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The present research aims to develop multifunctional nanocomposite 
material that has the adequate electromagnetic interference (EMI) shielding 
properties with minimal thickness as well as good mechanical flexibility and 
particularly was easily processed into films. Graphene nanoplatelets (GNP) 
with unique extraordinary properties were preferred as reinforcement agent 
in the multifunctional polymer nanocomposite films development. Strategic 
combination of composite analytical testing approaches was essential in 
determining optimum composite material formulation consequently enhanced 
the maximum properties of nanocomposite film as the GNP dispersed 
homogeneously in the poly(vinyl alcohol) (PVA) matrix prepared by both 
solution casting (SC) and solution-impregnated electrospun nanofibrous (SI) 
methods.  
 
 
The first objective was to determine the tensile, thermal, and dynamic 
mechanical properties of resultant nanocomposite having different GNP size 
and loading content (1, 3, 5, 7wt%) prepared by solution casting (SC) 
method. Furthermore, second objective was to evaluate the microstructure of 
various GNP electrospun nanofibrous mat and to determine the thermal and 
dynamic mechanical properties of GNP nanofibrous mats/PVA (PVA/eGNP) 
nanocomposite films prepared by solution-impregnated electrospun 
nanofibrous (SI) fabrication method. The third objective was to compute the 
dielectric, attenuation and EMI shielding effectiveness (SE) values in the 
range of microwave frequencies.  
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In this research, both types of GNP (GNP-M15 and GNP-C750) that 
incorporated into the PVA have enhanced their tensile strength and modulus 
of the resultant nanocomposites at low GNP loading but decreased when 
GNP loading beyond 5wt%. Conversely, the elongation at the break of the 
nanocomposites decreased with an incorporation GNP content. Additionally, 
nanocomposite incorporated with 3wt% of GNP C750 grade (43.33MPa) 
show 13% higher tensile strength compared to M15 grade.  
 
 
The storage modulus of PVA/GNP nanocomposites prepared by SC that 
incorporated with C750 and M15 GNP at 3wt% loading increased by 30% 
and 20% over the pure PVA film sample, respectively. The trend in dynamic 
mechanical properties (storage modulus) was in excellent agreement with 
the tensile characteristic. Moreover, the glass transition temperature, (Tg) in 
which significantly increased (10⁰C) was observed attributed to the better 
interaction of the GNP nanofillers with the PVA matrix. It was observed that 
the degree of crystallinity evaluated by DSC for the PVA/GNP 
nanocomposites incorporated with 1wt% of GNP loading was slightly 
increased (15.5%) compared to pure PVA (13.2%) and this supported with 
the additional confirmation by the XRD characteristic.  
 
 
Meanwhile, on the other hand the storage modulus of same GNP loading 
(3wt%) has shown an enhancement about 50% for the sample prepared by 
SI method. Furthermore, at the highest GNP loading (7wt%) of PVA/eGNP 
nanocomposite film has shown a comparable result to the optimum storage 
modulus (3wt%) obtained from PVA/GNP nanocomposite film. It was also 
found that the degradation temperature (Td) of the PVA/GNP nanocomposite 
was appeared at about 340˚C and it was about 10˚C increment compared to 
pure PVA.  
 
 
The PVA/GNP nanocomposites films show an enhancement up to 60% in 
dielectric properties at microwave frequencies range from 8GHz to 12GHz. 
The highest EMI SETotal of approximately 7.5 dB was achieved from 7wt% of 
GNP electrospun nanofibers mat reinforced PVA nanocomposite film which 
prepared by solution-impregnated electrospun nanofibrous method. These 
nanocomposite films which exhibited appropriate dielectric constant and 
attenuate electromagnetic wave due to dielectric losses were promising 
candidature for various shielding applications by tuning their filler content. 
The reinforced GNP electrospun nanofibrous have successfully utilized as a 
scaffold for multifunctional components of the resultant hierarchically 
organization nanocomposite with enhanced multifunctional properties. 
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Penyelidikan ini bertujuan untuk membangunkan bahan nanokomposit 
termaju pelbagai fungsi yang mempunyai sifat pemerisaian gangguan 
elektromagnet (EMI) yang mencukupi dengan ketebalan minimum serta 
kelenturan mekanik yang baik dan terutamanya boleh diproses dengan 
mudah untuk membentuk filem. Nanoplatelet graphen dengan ciri yang unik 
adalah digemari sebagai agen pengukuhan dalam pembangunan 
nanokomposit polimer pelbagai fungsi. Gabungan strategik pendekatan 
analisis komposit adalah penting dalam menentukan rumusan bahan 
komposit optimum yang seterusnya meningkatkan sifat maksimum filem 
nanokomposit kerana GNP tersebar secara homogen dalam matriks poli 
(vinil alkohol) (PVA) yang disediakan oleh kedua-dua kaedah tuangan 
larutan (SC) dan kaedah elektrospun nanofibrous pengisitepuan-larutan (SI).  
 
 
Objektif pertama adalah menentukan tegangan, terma, dan sifat mekanik 
dinamik nanokomposit yang terhasil yang mempunyai saiz GNP dan 
kandungan pemuatan (1, 3, 5, 7wt%) yang berbeza yang disediakan dengan 
SC. Selain itu, matlamat kedua adalah untuk menilai struktur mikro pelbagai 
kepingan nanofibrous elektrospun GNP dan menentukan sifat termal dan 
mekanik dinamik bagi filem nanokomposit kepingan nanofibrous GNP/PVA 
(PVA/eGNP) yang disediakan oleh kaedah SI. Objektif ketiga adalah untuk 
mengira nilai dielektrik, keberkesanan penyusutan dan pemerisaian EMI 
(SE) dalam julat frekuensi gelombang mikro. 
 
 
Dalam kajian ini, kedua-dua jenis GNP (GNP-M15 dan GNP-C750) yang 
dimasukkan ke dalam PVA telah meningkatkan kekuatan tegangan dan 
modulus nanokomposit yang dihasilkan pada muatan GNP yang rendah 
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tetapi menurun apabila muatan GNP melebihi 5wt%. Sebaliknya, 
pemanjangan pada pecahan nanokomposit menurun dengan kandungan 
GNP yang diperbadankan. Selain itu, nanokomposit yang digabungkan 
dengan 3wt% gred GNP C750 (43.33MPa) menunjukkan kekuatan tegangan 
13% lebih tinggi berbanding gred M15.  
 
 
Modulus storan nanokomposit PVA/GNP yang disediakan oleh SC yang 
mengandungi 3wt% muatan GNP C750 dan M15 meningkat sebanyak 30% 
dan 20% melebihi daripada sampel filem PVA tulen, masing-masing. Tren 
dalam sifat mekanik dinamik (modulus storan) adalah dalam persetujuan 
yang sangat baik dengan sifat tegangan. Selain itu, suhu peralihan kaca, (Tg) 
yang meningkat dengan ketara (10⁰C) diperhatikan disebabkan oleh 
interaksi yang lebih baik dari nanofiller GNP dengan matriks PVA. Telah 
diperhatikan bahawa darjah kehabluran yang dinilai oleh DSC untuk 
nanokomposit PVA/GNP yang mengandungi 1wt% muatan GNP sedikit 
meningkat (15.5%) berbanding dengan PVA tulen (13.2%) dan ini disokong 
dengan pengesahan tambahan oleh ciri XRD. 
 
 
Sementara itu, sebaliknya modulus storan muatan GNP yang sama (3wt%) 
telah menunjukkan peningkatan sebanyak 50% untuk sampel yang 
disediakan oleh kaedah SI. Tambahan pula, filem nanokomposit PVA/eGNP 
pada muatan GNP tertinggi (7wt%) telah menunjukkan hasil yang setanding 
dengan modulus storan optimum (3wt%) yang diperoleh daripada filem 
nanokomposit PVA/GNP. Suhu degradasi (Td) nanokomposit PVA/GNP juga 
didapati muncul pada kira-kira 340˚C dan ia adalah kira-kira kenaikan 10˚C 
berbanding dengan PVA tulen. 
 
 
Filem nanokomposit PVA/GNP menunjukkan peningkatan sehingga 60% 
dalam sifat dielektrik pada frekuensi gelombang mikro dari 8GHz hingga 
12GHz. EMI tertinggi SETotal kira-kira 7.5 dB dicapai daripada filem 
nanokomposit PVA bertetulang kepingan nanofiber elektrospun GNP pada 
muatan 7wt% yang disediakan oleh kaedah elektrospun nanofibrous 
pengisitepuan-larutan. Filem nanokomposit ini yang mempamerkan pemalar 
dielektrik yang sesuai dan penyusutan gelombang elektromagnetik kerana 
kehilangan dielektrik adalah calon yang baik untuk pelbagai aplikasi perisai 
dengan penalaan muatan pengisi. Elektrospun nanofibrous bertetulang 
graphene telah berjaya digunakan sebagai perancah untuk komponen 
pelbagai fungsi nanokomposit hasil daripada organisasi hierarki 
nanokomposit dengan menunjukkan peningkatan ciri-ciri pelbagai fungsi. 
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CHAPTER 1  

1 INTRODUCTION  

1.1 Overview 

In a time that is buzzing with technological development, new and more 
sophisticated classes of smart materials are constantly being developed. 
Given the amazing complexity and successful designs of natural materials 
that biology is capable of producing, the modern materials engineer or 
scientist are creating an incredible array of materials which may emulate 
biological system with the capability to select and execute specific functions 
intelligently and respond to variability in the environment. “Smart” 
multifunctional properties are the key component of the next generation 
advanced materials, whereby the materials have the ability to go beyond 
their existing capabilities, including adaptation to environmental cues, the 
ability to dynamically switch between different material states, and self-
healing. In parallel with the extensive growth in modern gigahertz (GHz) 
electronic systems and multifunctional telecommunication devices with 
greatly enhanced data transfer speeds that operate at higher frequencies 
has raised the electromagnetic (EM) pollution to a level never attained before 
(Qin et al, 2012). Several studies have reported the hazardous effect of EM 
waves which include the increase risks of health issues related to skin 
problems, cancer, heart problems, headache and several other minor and 
acute diseases (Sowmya et al., 2018). 

Nanotechnology has greatly contributed to the development of bioinspired 
advance nanocomposites that produced by hierarchically organized nano-
components whereby each component exhibits a unique and greater 
functional capability and performance (Qian et al., 2010). Recently, tuneable 
nanofibers is explored as a scaffold for multi-functional components of the 
hierarchically organization (Wee-Eong et al.,2009). Consequently, the 
visions of developing material that responds to environmental changes would 
become a reality (Adnan et al., 2015). 

In this research, graphene nanoplatelets (GNP) with retaining the single-
layer graphene (SLG) extraordinary properties were preferred nanomaterial 
due to their economically feasible and have highly potential to form graphene 
nanofibrous mats by electrospinning fabrication method. These high aspect 
ratios of electrospun nanofibers with finite length and the absence of fiber 
edges (ends) that act as obvious stress concentration zones have played an 
important role in designing the qualified conductive and good mechanical 
flexibility of nanoreinforcement (Pillay et al., 2013). Moreover, the superior 
interfacial bonding strength between matrices to the nanoreinforcements can 
dramatically improve due to nanofibrous high specific surface area properties 
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(Zheng-Ming at al., 2003). Therefore, graphene derivatives itself have 
various extraordinary capabilities can be incorporated into the nanofibers to 
form the first level of the hierarchical organization. In the next level, the 
graphene based nanofibrous mat were impregnated within a matrix to 
become the reinforcement appliance as well as to be used to control and 
manipulate electromagnetic radiation over a wide range of wavelengths (Qin 
et al, 2012).  

1.2 Problem Statement 

The presence of numerous exceptional properties owing by graphene 
nanoplatelets (GNP) in the commercial polymers that lead to significant 
reinforcement has contributed to a vast amount of research focused on the 
development of graphene-based multifunctional polymer nanocomposite 
materials (Dimitrios et al., 2017). However, there were only few of the 
researcher work on incorporated the GNP into high mechanical flexibility 
polymer matrices films.  

There is high interest and motivation to develop multifunctional polymer 
nanocomposite films with minimal thickness as well as good mechanical 
flexibility for electronic component application as it is essential due to the 
global demand and staggeringly rapid advances in massive development of 
high speed Gigahertz (GHz) wireless technology, as well as the on-going 
miniaturization of electronic devices evolution (Sowmya et al., 2018).  

This approach can be made possible with the incorporation of GNP into the 
light weight and superior mechanical flexibility polyvinyl alcohol (PVA) matrix 
as reinforcement agent for the first time. There is much need to evaluate and 
understand the fundamental behaviour on incorporating various GNP size 
and loading into PVA as well as its effect on tensile, thermal, crystallinity and 
dynamic mechanical properties for their potential application in EMI shielding 
industry.   

The applications of dynamic mechanical analysis (DMA) show extreme 
importance in the field of nanocomposite and hence it is potentially useful 
tool for designing materials in films processing applications. Furthermore, 
DMA provide remarkable insight into the different chemistries associated with 
film formation of the solvent-based and water dispersible formulations. 
Moreover, DMA offers an important test method in evaluation of the 
interfacial bonding in the temperature and strain rate ranges of interest for 
polymer nanocomposite applications. In addition, using a strategic 
combination of polymer crystallization analytical testing approaches is 
essential for improving fabrication processes, optimizing material properties 
in developing new polymer composite films and obtaining their details failure 
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analysis. Additionally, these analyses are very useful in material formulation 
and quality control procedure. 

The EMI shielding specialists are facing new challenges to figure out new 
ways to use less space, thinner and lighter materials for creating shielding 
films with tighter tolerances such as strong absorption and weak secondary 
reflection of EMI pollution. The general trend for composites with different 
carbonaceous nanofillers (Qin and Brosseau, 2013; Jean et al., 2013; Adohi 
et al., 2010) shows that EMI shielding effectiveness (SE) was enhanced by 
incorporating higher filler loadings (>20wt%) that only demonstrated  
reflection-dominant mechanism. However, this condition is economically not 
feasible and not viable for films processing. 

In this research, for the first time the low loading of graphene electrospun 
nanofibrous possess high aspect ratio has been used as reinforcement 
agent into flexible PVA matrix in the hierarchically organized nanocomposite 
materials. Production of this multifunctional nanocomposite material that 
have an equivalent electromagnetic interference (EMI) shielding properties 
with minimal thickness as well as good mechanical flexibility were highly 
demand, particularly it was easily processed into films. 

1.3 Objectives 

The aim of this research focuses on design and constructs a novel 
formulation of a multifunctional advanced nanocomposite material by 
combining the light weight and superior mechanical flexibility of polyvinyl 
alcohol (PVA) with the extraordinary properties of the graphene 
nanoplatelets (GNP) at far lower reinforcement concentrations. The 
PVA/GNP nanocomposites films that fabricated by both solution casting and 
solution-impregnation electrospun nanofibrous processing methods which 
then further characterise and evaluate in term of microstructural features, 
tensile, dynamic mechanical, thermal and dielectric properties in detail for the 
first time. The deep investigation on the effect of incorporating various GNP 
types and content on the PVA/GNP nanocomposites is taking into account 
for the potential application in EMI shielding industry. 

In order to explore these process-structure-property relationships, the 
following objectives have to be carried out: 

To evaluate the effect of GNP filler size (M15 and C750 grade) and loading 
content (1,3,5,7wt%) on the tensile, thermal, crystallinity and dynamic 
mechanical properties of GNP/PVA nanocomposite films prepared by using 
solution casting method.  
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To evaluate the effect of impregnating GNP electrospun nanofibrous mats on 
the thermal and dynamic mechanical properties of GNP nanofibrous 
mats/PVA nanocomposite films prepared by solution-impregnation 
electrospun nanofibrous prosessing method. 

To determine the attenuation performance of graphene-based poly(vinyl 
alcohol) nanocomposite for Electromagnetic Interference (EMI) Shielding 
application at microwave frequencies range . 

1.4 Scope of Study 

PVA with excellent chemical resistance, physical properties, biodegradability 
and light weight features was used as the matrices. The incorporation of 
GNP which owing multi extraordinary properties into the PVA has offers new 
opportunities in tailoring the matrices properties as well as introduce new 
properties to the resultant nanocomposite. Moreover, both of these polymer 
solution cast films technique could replace traditional film extrusion 
processing method thus deliver a better cost effectiveness as well as high 
quality films with superior mechanical, thermal and electrical film properties. 
This obtained by their capability of processing condition at low temperatures, 
which suitable for thermally activated films or incorporating temperature-
sensitive active ingredients. Furthermore, it has a facility for producing high-
temperature resistant films from thermoplastic of soluble raw materials. The 
ability for single pass manufacturing of multi-layer films and quicker 
changeovers for platforms with many part numbers having differentiated 
formulation has make this fabrication method suitable for a large scale 
production. The scope of study for each objective was performed as follows:  

1. The graphene based PVA nanocomposites in the form of films were 
prepared by solution casting processing methods. The tensile, 
thermal, crystallinity and dynamic mechanical properties of resultant 
nanocomposite can be tuned by the incorporation of different GNP 
filler size and loading. Furthermore, the structural fractographic 
characterization of PVA/GNP nanocomposites is crucial to support 
the fundamental understanding in the structure to property 
relationship mechanism.  

2. In solution-impregnation electrospun nanofibrous method, GNP were 
incorporated into the nanofibers by using elctrospinning technology 
to form the first level of the hierarchical organization. In the next 
level, the graphene based nanofibrous mat was impregnated within a 
PVA matrix. The effect of electrospinning variables and parameter 
on the morphology of GNP electrospun nano fibrous mat was 
evaluated. Furthermore, the impregnation of different GNP 
nanofibrous mats morphological structure and size can be used to 
tune the thermal and dynamic mechanical properties of GNP 
nanofibrous mats/PVA nanocomposite films. 
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3. The graphene-based poly(vinyl alcohol) nanocomposite films 

attenuation performance was evaluated in microwave frequencies 
range  for EMI shielding application.Firstly, the dielectric properties 
of graphene-based poly(vinyl alcohol) nanocomposite at X-band 
frequency range were determined. Next, the Scattering Parameters 
[S] of graphene-based poly(vinyl alcohol) nanocomposite were 
determined by using vector network analyser (VNA). Finally, the 
attenuation and EMI shielding effectiveness (SE) value of graphene-
based poly(vinyl alcohol) nanocomposite at X-band frequency range 
were computed. 

 
 
In general, the evaluation of graphene-based poly(vinyl alcohol) 
nanocomposite films were tensile properties (tensile strength, modulus and 
elongation at break), thermal properties (thermogravimetric and differential 
scanning calorimetric analysis), morphology (scanning electron microscopy 
and field emission scanning electron microscopy), crystallinity (X-ray 
diffraction), dielectric and EMI shielding effectiveness (waveguided vector 
network analyser). 

1.5 Significance of Research 

Electromagnetic interference (EMI), a novel kind of pollution is receiving a lot 
of scientific attention all over the world due to their capability to produce 
deleterious effects to the human health. There is an urgency to develop 
advanced and sophisticated classes of EMI shielding materials which can 
satisfy the need of next-generation portable equipment and wearable 
devices. Executing this strategy requires the progress in science, technology 
and business because novel materials often require complementary new 
requirements on material properties, new demands on performance and 
cost, and also new markets. Specifically with every advance in electronic 
technology such as GPS, 4G/LTE, RFID and more intricate cell phones, it 
comes with a new demand for EMI shielding mechanism and strategies. It 
has been noted that the biggest obstacles for the EMI shielding industry are 
size, flexible design and cost. However, with the used of right materials along 
with an optimum formulation of materials design together with effective 
manufacturing procedure, a successful EMI shielding can be achieved 
across even the most complex applications. Thus having adequate 
conductivities nevertheless limiting the fraction of GNP by compositing these 
conductive nanofiller with low dielectric constant matrices (PVA) being a 
smart strategy for restraining reflection and enhance absorption as the 
electromagnetic wave (EMW) can perfectly transmitted into the shielding 
material due to its low surface impedance. The enhancement of EMI 
shielding in these structures has been frequently attributed to favoured re-
reflection and subsequent dissipation of the absorbed portion of the wave in 
the hierarchically organized nanocomposite material. Finally, few advantages 
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of the resulting film from polymer solution cast fabrication technique were 
broader range of film thickness with greater film flatness and thickness 
uniformity as well as the absence of typical extrusion process lubricants as 
compared with traditional manufacturing procedure.  

1.6 Organization of the thesis 

Chapter 1 is the introduction of the thesis which given general overview on 
the global issues of pollution created by electromagnetic interference (EMI) 
due to high speed and frequencies demanded from the electronic and 
industry evolutionary. Besides, the problem statement regarding the 
conventional EMI shielding materials is mentioned together with the 
objectives of the study.  

In chapter 2, a comprehensive review of literatures on related topic toward 
this research such as the polymer nanocomposite (PNC), the production and 
properties of graphene and its derivative, the polymeric matrices in details, 
electrospining technology and the fundamental of EMI shielding design 
mechanism and characterization. 

Chapter 3 is the methodology section which discusses the methods and 
materials used in the research. Chapter 4 presented the results followed by 
discussion on the obtained result. Development of optimum mutlifunctional 
graphene based PVA nanocomposites also discussed in this section. The 
last chapter is the overall conclusion of the thesis and recommendation for 
future research based on the understanding and knowledge generated in the 
present study.  
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