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Microorganisms such as bacteria, fungal or yeast are often used for cellulase
production using selected substrates via fermentation. However, relatively
expensive cellulose powder as a main substrate hinders the industrial
application of cellulase. Lignocellulose has been used as a substrate in
producing cellulase as an alternative way towards more economic cost. The
use of lignocellulolytic fungal in degradation of the lignocellulose are widely
explored and studied due to its ability to produce both cellulase and ligninase.
In this study, the potential of lignocellulolytic fungi in producing cellulase were
investigated in solid-state fermentation of rubber wood sawdust. Four (4)
indigenous fungal strains (Trichoderma aureoviride UPM 09, Fusarium equiseti
UPM 09, Fusarium proliferatum UPM 09 and Aspergillus sp.) were screened for
the best lignocellulolytic enzymes (cellulase and ligninase) producer. Solid-
state fermentation of rubber wood sawdust was conducted in batch cultivation
using modified Mandel’s medium in 250 ml shake-flask. A conventional method
(one-factor-at-a-one-time) of optimization was applied to obtain maximum
production of cellulase. Three parameters of medium optimization (types of
nitrogen sources, peptone concentration and tween-80) and four parameters of
cultural condition (initial medium pH, temperature, particle size and inoculum
size) for cellulase production were investigated.

From the experiments, only T. aureoviride UPM 09 and F. equiseti UPM 09
exhibit lignocellulolytic enzymes production. Hence, the two strains were
selected for rubber wood sawdust fermentation. Throughout the fermentation, T.
aureoviride UPM 09 showed the highest cellulase production of CMCase
(12.99 U/g), FPase (1.57 U/g) and β-glucosidase (5.48 U/g). The optimum
medium formulation and culture conditions for cellulase production were
obtained using peptone as a sole nitrogen source at 2 g/L with addition of 1 %
(v/v) tween-80 and initial medium pH of 5.0 at 25 ˚C. Two agar discs of fungal
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culture and 1.7 mm particle size of rubber wood sawdust were used as
optimum inoculum and particles sizes. The production of cellulase was
increased by 5.5-fold for CMCase (85.04 U/g), 1.9-fold for FPase (4.55 U/g)
and 1.7-fold for β-glucosidase (14.92 U/g) using the optimized condition.
Enzymatic hydrolysis of different pretreated rubber wood sawdust was carried
out to evaluate the performance of crude cellulase activity obtained from the
fermentation. The result showed that higher reducing sugar was produced
(1.280 mg/ml) using chemical pretreated rubber wood sawdust as compared to
biological pretreated rubber wood sawdust (0.577 mg/ml) and raw rubber wood
sawdust (0.103 mg/ml). In conclusion, T. aureoviride UPM 09 is a high potential
strain to be used in cellulase production. The cellulase production by T.
aureoviride UPM 09 was greatly improved after optimization process which can
be further studied using statistical approach.
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Mikroorganisma seperti bakteria, kulat ataupun yis seringkali digunakan untuk
penghasilan selulase menggunakan substrat tertentu dalam penapaian.
Walaubagaimanapun, serbuk selulase yang mahal sebagai subtrat menjadi
penghalang dalam industri penghasilan selulase. Lignoselulosa digunakan
sebagai substrat dalam penghasilan selulase sebagai langkah alternatif untuk
kos yang lebih ekonomi. Kegunaan kulat lignoselulose dalam penguraian
lignoselulosa telah dikaji secara meluas disebabkan kebolehannya
menghasilkan kedua-dua enzim selulase dan ligninase. Dalam kajian ini,
potensi kulat lignoselulolitik dalam menghasilkan selulas dikaji menerusi
penapaian keadaan pepejal serbuk kayu getah. Empat (4) strain asli kulat
(Trichoderma aureoviride UPM 09, Fusarium equiseti UPM 09, Fusarium
proliferatum UPM 09 dan Aspergillus sp.) telah disaring untuk mencari
penghasil enzim lignoselulolitik (selulase dan ligninase) terbaik. Dua strain
kulat terbaik dipilih untuk penapaian kaedah pepejal serbuk kayu getah bagi
penghasilan selulas. Penapaian kaedah pepejal serbuk kayu getah oleh strain-
strain itu dijalankan secara selanjar menggunakan media Mandel yang diubah
suai di dalam kelalang kon 250 mL. Pengoptimuman cara konvensional (satu
faktor satu masa) telah digunakan bagi mendapatkan penghasilan selulase
yang optimum. Tiga faktor pengoptimuman media (jenis sumber nitrogen,
kepekatan pepton dan tween-80) dan empat faktor keadaan kultur(pH awal
media, suhu, saiz partikel substrat dan saiz inokula) untuk penghasilan
selulase telah dikaji.

Daripada hasil kajian, hanya kulat T. aureoviride UPM 09 dan F. equiseti UPM
09 menghasilkan enzim lignoselulase. Maka, dua strain ini telah dipilih untuk
penapaian kaedah pepejal serbuk kayu getah. Sepanjang eksperimen
dijalankan, T. aureoviride UPM 09 telah menunjukkan penghasilan selulase
paling tinggi bagi CMCase, FPase dan β-glucosidase dengan aktviti sebanyak
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12.99 U/g, 1.57 U/g dan 5.48 U/g berikutan. Pengoptimuman media dan
keadaan kultur bagi penghasilan selulas telah diperoleh menerusi pepton
sebagai sumber nitrogen pada kepekatan 2 g/L dengan penambahan 1 % (v/v)
tween-80 dan pH awal media adalah 5.0 pada suhu 25 ˚C. Dua ketulan agar
kulat dan serbuk kayu getah bersaiz partikel 1.7 mm telah digunakan sebagai
inokula dan saiz partikel paling optima. Dengan menggunakan keadaan
optimum yang diperoleh, penghasilan selulase telah meningkat sebanyak 5.5-
fold untuk CMCase (85.04 U/g), 1.9-fold untuk FPase (4.55 U/g) dan 1.7-fold
untuk β-glucosidase (14.92 U/g). Hidrolisis enzim serbuk kayu getah yang
dirawat dengan cara berbeza telah dibuat untuk menilai aktiviti selulase yang
diperoleh melalui proses penapaian. Keputusan telah menunjukkan bahawa
gula penurunan paling tinggi dihasilkan (1.280 mg/ml) menerusi serbuk kayu
getah yang dirawat dengan perawatan awal kimia berbanding yang dirawat
secara biologi (0.577 mg/ml) dan yang tidak dirawat (0.103 mg/ml).
Kesimpulannya, T. aureoviride UPM 09 adalah strain yang berpotensi untuk
digunakan bagi penghasilan selulase. Penghasilan selulase oleh T. aureoviride
UPM 09 juga telah banyak meningkat setelah proses pengoptimuman dibuat
yang mana ianya boleh dikaji lebih lanjut menggunakan cara statistik.
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CHAPTER 1

INTRODUCTION

The rubber industry in Malaysia has become one of the most important socio-
economic sectors since 1957. Apparently, almost 35% of all rubber wood
biomass processed remain as waste, which must be exploited efficiently if the
industry is to remains competitive in the future (Ratnasingam et al., 2012).
Malaysia produces abundance of rubber wood sawdust that regarded as
wastes, usually from saw milling and furniture industry which accounted almost
2.0 m3 wastes during 2010 (Ratnasingam and Jones, 2011). Rubber wood
sawdust contains high cellulose content with an average of 43 % thus it can be
a potential substrate for cellulase production (Shaaban et al., 2013).

Cellulase, one of the important industrial enzymes is widely used in industries
such as textile, pulp and paper, animal feed, detergent, brewery and wine as
well as agricultural sector (Singh et al., 2016; Kuhad et al., 2011). Besides that,
recent studies show promising results of cellulase application in biofuel industry
(Srivastava et al., 2015; Sweeney and Xu, 2012). The cellulase market itself is
expected to grow dramatically when these enzymes were used to hydrolyze
pretreated cellulosic materials to sugars which later fermented to commodities
such as bioethanol and bio-based products on a large scale (Taha et al., 2016;
Mohanty and Abdullahi, 2016; Kang et al., 2014).

The high cost of cellulase production and low yields of cellulase become the
major constraints in industrial applications (Prasanna et al., 2016; Lee et al.,
2010). Many strategies had been proposed and developed to make it more
economic including the use of cheaper substrates such as empty fruit bunch
from palm oil (Shahriarinour et al., 2011), wheat bran, sugarcane bagasse
(Kilikian et al., 2014), sawdust (Lo et al., 2005); producing cellulases with
higher specific activity on solid substrates and producing enzyme preparations
with greater stability for specific processes (Zhang et al., 2006). Recent studies
have greatly explored the use of lignocellulosic biomass as a substitute
substrate for cellulase production replacing the highly cost of commercial
cellulosic substrate.

Lignocellulosic biomass can be a very potential substrate for cellulase
production because of its abundance, easily obtain and cheaper raw materials.
Lignocellulose is the major structural component of all plants consists of lignin,
cellulose and hemicellulose (Sanchez, 2009). Lignocelluloses wastes often
refer to plant biomass wastes such as agricultural residue and forest wastes
(Mohan et al., 2012). Pretreatment is required before further use of
lignocellulosic biomass to improve the digestibility of the biomass itself for
maximum sugars recovery (Maurya et al., 2015). Many factors like lignin
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content, crystallinity of cellulose and particle size limit the degradation of the
cellulose present in the lignocellulosic biomass (Mohan et al., 2012).

However, the major problem to the effective use of lignocellulosic biomass is
due to the complex structure of lignin, cellulose and hemicellulose tangles
together blocking deconstruction from microbes and enzymes (Ghorbani et al.,
2015). Common used pretreatment include physical and chemical pretreatment
which relatively high in cost compared to biological pretreatment (Lim and
Wang, 2013; Lee et al., 2007).

Biological pretreatment of lignocellulosic biomass involved microorganisms that
produced ligninase to degrade lignin content, where fungi currently the main
ligninase producer (Maurya et al., 2015; Zhou et al., 2015). Recently, the use of
lignocellulolytic fungal in lignocellulose degradation are widely explored and
studied because of its ability to produce both cellulase and ligninase (Batista-
Garcia et al., 2017; Mtui, 2012). In other words, the need of separated
pretreatment process can be eliminated if lignocellulolytic fungal were to be
used in cellulase production using lignocellulosic biomass as a substrate.

Productions of cellulase were carried out through fermentation and the
common technique is submerged fermentation (SmF) by using various
microorganisms. However, solid-state fermentation (SSF) has drawn big
attention due to its several potential advantages over SmF. SSF can be defined
as the growth of microorganisms on moist, water-insoluble solid substrates in
the absence or near-absence of free liquid (Soccol et al., 2017; Moo-Young et
al., 1983). Gowthaman et al. (2001) pointed out several advantages of SSF
including low capital cost, low energy expenditure, low waste water output, less
expensive downstream processing and potential higher volumetric productivity.

In this study, rubber wood sawdust was used as an alternative cost-effective
substrate in producing cellulase using potential local lignocellulolytic fungi. This
research was aimed to improve the production of cellulase using solid-state
fermentation of rubber wood sawdust by selected lignocellulolytic fungal strain.
The performance of crude cellulase in hydrolyzing the rubber wood sawdust
was also investigated. Hence, the specific objectives of this study were:

a. To determine the best lignocellulolytic fungal used for production of
cellulase via solid-state fermentation.

b. To optimize the medium formulation and cultural conditions of
solid-state fermentation of rubber wood sawdust for cellulase
production by the selected lignocellulolytic fungal in shake-flask
culture.

c. To identify the function of crude cellulase obtained during solid-
state fermentation in enzymatic hydrolysis of rubber wood sawdust.
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