWNT) with a length of 0.6 millimetres 

was grown from the mixture of methane and ethylene carbon source in chemical vapour 

deposition CVD. In order to grow growing ultralong CNTs, lifetime of catalysts are one 

of the crucial aspects to consider, while hydrogen is used during the growth process to 

keep the activity of catalysts for a long time to get macroscale long CNTs (Zhang et 

al., 2014). 

 

 

A number of establish research have been developed in the literature regarding CNT 

superfiber. A research team led by Koziol et al., (2007) where he used direct-spinning 

techniques, where high speed ring machine is used and to develop CNT fibre, a form of 

superfibre material. Another research by Hou et al., (2017) study on formation of CNT 

sheet at high temperature, injection rate and gas flow rate. Apart from that, Wang  and 

researchers studied on CNT superfibers include CNT fibre and CNT sheet and their 

properties (Wang et al., 2014; Luo et al., 2016). The studies discussed on properties of 

macro scale CNTs however, lack of understanding of mechanism on formation of ultra-

long CNTs and their morphological and structural study. Hence, the  effect of main 

variables were manipulated to discussion their mechanism and their effect on formation 

of g-CNTs in sheet superfibre form. 

 

 

CNT sheets superfibre is a macro-assembly of individual CNTs in the dimension (2D) 

layer of bulk form. The term ‘sheets’ is referring as films, flat papers made of CNTs 

with their dimension arranged in the plane of papers and along the length of sheets 

(Lekawa-Raus et al., 2014). Meanwhile, superfibre material is long and continuous 

fibrous material such as ribbon, yarns and sheet, which has length > 1 mm (Joshi, 2010; 

Schulz et al., 2014). This CNT sheet is a lightweight material with remarkable 

properties. Thus, it is makes a great interest to fabricate it on a larger scale. 

Manufacturing aligned 2D sheets is worthy due their long individual nanotubes 

characteristic. 

 

 

To date, there are three methods to synthesis ultralong CNT sheets superfibres. The first 

method is spinning from CNT solutions such as vacuum filtration and solution. 

Secondly, CNT sheets superfibres can be produced via the spinning of vertically aligned 

CNT array. The last method is the spinning of CNT aerogel which is formed in a high 

temperature reactor. The advantages and disadvantages of the methods are summarized 

in table 1.1. 
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Table 1.1: Methods to synthesis CNT superfibers and their advantages and 

disadvantages. 

 

Method Steps Advantages Disadvantages 

Spinning 

from 

CNT 

solutions 

Consists of more 

than two steps 

process; 1) 

synthesis of 

nanotubes and 2) 

combining them 

into macroscopic 

sheets followed by 

pressing treatment 

via vacuum-filtered 

buckypapers  to 

densify it into 2D 

layer structure bulk 

form (Xu et al., 

2016). 

 Limited due to short 

CNTs and residual micro 

molecular surfactants on 

the tube surface, a random 

orientation, and weak 

intertube van der Waals 

interaction which lead to 

low mechanical and 

physical properties. The 

highest electrical 

conductivity measured by 

filtered MWCNT 

buckypapers is only at 

72.40 S cm-1 (Mansfield et 

al., 2015). 

Spinning 

from 

vertically 

aligned 

CNT  

array 

1) CNT array was 

synthesis in 

chemical vapour 

deposition 

process. The 

process directly 

spun from CNT 

array and result  in 

CNT sheets. 

High electrical conductivity 

along the CNTs measured at 

room temperature with a 

measurement of 102 – 103 S 

cm-1, owing to their highly 

aligned orientation of the 

CNTs (Yang et al., 2011). 

The production of 

nanotube sheets is limited 

by the volume of the 

corresponding array 

produced. 

Spinning 

of CNT 

aerogel 

1) Directly synthesis 

macro-assembly of 

CNT sheets using a 

rotating spindle 

attached at the end 

of the furnace to 

collect the  CNTs. 

  Single step process where 

synthesized CNT is collected 
to the rotating spindle as 

CNT sheets. Depending on 

the geometries of rotating 
spindle. The CNT sheets 

could reach up to 2026 S 

cm-1 (Liu  et al., 2011). 
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Continuous improvements on macroscopic fibres made up of CNTs are necessary for 

future performance maximization and for the potential of CNT assemblies for high end uses. 

The applications include energy storage systems with higher efficiency and higher 

density. These CNTs have high potential performance in energy storage due to 1 TPa 

stiffness and tensile strains as high as 6%. While using theoretical stress-strain models, 

strain in defect-free CNTs is predicted to have a maximum energy density (energy stored 

in system per unit volume or mass) of 7.7 × 106 kJ, which is three orders larger a magnitude 

than steel (Wu and Wang, 2016). Apart from that, CNTs combine properties of best 

materials from polymers, carbon fibres, and metals. The unique properties of CNTs, 

including high tensile strength at 50 GPa and 11 ‒ 63 GPa for individual single-walled 

CNTs and multi-walled CNTs, respectively. Other properties include high electrical 

conductivity, 106 S cm-1 for single-walled CNTs and 3 × 104 S cm-1 for multi-walled 

CNTs (Yakobson et al., 1997; Collins and Avouris, 2000; Yu et al., 2000., Li et al., 2007; 

Motta et al.,2007). These excellent properties can be obtained, when CNTs are 

assembled into fibres material such as sheets and fibres for real application and still a 

great challenge for researchers. 

 

 

1.2       Problem Statement 

 

 

In the 2010s, interest in macroscopic fibres of CNTs brought new interest because of 

their strength, electrical conductivity, and thermal conductivity. The developments on 

the synthesis of high-quality CNTs and the assembly of macroscopic CNT aligned and 

fibres provide advances in properties. However, information on the dependence of 

macroscopic properties on intrinsic CNTs such as diameter, length, number of walls, 

graphitic, and purity of CNTs is limited. 

 

 

Research related to the synthesis of CNTs almost come to a saturation where thousands     of 

literature were reported. Many methods were proposed, and parameters tested to obtain 

useful CNTs. Even though individual CNTs displays magnificent and impressive 

properties over other nanomaterials, improvement still needed for industrial application. 

The CNTs possesses terrific properties at the nano level, but when it was turned into a 

bulk form consist of sheet, fibre, cotton, and others, the properties would deteriorate 

which deserved further study to improve its functional properties. This nanomaterial 

does not fully utilize into the consumer market due to one problem: there is limited 

macro-assemblies CNT superfibre which makes it difficult for the industry player to 

adopt in their application. Therefore a method is required to synthesis a bulk form of 

CNTs in a ready format for the industry. Macroscopic CNT assemblies with controlled 

orientation and configurations such as 1D CNTs fibre, 2D CNTs sheet/film, and 3D 

aligned CNTs array is another approach  to employ instead of pursuing chirality and 

defect-free CNTs to obtain excellent electronic properties (Zhang et al., 2015). Thus 

simple fabrication processes to produce these macroscopic assemblies such as CNT 

fibres and CNT sheets are essential study. 

 

 

 Apart from that, these macroscopic assemblies of CNTs have longer nanotubes, thus 

able to overcome the disadvantage of short CNTs and able to fill void since it can 

entangled and form long CNT. The disadvantage is due to short CNTs required high 
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concentrations to form a network within other materials. CNT superfibres fabricated 

from the wet spinning method own numerous short CNTs since starting material 

typically CNT powders. While, CNT sheets/fibres from aligned array have limited size 

and length of CNT sheets and usually too fragile to handle on traditional textile 

equipment (Wu and Wang, 2016). Thus, a direct spinning method from FCCVD enables 

overcome these limitations since it can produce CNTs continuously based on synthesis 

parameters in mass production. 

 

 

In this work, CNT sheets were synthesized using the FCCVD method where the direct 

spinning process was involved. The common problems when synthesizing the CNT 

sheets using this method are discontinuity of formation of aerogel, thus understanding 

on growth mechanism and their properties are necessary for this field. This failure of 

aerogel formation happened due to many factors that are interlinked to each other hence 

it is quite a challenging and complicated subject. The significance of this study       will lead 

to further research projects involving CNT sheets superfibre as starting material for 

numerous potential applications on a large scale. 

 

 

1.3       Objectives of the Study 

 

 

This research is carried out based on several objectives that are mentioned below: 

 

I. To synthesis CNT sheet superfibres in a single-step process using a floating 

catalyst chemical vapour deposition method. 

II. To optimize the reaction temperature, the injection rate of precursors, and gas 

flow rate of hydrogen gas on morphological, structural, and electrical 

properties of synthesized CNT sheet superfibres. 
III. To investigate the effect of synthesis parameters such as reaction temperature, 

the injection rate of precursors, and the gas flow rate of hydrogen gas on  
g-CNT sheet superfibres formation. 

 

 

1.4 Scope of the Study 

 

 

In this study, CNT sheets were synthesized in a single-step process using FCCVD 

method where the ratio of precursors was fixed at 96.4 wt. % of ethanol, 2.4 wt. % of 

ferrocene and 1.2 wt. % of thiophene meanwhile other parameters were varied including 

reaction temperature, (in the range of 1050 °C to 1250 °C), injection rate (from 1 ml/hr 

to 20 ml/hr), and hydrogen gas flow rate (from 200 sccm and 400 sccm). CNT sheets were 

synthesized and continuously spun onto a spindle using these variables parameters. The 

probabilities of CNT sheets to be continuously spun were observed and characterized 

using field emission scanning electron microscopy (FESEM), high resolution 

transmission electron microscopy (HRTEM), thermogravimetric analysis (TGA), 

Raman spectroscopy and its electrical conductivity was measured using a surface 

resistivity meter. The analyses were carried out, and the obtained results were discussed 

in detail. 
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1.5 Chapter Organization 

 

 

This thesis consists of five chapters, including introduction, literature review, 

methodology, results and discussion, and conclusion. The first chapter is the 

introduction of this research include problem statements, the objectives, and the scope 

of the study conducted. In the second chapter, study related to CNT superfibres were 

reviewed. The third chapter focuses on methods in this work, where procedures, 

methods to synthesis CNT sheets superfibres, and their characterization include 

FESEM, HRTEM, TGA, Raman spectroscopy, and surface resistivity meter are stated. 

Then, chapter four discussed the obtained CNT sheets, and their results based on 

characterization are analyzed and discussed. Lastly, chapter five concludes the results 

acquired in this work and the recommendations for future research. 
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