THE FEASIBILITY OF HARVESTING AND EXTRACTION OF LOGGING RESIDUES IN SABAH

JOSEPH AHLAN

FH 1998 7
THE FEASIBILITY OF HARVESTING AND EXTRACTION OF LOGGING RESIDUES IN SABAH

By

JOSEPH AHLAN

Dissertation Submitted in Fulfillment of the Requirements for the Degree of Doctor of Philosophy in the Faculty of Forestry Universiti Putra Malaysia

November 1998
Dedicated to my Reverend Father (Late)

Ahlan Jambul

Where dream comes true

&

Dedicated to my Beloved

Mother, Brothers, Sisters, Wife and Children.
ACKNOWLEDGEMENTS

I wish to express my indebtedness to Dr. Shukri Mohamed, Chairman of the Supervisory Committee, for his constant guidance, assistance and suggestions throughout the preparation of this thesis. I would also like to express my profound gratitude to Dr. Awang Noor Abdul Ghani and Assoc. Prof. Mohd. Zin Jusoh for their invaluable guidance, assistance, suggestions and constructive comments.

My sincere thanks to the Director of Sabah Forestry Department, who has provided me with the necessary support in order to ensure the study a success. I also wish to thank Mr. Charles Loi, the Managing Director of Serisar Industries Bhd. for granting me to conduct the study in his concessionaire and the District Forestry Officer of Kota Marudu for granting the use of the facilities available. I would also like to thank Mr. Loh Tung Sing, the Managing Director of Timberwell Berhad for their Scholarship Award, which has enabled me to continue the research work.

I am grateful to my staff, Mr. Imbangan Piding, Mr. Ibnu Kiju, Mr. Aman Madiasin and Mr. Gibson Doyou for their assistance in the data collection.
I am also indebted to various individuals, especially to my sister Puan Rosilawati Hj. Israh, Datuk Jim Lim and Datin Moni Hiew, Dr. Razali Abdul Kadir, Dr. Mohd. Hamami Sahri, Mr. Kinus, Miss S.F.Chin, Noorbani Umar Baki, Dr. Chey, Dr. Angeline, Mr. Eric, Mr. Andurus, Mr. Rashid Samad, Mrs. Mary Pan, Mr. and Mrs. John Ligadu, Mr. William Tze, Mrs Rosila Wilson, Miss Huzaimah, Mr. Kwan Thiam Leong, Pn. Salmah Saleh, Mr. Christoper Matunjau, Dr. Sining, the Forestry Department Sabah staff, the ESPstar INTL staff, and friends, whom one way or another had contributed to the completion of this study.

Lastly, my special and deepest thanks and love towards my wife, Alice Binti Piti, for her love, sacrifice, patience, support and encouragement. My children, Jerom and Jeron, in their own ways have continuously provided me with love and inspiration. My special love to them.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>iii</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>x</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xiv</td>
</tr>
<tr>
<td>LIST OF PLATES</td>
<td>xvi</td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
<td>xvii</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>xviii</td>
</tr>
<tr>
<td>ABSTRAK</td>
<td>xxi</td>
</tr>
</tbody>
</table>

CHAPTER

I INTRODUCTION .. 1

- Objectives ... 4
- Organisation of the Thesis 4

II FORESTRY AND FOREST INDUSTRIES IN SABAH 6

- Forest Management .. 6
- Forest Plantations .. 9
 - Plantation Timber Production 12
 - Usage and Marketing of Plantation Timber 14
- Timber Production .. 14
- Wood-Based Processing Industry 17
 - Sawmilling Industry 17
 - Plywood and Veneer Industry 20
 - Other Forest Industries 20
- Sustainable Forest Management in Sabah 23
- Summary .. 26

v
Type of Data Collected .. 67
Estimation of the Quantity of Harvesting Logs and Logging Residues ... 67
Measuring Length and Diameter 69
Quantifying Volume of Logs and Logging Residues ... 76
Data Sources .. 77
Data Analysis .. 78
Volume Equations for Logging Residues 78
Method of Estimating the Volume Equations 80
Estimating the Value of Logging Residues 81
Formula .. 81
Method of Calculating the Values of Logging Residues 82
Data Source and Collection Procedures 86
Data Analysis .. 88
Estimating Factors Affecting the Logging Residues Extraction Volume ... 89
Estimation Methods ... 91
Data Source .. 92
Economics of Extracting the Logging Residues 92
Introduction .. 92
Estimating the Total Costs and Benefits 93
Type and Source of Data ... 100
Data Analysis .. 102

V RESULTS AND DISCUSSION .. 104

Introduction .. 104
Quantities and Types of Logging Residues 104
General Discussion .. 144
Utilisation Opportunities of the Logging Residues........ 144
Effect of the Study on Future Government Revenue...... 145
Comparison of Logging Residues Quantities as
Obtained in this study with the Previous Studies....... 146

VI CONCLUSIONS, POLICY IMPLICATIONS AND
RECOMMENDATIONS .. 148

Introduction ... 148
Conclusion ... 148
Policy Implications .. 152
Recommendations .. 156

REFERENCES ... 158

APPENDICES ... 168

A Additional Tables ... 169
B Additional Figures .. 194
C Detail Method of Calculation and Breakdown of Each
 Type of Costs and Benefits Parameter 206
VITA ... 223
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Total Plantation Area by Species in Sabah as at December, 1996</td>
<td>11</td>
</tr>
<tr>
<td>2</td>
<td>Production of Plantation Logs in Sabah</td>
<td>12</td>
</tr>
<tr>
<td>3</td>
<td>Log Production in Sabah from 1950 to 1996</td>
<td>16</td>
</tr>
<tr>
<td>4</td>
<td>Sawmill Industry Development in Sabah, 1970 to 1996</td>
<td>19</td>
</tr>
<tr>
<td>5</td>
<td>Development of Plywood and Veneer Industry in Sabah</td>
<td>21</td>
</tr>
<tr>
<td>6</td>
<td>Value of Logging Residues (RM/m³/ha)</td>
<td>59</td>
</tr>
<tr>
<td>7</td>
<td>Reduction Factor for Log Price</td>
<td>87</td>
</tr>
<tr>
<td>8</td>
<td>Estimated Total Volume Logging Residues Based on Tree Portion</td>
<td>105</td>
</tr>
<tr>
<td>9</td>
<td>Mean Volume of Residues per Tree between the STC and LTC (m³)</td>
<td>108</td>
</tr>
<tr>
<td>10</td>
<td>Mean Volume of Residues per Hectare Based on Tree Portions (m³/ha)</td>
<td>110</td>
</tr>
<tr>
<td>11</td>
<td>Logging Residues Based on the Diameter Class (%)</td>
<td>111</td>
</tr>
<tr>
<td>12</td>
<td>Logging Residues Based on Damaged Trees in STC and LTC</td>
<td>113</td>
</tr>
<tr>
<td>13</td>
<td>Logging Residues Based on Diameter Class and Average Length</td>
<td>116</td>
</tr>
<tr>
<td>14</td>
<td>Summary of ANOVA for the Logging Residues Volume by Concession and Operation Category</td>
<td>117</td>
</tr>
<tr>
<td>15</td>
<td>Summary of the Mean Volume Differences of Logging Residues between both the Concession Licenses</td>
<td>118</td>
</tr>
</tbody>
</table>
16 Ratio of Type of Residues to Production .. 120
17 The Regression Results of Volume Equations for Various Type of Logging Residues .. 122
18 The Value of Logging Residues Estimated per m³ .. 124
19 The Average Price of Logging Residues Based on its Potential Utilisation in Sabah for the Year 1995 and 1996 126
20 The Value of Logging Residues per Hectare .. 127
21 The Regression Estimates of the Factor Affecting Production Volume of Logging Residues from Concession Area .. 130
22 Incremental Net Benefits of Extraction Logging Residue From the STC (RM/m³) .. 134
23 The Incremental Net Benefits of Extraction Logging Residues From LTC (RM/m³) .. 136
24 Comparison of NPV between the STC and LTC .. 138
25 Sensitivity Analysis: Net Benefit at Various Logging Residues Price Levels .. 140
26 Sensitivity Analysis: Net Benefit at Various Variables Costs Levels (RM/m³) .. 141
27 Sensitivity Analysis: Net Benefit at Various Logging Residues Prices and Associates Costs (RM/m³) .. 142
28 Sensitivity Analysis: INB at Various Interest Rates for NPV (RM/m³) .. 143
29 Estimation and Projection of Logging Residues and Forest Revenue (RM’000,000) .. 146
30 The Sequence of the Revised Version of Silvicultural Operation as of 1976 .. 170
31 The Estimates of Total Timber Production from All Sources of Supply, in Sabah, 1998 –2008 (in million, m³).... 171
32 The Measurement and Recording Form ... 172
33 Species Suitability for Woodchips Manufacturing 173
34 The Average Price of Log Used in Estimation 174
35 The Breakdown of Costs Parameters With and Without the Extraction of Logging Residues for Long Term Concessions ... 175
36 The Breakdown of Benefits Parameters With and Without the Extraction of Logging Residues for Long Term Concessions (RM) ... 176
37 The Classification of Species Group-Suitable for Processing into Wood Products and Woodchips 177
38 The Results of the Comparison of the Paired Samples Logging Residue Means ... 178
39 The OLS Regression Analysis Results for the Volume Equations of Stump Residues ... 179
40 The OLS Regression Analysis Results for the Volume Equations of Main Stem Residues ... 180
41 The OLS Regression Analysis Results for the Volume Equations of Branch Residues ... 181
42 The OLS Regression Analysis Results for the Volume Equations of Top Residues ... 182
43 The OLS Regression Analysis Results for the Volume Equations of Damaged Tree Residues ... 183
44 The WLS Regression Analysis Results for the Volume Equations of Stump Residues ... 184
45 The WLS Regression Analysis Results for the Volume Equations of Main Stem Residues ... 185
<table>
<thead>
<tr>
<th>Page</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>46</td>
<td>The WLS Regression Analysis Results for the Volume Equations of Branch Residues</td>
<td>186</td>
</tr>
<tr>
<td>47</td>
<td>The WLS Regression Analysis Results for the Volume Equations of Top Residues</td>
<td>187</td>
</tr>
<tr>
<td>48</td>
<td>The WLS Regression Analysis Results for the Volume Equations of Damaged Tree Residues</td>
<td>188</td>
</tr>
<tr>
<td>49</td>
<td>The Non-Linear WLS Regression Analysis Results for Factor Affecting Production Volume of Stump Residues</td>
<td>189</td>
</tr>
<tr>
<td>50</td>
<td>The Linear WLS Regression Analysis Results for Factor Affecting Production Volume of Top Residues</td>
<td>190</td>
</tr>
<tr>
<td>51</td>
<td>The Non-Linear WLS Regression Analysis Results for Factor Affecting Production Volume of Branch Residues</td>
<td>191</td>
</tr>
<tr>
<td>52</td>
<td>The Non-Linear WLS Regression Analysis Results for Factor Affecting Production Volume of Main Stem Residues</td>
<td>192</td>
</tr>
<tr>
<td>53</td>
<td>The Linear WLS Regression Analysis Results for Factor Affecting Production Volume of Damaged Tree Residues</td>
<td>197</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>29</td>
</tr>
<tr>
<td>2</td>
<td>49</td>
</tr>
<tr>
<td>3</td>
<td>66</td>
</tr>
<tr>
<td>4</td>
<td>66</td>
</tr>
<tr>
<td>5</td>
<td>68</td>
</tr>
<tr>
<td>6a</td>
<td>107</td>
</tr>
<tr>
<td>6b</td>
<td>107</td>
</tr>
<tr>
<td>6c</td>
<td>107</td>
</tr>
<tr>
<td>7</td>
<td>120</td>
</tr>
<tr>
<td>8</td>
<td>128</td>
</tr>
<tr>
<td>9</td>
<td>195</td>
</tr>
<tr>
<td>10</td>
<td>196</td>
</tr>
<tr>
<td>11</td>
<td>197</td>
</tr>
</tbody>
</table>
12 The Scatter Diagrams of per Cubic Meter Volume of Logging Residue Plotted Over All the Observation .. 200

13 The Scatter Diagrams of per Cubic Meter Volume of the Logging Residue Plotted Over the Prices Observation... 203

14 The Detail on the Concept of Formula and Calculation of Goldfeld-Quandt Test for Heteroscedasticity ... 204

15 The Illustration of the Weighted Least Squares Method .. 205
LIST OF PLATES

<table>
<thead>
<tr>
<th>Plate</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Felling Direction Marking</td>
<td>69</td>
</tr>
<tr>
<td>2</td>
<td>Measuring the Length/Height of Stumps Residue</td>
<td>71</td>
</tr>
<tr>
<td>3</td>
<td>Measuring the Main Stems Residue Length</td>
<td>71</td>
</tr>
<tr>
<td>4</td>
<td>Measuring the Main Stems Residue Diameter</td>
<td>72</td>
</tr>
<tr>
<td>5</td>
<td>The Sample of the Main Stems Residue</td>
<td>72</td>
</tr>
<tr>
<td>6</td>
<td>The Sample of the Tops Residue</td>
<td>74</td>
</tr>
<tr>
<td>7</td>
<td>The Sample of Branches Residue</td>
<td>74</td>
</tr>
<tr>
<td>8</td>
<td>A Sample of Damaged Trees Residue</td>
<td>75</td>
</tr>
<tr>
<td>9</td>
<td>The Method of Measuring the Thickness of the Bark</td>
<td>75</td>
</tr>
</tbody>
</table>
LIST OF ABBREVIATIONS

ANOVA - Analysis of Variance
C.I. - Confidence Interval
CFR - Commercial Forest Reserve
dbh - diameter breast height
FMU - Forest Management Unit
HHW - Heavy Hardwood
INB - Incremental Net Benefits
ITTO - International Tropical Timber Organisation
LHW - Light Hardwood
LTC - Long Term Concessions
MHW - Medium Hardwood
MUS - Malaysian Uniform System
NFC - National Forestry Council
NLC - National Land Council
NPV - Net Present Value
OLS - Ordinary Least Squares
OPG - Operation Category
RM - Ringgit Malaysia
RIF - Regeneration Improvement Felling
RIL - Reduced Impact Logging
SAFODA - Sabah Forestry Development Authority
SFI - Sabah Forest Industries
spp. - species
STC - Short Term Concessions
S.V. - Stumpage Values
SFMS - Sustainable Forest Management System
WLS - Weighted Least Squares
Abstract of dissertation submitted to the Senate of Universiti Putra Malaysia in fulfilment of the requirements for the degree of Doctor of Philosophy.

THE FEASIBILITY OF HARVESTING AND EXTRACTION OF LOGGING RESIDUES IN SABAH

BY

JOSEPH AHLAN

NOVEMBER 1998

Chairman : Shukri Mohamed, Ph.D.
Faculty : Forestry

Effective harvesting and utilisation of log and logging residues are important, in achieving the sustainable forest management and to maximize the government revenue, in the light of declining supply of conventional logs.

The aim of this study was to evaluate the feasibility of harvesting and extracting the logging residues, to estimate their economic value, to determine quality and quantity of logging residues and types, to derive a volume equations for quantifying logging residues, and to determine the factors affecting their extraction. The type, quality and quantity of logging residues were determined from two different tenures of timber concessions which were categorised into three different operations based on altitudes, vegetation types, topography and terrain characteristics. The “with” and “without” the Project approach was used in determining the Incremental Net Benefit (INB) of harvesting and extracting the logging residues. The economic value of logging residues was determined
by applying formulas that express the concept of the stumpage value of timber. The volume equation for logging residues was estimated using the OLS and WLS regression methods following the normal volume equation for log.

The economic analysis of extracting logging residue in both Short Term Concession and Long Term Concession indicate that harvesting of logging residues is profitable. The Net Present Value (NPV) of extracting logging residue per m³ in Short Term Concession and Long Term Concession are estimated at RM37.64 and RM145.64, respectively. The estimated additional revenue for the state by extracting logging residue is about RM116.26 million per annum.

The results showed that the mean volume of logging residues based on tree portions and damaged trees are 15.94 and 13.71 m³ per hectare, respectively. The mean volume of logging residues per tree is 2.07 m³. The total volume of logging residues in Short Term Concession (STC) was higher than in Long Term Concession (LTC) by 56.8%. Of the different types of logging residues, branch of residue was the highest, and followed by the main stems, tops and stumps residues. The study showed that by species group, the Light Hardwood grouping of species formed the major part of the logging residues. The highest volume of logging residues was in Operation Category 2 which was estimated at 25.43 m³ per hectare. The ratio of logging residues to total log production obtained in this study was 0.56 to 1. The regression of diameter (D²) with volume, in a V = a + bD²L, regression offers the best volume equation result
compared with other correlations. The best volume equation for deriving stumps, main stems, tops and damaged trees residues are in ordinary equation form. For branch residues, the logarithmic form provided the best volume equations.

The results showed that the average value of the logging residues per m3 and per hectare were RM38.54 and RM1,050.45, respectively. Damaged tree residues recorded the highest value per m3 and per hectare with RM73.49 and RM676.67, respectively. The lowest residue value was recorded by branch residue. The average selling price of logging residue for all the end-used products is RM66.33 per m3. The average cost of extracting logging residue per m3 is RM29.64.

Logging residue price parameters were found to be the main significant factor affecting the extraction volume of logging residues. Only the price elasticity for supply volume of branches and damaged trees residue were found to be elastic over the range studied, whereas the rest were inelastic.

The implications of the study are that the government should revise the current licensing policy on Short Term Concession by encouraging the concessionaire to harvest logging residue in order to achieve sustainable forest management. The present timber harvesting method should be improved and the conditions of the license must be strictly enforced by the government to reduce logging damage. Incentives should also be given to attract more investment to encourage logging residue utilisation.
Abstrak Dissertasi yang dikemukakan kepada Senat Universiti Putra Malaysia
Sebagai memenuhi keperluan untuk Ijazah Sains Kedoktoran.

KEBOLEHLAKSANAAN PENUAIAN DAN PENGAMBILAN SISA
PEMBALAKAN DI SABAH

Oleh
JOSEPH AHLAN
NOVEMBER 1998

Pengerusi: Shukri Mohamed, Ph.D.
Fakulti: Perhutanan

Penuaian yang berkesan dan penggunaan balak serta sisa pembalakan amatlah penting bagi mencapai pengurusan hutan secara berkekalan dan bagi memaksimakan kutipan hasil kerajaan, pada ketika bekalan balak sedang berkurangan.

Kajian ini adalah bertujuan untuk menilai kebolehlaksanaan penuaian dan pengambilan sisa pembalakan, menganggar nilai ekonomiknya, menentukan jenis, kualiti dan kuantiti sisa pembalakan, mendapatkan persamaan isipadu bagi sisa pembalakan, serta menentukan faktor-faktor yang mempengaruhi pengambilannya. Dua jenis konsesi yang berbeza jangkamasa kuatkuasanya dipilih dan dibahagikan kepada 3 kategori operasi yang berbeza ciri-ciri altitud/ketinggian, jenis tumbuhan, topografi, dan kecerunannya bagi menentukan jenis, kualiti dan kuantiti sisa pembalakan. Pendekatan dengan dan
tanpa projek adalah digunakan untuk menentukan INB penuaian dan pengambilan sisa pembalakan. Manakala nilai ekonomi sisa pembalakan pula ditentukan dengan menggunakan konsep formula nilai stumpej. Persamaan isipadu untuk sisa pembalakan adalah dianggar menggunakan kaedah regreassi OLS and WLS dengan mengikuti persamaan isipadu biasa untuk balak.

Analisa ekonomi bagi penuaian sisa pembalakan dari konsesi jangka pendek (STC) dan konsesi jangka panjang (LTC) menunjukkan bahawa penuaian sisa pembalakan adalah menguntungkan. NPV bagi pengambilan sisa pembalakan dari konsesi jangka pendek dan konsesi jangka panjang adalah masing-masing bernilai RM37.64 and RM29.12 se m³. Adalah dianggarkan tambahan hasil negeri akan bertambah sebanyak RM116.26 juta dalam setahun sekiranya sisa pembalakan diambil.

Keputusan kajian menunjukkan bahawa purata isipadu sisa pembalakan berasaskan bahagian pokok dan pokok yang dirosakan adalah masing-masing bernilai 15.94 dan 13.71 m³ se hektar. Purata isipadu sisa pembalakan sepokok adalah 2.07 m³. Jumlah sisa pembalakan pada konsesi jangka pendek didapati lebih tinggi dari konsesi jangka panjang sebanyak 56.8%. Isipadu sisa pembalakan sehektar untuk dahan adalah yang tertinggi dan diikuti oleh sisa pembalakan dari batang, “top” dan banir. Kumpulan LHW adalah kumpulan spesis yang utama menghasilkan sisa pembalakan dalam kajian ini. Jumlah sisa pembalakan yang tinggi adalah diperolehi dari kategori operasi ke-2. Nisbah jumlah sisa pembalakan kepada jumlah pengeluaran balak adalah 0.56 kepada 1.
Regressi diantara \(D^2 \) diameter dengan isipadu, dalam persamaan \(V = a + b \, D^2L \), menunjukkan persamaan isipadu yang terbaik berbanding dengan korrelasi yang lain. Persamaan isipadu yang terbaik untuk banir, batang, “top” dan pokok yang terosak adalah dalam bentuk linear. Manakala, persamaan dalam bentuk bukan linear adalah yang terbaik untuk dahan.

Hasil kajian menunjukkan bahawa purata nilai sisa pembalakan se m\(^3\) dan se hektar adalah masing-masing bernilai RM38.54 dan RM1,050.45. Nilai sisa pembalakan dari pokok yang dirosakkan adalah yang tertinggi dengan nilai RM73.49 se m\(^3\) dan RM676.67 se hektar. Nilai sisa pembalakan yang terendah adalah direkod oleh sisa pembalakan daripada dahan. Purata harga jualan sisa pembalakan bagi semua jenis hasil gunaakhir adalah RM66.33 se m\(^3\). Manakala purata kos pengambilan sisa pembalakan dalam se m\(^3\) adalah RM29.64.

Keanjalan harga untuk isipadu keatas kedua-dua dahan dan pokok yang terosak adalah elastik dalam renj kajian ini, manakala harga elastisiti bagi sisa pembalakan yang selebihnya adalah tidak elastik.

Implikasi kajian adalah pihak kerajaan haruslah mengkaji semula polisi perlesenan konsesi jangka pendek ketika ini dan mengalakkan pihak konsesi untuk menuai sisa pembalakan bagi mendapai tahap pengurusan secara berkekalan. Kaedah penuaan balak masakini juga haruslah diperbaiki dan syarat-syarat lesen haruslah dikuatkuasakan dengan ketat oleh kerajaan bagi mengurangkan kerosakan akibat pembalakan. Insentif juga haruslah diberikan bagi menarik lebih banyak pelaburan dan penggunaan sisa pembalakan.
CHAPTER I

INTRODUCTION

Realising the full potential of harvesting logs and logging residues from logging concessions and utilisation of the same is one of the main concerns of sustainable forest management. New ideas, techniques and approaches have been developed and tested, to prove and realise their potentials in maximising profit from timber harvesting and utilisation of the residues (Frederick and Kollert, 1996).

Logging residues, is defined as any portion of wood which, under the present highest available stage of technological development, could be used in manufacturing but is left in the forest or lost in the course of logging (Kantola, 1965). Logging residues are classified into two main groups depending on their origin, namely (i) logging residues from the felled trees that were left in forest such as tree portions, branches, stumps, tops, stems, and (ii) trees damaged during felling operations, including fallen or standing trees and also damaged trees caused by extraction and skidding operations and which are deemed to have very small chance of survival (Mohd. Hamami et al., 1995).