MICROPROPAGATION OF SENTANG
(AZADIRACHTA EXCELSA (JACK) JACOBS)

By

JUDDY E. JAINOL

Thesis Submitted in Fulfilment of the Requirement for the Degree
of the Master of Science in the Faculty of Forestry
Universiti Putra Malaysia
April 1997
Dedicated to my father, mother

sisters and brothers

for their love and support
ACKNOWLEDGEMENTS

Firstly, I would like to thank God Almighty for giving me the inspiration to finish my thesis report in the given time. It also pleases me to take this opportunity to convey my deepest appreciation and gratitude to my supervisor Dr Nor Aini Abd Shukor for her advice, guidance and motivation throughout my master’s programme to the completion of this thesis.

My grateful appreciation is also due to my supervisory committee members, Associate Prof. Dr Kamis Awang, Puan Aziah Mohd Yusoff, Dr Mihdzar Abdul Kadir and Dr Jamaludin Basaruddin for their comments and suggestions to improve my study. I am truly indebted to them.

My sincere appreciation to the staff of Tissue Culture Laboratory of Faculty of Food Science and Biotechnology for their assistance and guidance in the laboratory. Special thanks goes to Miss Haliza Ismail from FRIM for her guidance and advices and not forgetting all parties who have in one way or another helped me throughout my study.

Lastly, my special and deepest thanks and love towards my parents, sisters, brothers, relatives and friends for their love, support, prayers and assistance during my course of study in Universiti Putra Malaysia.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>ACKNOWLEDGEMENTS</th>
<th>ii</th>
</tr>
</thead>
<tbody>
<tr>
<td>TABLE OF CONTENTS</td>
<td>iii</td>
</tr>
<tr>
<td>LISTS OF TABLES</td>
<td>vii</td>
</tr>
<tr>
<td>LISTS OF FIGURES</td>
<td>x</td>
</tr>
<tr>
<td>LISTS OF PLATES</td>
<td>xii</td>
</tr>
<tr>
<td>LISTS OF ABBREVIATIONS</td>
<td>xvii</td>
</tr>
<tr>
<td>TERMINOLOGY</td>
<td>xix</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>xxii</td>
</tr>
<tr>
<td>ABSTRAK</td>
<td>xxv</td>
</tr>
</tbody>
</table>

CHAPTER

I GENERAL INTRODUCTION

- Distribution and Ecology of *Azadirachta excelsa* 6
- Botany and Taxonomy of *A. excelsa* 7
- Importance of *A. excelsa* in Forest Plantation 9
 - Industrial Uses of *A. excelsa* 12
 - Other Uses of *A. excelsa* 13
- Sexual propagation of *A. excelsa* 13
- Traditional Methods of Propagation and Improvement of Indigenous Tree Species ... 15
- Propagation of Indigenous Tree Species through Tissue Culture ... 19
- Factors Affecting Propagation of Trees Through Micropropagation ... 22
 - Sterilization Techniques ... 22
 - Type of Explants ... 24
 - Choice of Nutrient Medium 27
 - Influence of Plant Growth Regulator 29
 - The Physical Environment of the Culture 36

II LITERATURE REVIEW

- 6

III MATERIALS AND METHODS

- Glasswares and Cleaning .. 42
- Explant Source .. 43
- Excision of Explants ... 43
- Sterilization of Explants 47
- Preparation of Stock Solution for the Nutrient Medium 48
IV RESULTS

Sterilization Techniques

Shoot Formation from Petiole Nodal Segment and Young Leaf Explants

Shoot Proliferation from Nodal Stem Segments and Shoot Tips Explants

Rooting Experiments

Shoot Multiplication

Comparison of Rootability between Shoots Excised from the Initial Culture and the Final Subculture

Data Analysis

Culturing

Histological Study
G Effects of NAA on Percentage of Microshoot Rooted, Mean Number of Root Per Culture and Mean Length of Root after 1 Month in Culture......177

H The Effect of BAP, NAA, Gelrite, Difco-Bacto, Activated Charcoal and AgNO₃ on Mean Number of Leaf, Mean Shoot Length, Mean Root Length and Mean Number of Axillary Shoot after 30 Days in Culture Incubation.. 178

I a. Effect of BAP on the Mean Number of Explants Obtained Per Culture and Mean Shoot Elongation from Subcultures after 7 ½ Weeks in Culture Incubation.. 179

b. Effects of Medium Type on the Number of Explants Obtained Per Culture and Mean Shoot Elongation from Subcultures after 7 ½ Weeks in Culture Incubation.. 179

J Results of Analysis of Variance (ANOVA) on the Effects of BAP and Agar Types (Gelrite and Difco-Bacto) on Shoot Elongation after 30 Days in Culture Incubation.. 180

K Comparison of Rootability of Microshoot Obtained from Initial Culture and Fourth Cycle................. 181

VITA...182
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 A List of Some Indigenous Species and End Use Potential</td>
<td>11</td>
</tr>
<tr>
<td>2 Contamination Assessment of Petiole Nodal Segments Treated with Commercial Clorox of Different Concentration for Various Duration after Two Weeks Sterilization</td>
<td>59</td>
</tr>
<tr>
<td>3 Contamination Assessment of Young Leaf Explant Treated with Commercial Clorox of Different Concentration for Various Duration after Two Weeks Sterilization</td>
<td>60</td>
</tr>
<tr>
<td>4 Contamination Assessment of Nodal Stem Segments Treated with Commercial Clorox of Different Concentration for Various Duration after Two Weeks Sterilization</td>
<td>62</td>
</tr>
<tr>
<td>5 Contamination Assessment of Shoot Tip Explant Treated with Commercial Clorox of Different Concentration for Various Duration after Two Weeks Sterilization</td>
<td>62</td>
</tr>
<tr>
<td>6 Contamination Assessment of Nodal Stem Segments Treated with Mercuric Chloride of Different Concentration for Various Duration after Two Weeks Sterilization</td>
<td>63</td>
</tr>
<tr>
<td>7 Contamination Assessment of Shoot Tip Explant Treated with Mercuric Chloride of Different Concentration for Various Duration after Two Weeks Sterilization</td>
<td>64</td>
</tr>
<tr>
<td>8 Results of Analysis of Variance (ANOVA) on the Effects of BAP, Types of Medium and their Interaction on Shoot Elongation (mm), Number of Axillary Shoot and Length of Axillary Shoot (mm), and Number of Explant Obtained Per Culture of Nodal Stem Segments after 7 ½ Weeks in Culture Incubation</td>
<td>69</td>
</tr>
<tr>
<td>9 Effects of BAP on the Percentage of Explants with Shoot, Mean Shoot Elongation, Mean Number of Axillary Shoot, Mean Length of Axillary Shoot (mm), Mean Number of Explant Obtained Per Culture and Intensity of Callus Formation of Nodal Stem Segments after 7 ½ Weeks in Culture Incubation</td>
<td>70</td>
</tr>
</tbody>
</table>
Results of Analysis of Variance (ANOVA) on the Effects of Concentration of BAP, Types of Medium and their Interaction on Shoot Elongation (mm), Number of Axillary Shoot, Length of Axillary Shoot(mm), and Number of Explant Obtained Per Culture of Shoot Tip Explants after 7 ½ Weeks in Culture Incubation

Effects of BAP on the Percentage of Explants with Shoots, Mean Shoot Elongation, Mean Number of Axillary Shoot, Mean Length of Axillary Shoot (mm), Mean Number of Explant Obtained Per Culture and Intensity of Callus Formation of Shoot Tip Explants after 7 ½ Weeks in Culture Incubation

Effects of TDZ and Medium on the Percentage of Explants with Shoot and Intensity of Callus Formation of Nodal Stem Segments after 7 ½ Weeks in Culture Incubation

Results of Analysis of Variance (ANOVA) on the Effects of TDZ, Medium Type and their Interaction on Shoot Elongation (mm), Number of Axillary Shoot, Mean Length (mm) of Axillary Shoot and Number of Explant Obtained Per Culture of Shoot Tip Explants after 7 ½ Weeks in Culture Incubation

Effect of TDZ on the Percentage Explant with Shoot, Mean Shoot Elongation, Mean Number of Axillary Shoot, Mean Length of Axillary Shoot, Mean Number of Explant Obtained Per Culture and Intensity of Callus Formation of Shoot Tip Explants after 7 ½ Weeks in Culture Incubation

Results of Analysis of Variance (ANOVA) on the Effects of NAA on Number of Root Per Culture, Length of Root, Number of Axillary Root and Length of Axillary Root Per Culture of Microshoots after 1 Month in Culture Incubation

Results of Analysis of Variance (ANOVA) of BAP, NAA, Gelrite, Difco-Bacto Agar, Activated Charcoal and AgNO₃ on Number of Leaf, Shoot Length, Root Length and Number of Axillary Shoot of Defoliated Plantlets after 1 Month in Culture Incubation

Results of Analysis of Variance (ANOVA) on the Effect of Subculturing on Number of Explants Obtained Per Culture and Shoot Elongation (mm) in the Multiplication of Shoot with the Interval of 7 ½ Weeks Per Cycle

Results of Analysis of Variance (ANOVA) on the Effect of Subculturing on Number of Explants Obtained Per Culture and Shoot Elongation on the Multiplication of Shoot with the Interval of 7 ½ Weeks Per Cycle
19 Number of Explants Obtained from Subculturing for a Period of 7 Months (with 7 ½ Weeks Per Cycle) and the Multiplication Rate…… 117

20 Effects of BAP and Agar Types (Difco-bacto and Gelrite) on Mean Shoot Elongation after 30 Days in Culture Incubation…… 119

21 The Analysis of Data (T-Test) on the Comparison of Rootability of Microshoot Obtained from Initial Culture and Fourth Cycle in MS medium with 2.0 mg/l NAA after 30 Days in Culture Incubation……………………………………………………………………… 124
<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Interaction Effect of BAP and Media on Mean Shoot Elongation of Shoot Tip Explants after 7 ½ Weeks in Culture Incubation</td>
<td>83</td>
</tr>
<tr>
<td>2</td>
<td>Effects of BAP on the Percentages of Culture that Produced Shoots of Nodal Stem Segment and Shoot Tip Explants after 7 ½ Weeks in Culture Incubation</td>
<td>83</td>
</tr>
<tr>
<td>3</td>
<td>Effect of NAA Concentration on the Percentage of Rooted Microshoot of Shoot Tip Explant after 1 Month in Culture Incubation</td>
<td>93</td>
</tr>
<tr>
<td>4</td>
<td>Effects of NAA Concentration on the Mean Number of Roots Per Culture and Mean Length of Roots (mm) of Shoot Tip Explant after 1 Month in Culture Incubation</td>
<td>93</td>
</tr>
<tr>
<td>5</td>
<td>Effects of 1. 0.24% Gelrite Without Growth Regulator 2. 0.1 mg/l BAP + 1.0 mg/l NAA + 0.75% Difco-Bacto Agar 3. 0.24% Gelrite + 0.2% Activated Charcoal and 4. 2.0 mg/l BAP + 10.0 mg/l AgNO₃ + 0.24% Gelrite on the Mean Number of Leaf, Number of Axillary Shoot, Length of Root and Shoot Elongation for Defoliated Shoots</td>
<td>101</td>
</tr>
<tr>
<td>6</td>
<td>Effect of Subculturing on the Mean Number of Explant Obtained Per Culture of Shoot Tip Explants at 0.5 mg/l and 2.0 mg/l of BAP on B5 and MS Media with the Interval of Subculture of 7 ½ Weeks</td>
<td>112</td>
</tr>
<tr>
<td>7</td>
<td>Effects of Subculturing on Mean Number of Explants Obtained Per Culture of Shoot Tip Explants at 0.5 and 2.0 mg/l of BAP with the Interval of Subculture of 7 ½ Weeks</td>
<td>114</td>
</tr>
<tr>
<td>8</td>
<td>Effects of Subculturing on Mean Shoot Elongation of Shoot Tip Explants at 0.5 and 2.0 mg/l of BAP with the Interval of Subculture of 7 ½ Weeks</td>
<td>114</td>
</tr>
<tr>
<td>9</td>
<td>Effects of Subculturing on the Mean Number of Explants Obtained Per Culture of Shoot Tip Explants Cultured on B5 and MS media with the Interval of Subculture of 7 ½ weeks</td>
<td>115</td>
</tr>
<tr>
<td>10</td>
<td>Effects of Subculturing on Mean Shoot Elongation of Shoot Tip Explants Cultured on B5 and MS Media with the Interval of Subculture of 7 ½ Weeks</td>
<td>115</td>
</tr>
</tbody>
</table>
11 Multiplication Rate of Shoot Tip Explants Obtained for Every Subculture with 7 ½ Weeks Per Subculture.............................. 118

12 Multiplication Rate of Shoot Tip Explants Cultured in a. 0.5 mgl⁻¹ BAP + B5 b. 2.0 mgl⁻¹ BAP + B5 c. 0.5 mgl⁻¹ BAP + MS and d. 2.0 mgl⁻¹ BAP + MS for a Period of 7 Months with 7 ½ Weeks Per Subculture.. 118

13 Non-Elongated Shoots Cultured in 1. 0.05 mgl⁻¹ BAP + 0.75% Difco-Bacto Agar 2. 1.0 mgl⁻¹ BAP + 0.75% Difco-Bacto Agar and 3. 1.0 mgl⁻¹ BAP + 0.24% Gelrite Shows Significant Effect on Mean Shoot Elongation... 122

14 Comparison of Rootability Between Microshoots Obtained from Initial Culture and Fourth Cycle on the Number of Adventitious Root and Length after 1 Month in Culture Incubation............................ 125

15 Comparison of Rootability Between Microshoots Obtained from Initial Culture and Fourth Cycle on the First Day of Root Initiation and Percentage of Defoliation after 1 Month in Culture Incubation......... 125
LISTS OF PLATES

<table>
<thead>
<tr>
<th>Plate</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>A 7 Month-old Seedling Raised in the Nursery of Faculty of Forestry UPM was Used as an Explant Source</td>
</tr>
<tr>
<td>2</td>
<td>Types of Explant Used in this Study. A. Shoot Tip B. Young Leaf C. Nodal Stem segment and D. Petiole Nodal Segment</td>
</tr>
<tr>
<td>3</td>
<td>Cutting Made at About 10-15 cm from the Apex of Terminal Shoot</td>
</tr>
<tr>
<td>4</td>
<td>Shoots Isolated from the Established Culture, Leaves were Removed and then Sectioned into Terminal Tip and Nodal Stem Segments</td>
</tr>
<tr>
<td>5</td>
<td>Culture Showing Contamination by Bacteria after a Week in Culture Medium</td>
</tr>
<tr>
<td>6</td>
<td>Young Leaf Cultured in B5 Medium with 0.5 mg/l BAP Under Light Condition Showing Browning after 1 Month in Culture (Diameter of Vial is 25 mm)</td>
</tr>
<tr>
<td>7</td>
<td>Young Leaf Cultured in MS Medium with 0.5 mg/l BAP Under Light Condition Showing Browning Effect Along Cutting Edges after 1 Month in Culture (Diameter of Vial is 25 mm)</td>
</tr>
<tr>
<td>8</td>
<td>Young Leaf Expanded when Cultured in MS Medium at 6.0 mg/l BAP after 1 Month in Culture (Diameter of Vial is 25 mm)</td>
</tr>
<tr>
<td>9</td>
<td>Young Leaf Cultured in B5 Medium with 6.0 mg/l BAP Turned Pale Brown and Died after the Second Week (Diameter of Vial is 25 mm)</td>
</tr>
<tr>
<td>10</td>
<td>Petiole Nodal Segment Cultured in BAP Under Light Condition Showing No Responses of Initiation after 1 Month in Culture (Diameter of Vial is 25 mm)</td>
</tr>
<tr>
<td>11</td>
<td>Petiole Nodal Segment Cultured in BAP Under Dark Condition showing Browning Effect after 1 Month in Culture (Diameter of Vial is 25 mm)</td>
</tr>
<tr>
<td>12</td>
<td>Nodal Stem Segments Cultured in MS Medium Containing 0.5 mg/l BAP Showing Budbreak after 5-6 Days in Culture (Diameter of Vial is 25 mm)</td>
</tr>
</tbody>
</table>
Nodal Stem Segments Producing the Greatest Elongation with Mean of 7.4 mm Long in 0.5 mg/l BAP after 7 ½ Weeks in Culture..................72

Nodal Stem segments Cultured in 6.0 mg/l BAP Showing Short Internodes and Curling Leaves after 7 ½ Weeks in Culture (Diameter of Vial is 25 mm) .. 73

Nodal Stem Segments Cultured in 10.0 mg/l BAP Showing Short Internodes and Curling Leaves after 7 ½ Weeks in Culture (Diameter of Vial is 25 mm) .. 73

Nodal Stem Segments Cultured in 0 mg/l BAP Showing Stunted Shoot Formation and No Callus was Formed after 7 ½ Weeks in Culture (Diameter of Vial is 25 mm) .. 74

Nodal Stem Segments Cultured in 2.0 mg/l BAP Showing Better Shoot Formation and Callus was Observed Covering the Surface of the Explant after 7 ½ Weeks in Culture (Diameter of Vial is 25 mm) 74

Shoot Tip Explant Cultured in MS medium Showing New Buds Initiation and some White Friable Calli on the Surface of the Explant after 5-6 Days of Culture (Diameter of Vial is 25 mm).............. 78

Shoot Tip Explant Producing the Greatest Elongation with Mean of 7.4 mm Long in 2.0 mg/l BAP after 7 ½ Weeks in Culture.. 79

Shoot Tip Explant Producing the Greatest Elongation with Mean of 7.3 mm Long in 0.5 mg/l BAP after 7 ½ Weeks in Culture.. 79

Shoot Tip Explants Cultured in 6.0 mg/l BAP Showing Short Internodes and Basal Callusing (+ +) after 7 ½ Weeks in Culture (Diameter of Vial is 25 mm) .. 80

Shoot Tip Explants Cultured in 10.0 mg/l BAP Showing Short Internodes and Curled Leaves with Basal Callusing (+) after 7 ½ Weeks in Culture (Diameter of Vial is 25 mm) .. 80

Shoot Tip Explant Cultured in Medium without BAP Showing No Growth with the Tip Turned Brown after 7 ½ Weeks in Culture (Diameter of Vial is 25 mm) .. 81

Shoot Tip Explant Producing the Greatest Number of Axillary Shoot (2.4)(±2) and Length (4.4 mm) in 2.0 mg/l BAP after 23 Days in Culture (Diameter of Vial is 25 mm) .. 81
Nodal Stem Segments Cultured in 0.05 mg/l TDZ in A. B5 B. MS and C. WPM Showing Small Shoots Emerging from the Explants with Callus Formation (+ +) after 7 ½ Weeks in Culture (Diameter of Vial is 25 mm) 86

Nodal Stem Segments Cultured in 0.005 mg/l TDZ Showing High Intensity of Callus Formation (+ + +) after 7 ½ Weeks in Culture (Diameter of Vial is 25 mm) 86

Shoot Tip Explant Cultured in 0.005 mg/l TDZ Showing the Greatest Elongation with Mean of 5.0 mm Long after 7 ½ Weeks in Culture (Diameter of Vial is 25 mm) 89

Shoot Tip Explant Cultured in 0.5 mg/l TDZ Showing High Intensity of Callus Formation (+ + + +) and Vitrified Shoot after 7 ½ Weeks in Culture (Diameter of Vial is 25 mm) 90

Shoot Tip Explant Cultured in 1.0 mg/l TDZ Showing High Intensity of Callus Formation (+ + + +) after 7 ½ Weeks in Culture (Diameter of Vial is 25 mm) 90

Microshoot Cultured in 2.0 mg/l NAA Showing Severe Defoliation with the Leaves and Tip Turned Brown after 1 Month in Culture (Diameter of Vial is 25 mm) 94

Microshoot Cultured in 1.0 mg/l NAA Showing Defoliation but the Terminal Tip was still Green after 1 Month in Culture (Diameter of Vial is 25 mm) 94

Microshoot Cultured in 0.1 mg/l NAA Showing Root Initiation after 15 Days of Culture Incubation (Diameter of Vial is 25 mm) 95

Microshoot Cultured in 5.0 mg/l IBA Showing High Intensity of Callus Formation and the Tip Turned Brown after 1 Month in Culture (Diameter of Vial is 25 mm) 95

Microshoot Cultured in 5.0 mg/l IAA Showing Callus Formation after 1 Month in Culture (Diameter of Vial is 25 mm) 97

Shoot Showing Defoliation were Transferred to MS Medium with 0.24% Gelrite after 1 Weeks in Culture (Diameter of Vial is 25 mm) 99

Shoot Showing Good Growth in MS Medium with 0.24% Gelrite after 1 Month in Culture (Diameter of Vial is 25 mm) 99

xiv
37 Shoot Cultured in MS Medium with 0.24% Gelrite + 2.0 mg/l BAP + 10.0 mg/l AgNO₃ Showing Root Browning and Non-developed Leaves after 1 Month in Culture (Diameter of Vial is 25 mm) 102

38 Shoot Cultured in MS Medium with 0.1 mg/l BAP + 1.0 mg/l NAA + 0.75% Difco-Bacto Showing Callus Formation and Non-developed Leaves after 1 Month in Culture (Bar is 10 mm Long) 102

39 Shoot Cultured in MS Medium without Growth Regulator Added with 0.24% Gelrite + 0.2% Activated Charcoal Showing Minor Defoliation after 1 Month in Culture (Bar is 10 mm Long) 103

40 Shoot Cultured in MS Medium without Growth Regulator Added with 0.24% Gelrite was Maintained for 2 Months Showing Enhancement of Shoot Proliferation with Vigorous Leaves and Roots (Bar is 10 mm Long) 103

41 Shoot Tip Explant Cultured in 2.0 mg/l BAP Showing the Best Elongation (8.5 mm Long) after 7 ½ Weeks in Culture 106

42 Second Subculture of Shoot Tip Explant Cultured in 2.0 mg/l BAP in MS Medium Showing the Best Elongation (6.4 mm Long) with the Mean Number of Explants 3.5 (±4) after 7 ½ Weeks in Culture (Diameter of Vial is 25 mm) 106

43 Third Cycle of Shoot Tip Cultured in 0.5 mg/l BAP Either on B5 or MS Medium Producing the Greatest Number of Explants Obtained Per Culture after 7 ½ Weeks in Culture (Diameter of Vial is 25 mm) 109

44 Third Cycle of Shoot Tip Explant Cultured in 2.0 mg/l BAP in MS Medium Showing Abnormal Development after 7 ½ Weeks in Culture (Diameter of Vial is 25 mm) 110

45 Third Cycle of Shoot Tip Explant Cultured in 2.0 mg/l BAP in B5 Medium Showing Abnormal Development after 7 ½ Weeks in Culture (Diameter of Vial is 25 mm) 110

46 Fourth Cycle of Shoot Tip Explant Cultured in 0.5 mg/l BAP in MS Medium Showing the Greatest Number of Explants with the optimum of 4-5 Axillary/Adventitious Shoot after 7 ½ Weeks in Culture (Diameter of Vial is 25 mm) 111

47 Fourth Cycle of Shoot Tip Explant Cultured in 0.5 mg/l BAP in B5 Medium Showing Undeveloped Shoot Buds after 7 ½ Weeks in Culture (Diameter of Vial is 25 mm) 111
Shoot Cultured on Elongation Medium of 1.0 mg/l BAP + 0.24% Gelrite Producing the Greatest Length after 1 Month in Culture (Bar is 10 mm Long)...

Shoot Cultured in 1.0 mg/l BAP in MS Medium + 0.75% Difco-Bacto Showing High Intensity of Callus Formation after 1 Month in Culture (Bar is 10 mm Long)...

Shoot Cultured in 0.05 mg/l BAP in MS Medium + 0.75% Difco-Bacto Agar after 1 Month in Culture (Bar is 10 mm Long)...

Shoot Obtained from Initial Culture Rooted in 2.0 mg/l NAA after 1 Month in Culture (Diameter of Vial is 25 mm)...

Shoot Obtained from Final Subculture Rooted in 2.0 mg/l NAA after 1 Month in Culture (Diameter of Vial is 25 mm)...

Plantlets Showing Yellowish Green Leaves in the First Week but then Turned into Green Healthy Leaves after Two Weeks in the Nursery...

A Cross Section through a Shoot Tip Tissue Showing the Development of the Meristemoid (arrows) (x 10)........
LIST OF ABBREVIATION

AgNO₃ = Argentum Nitrate
BAP = Benzyl-aminopurine
B5 = Gamborg B5
°C = degree centigrade
cm = Centimetre
dbh = Diameter breast height
df = Degree of freedom
DNMRT = Duncan New Multiple Range Test
FE-EDTA = Ferreous ethylenediaminetetraacetic acid
GA₃ = Gibberelic acid
h = Hour
HgCl₂ = Mercuric chloride
IAA = Indole-acetic acid
IBA = Indole-butyric acid
IPA = Indole-propionic acid
K = Kinetin
kg = Kilogramme
M = Molar
m = Metre
mm = Millimetre
mg/l⁻¹ = Milligramme per litre
min = Minute
nm = Nanometre
NAA = Naphthaleneacetic acid
ss = Sum of square
pH = Negative logarithm of the hydrogen concentration
TDZ = Thidiazuron

xvii
TERMINOLOGY

Adventitious- Developing from unusual points of origin, such as shoots or roots arising from a leaf or stem tissues other than the axils or apex, often dependent on close physical or temporal association with organized or semiorganized tissues or cells.

Autotrophic- Self-sufficient for growth condition, self-reliant.

Auxins- A class of growth regulators, chemically and functionally related to the natural Indole-acetic acid (IAA). Auxins stimulate new cell division, cell enlargement, the formation of shoot apices or buds, the induction of somatic embryogenesis, and may promote rooting.

Axillary bud- Shoot buds formed at the juncture of the leaf and the stem (the axil).

Bud- An undeveloped shoot covered with protecting scales, consists of a very short shoot axis and primordia of leaves or floral parts.

Callus- Actively growing relatively undifferentiated tissue, devoid of macroscopic organized structure, normally produced in higher plants in response to wounding or infection but often formed *in vitro* during the artificial culture of plant tissue.

Culture medium- A mixture of organic and inorganic nutrients used for the cultivation of cells.

Cytokinin- A class of growth regulators chemically and functionally related to the natural hormone zeatin, cytokinins stimulate cell division, cell and/or shoot differentiation, lateral bud break etc.

Dedifferentiation- A process whereby specialized, nondividing cells begin to proliferate by mitotic division presumed to involve regression to an differentiated state.

Development- Qualitative change undergone by organism via differentiation and growth from its beginning to maturation.

Differentiation- The process of biochemical and structural changes by which cells become specialized in form and function.

Explant- The tissue taken from a plant or seed and transferred to a culture medium to establish a tissue culture system or regenerate a plant.
Ethylene- A gaseous plant hormone involved in fruit maturation, abscission and senescene. It is produced by certain tissue cultures

Growth- An irreversible increase in volume or mass associated with the development, it usually involves cell division, expansion, differentiation and morphogenesis

Heterotrophic - An organism which requires a supply of a carbon compound as a source of energy and for growth such organisms usually cannot fix carbon dioxide in the light

Induction- Determination and/or initiation of a plant structure, organ or process in vitro as the results of a specific stimulus

In vitro- A sterile artificial environment typically in glass vessels, in which cultured cells, tissue, organs or whole plants may reside

In vivo- Literally 'in life' applied to any process occurring in a living whole organism

Juvenile- A phase in the sexual cycle of a plant characterized by differences in appearance from the adult and which lacks the ability to respond to flower inducing stimuli

Meristemoid- Meristem-like cells located in areas of a plant or culture other than the meristem, e.g. a center of cell division activity within a callus

Micropropagation- Rapid vegetative propagation of a plant *via* small pieces of tissue and usually beyond that obtained in nature

Morphogenesis - The development of form or structure

Mutation- A change in the genetic material or a cell that is heritable

Organogenesis- Initiation of an organ or the production of a planlet *in vitro* through the sequential usually non-synchronized initiation of root and shoot structures connected by vascular system

Plantlet- A tiny plant with a distinct root and shoot system formed *via* tissue culture either by embryogenesis or organogenesis

Primary culture -A culture started from cells, tissues or organ taken directly from organisms

Regeneration - Laboratory techniques for forming a new plant or organ from cultured cells
Shoot tip culture- Culture of a structure consisting of the shoot apical meristem plus one to several primordial leaves

Somaclonal variation- Variation which occurs in cultures of cell and tissues that may be either genetic or epigenetic

Subculture- The transfer or subculture of cells, with or without dilution, from one culture vessel to another containing fresh culture medium

Tissue culture- A general term used to describe the development of tissue in culture under sterile conditions

Totipotency- The ability of a somatic cell *in vitro* to regenerate a whole organism either via organogenesis or embryogenesis

Vegetative propagation- Somatic nonsexual propagation of plant parts without fertilization

Vitrification- A physiological disorder associated with specific changes in the appearance of induced organ *in vitro* where leaves become translucent, appearing glassy or water logged and their needles adhered to each other
Abstract of thesis submitted to the Senate of Universiti Putra Malaysia in fulfilment of the requirements for the degree of Master of Science

MICROPROPAGATION OF SENTANG
AZADIRACHTA EXCELSA (JACK) JACOBS

By

JUDDY E. JAINOL

APRIL 1997

Chairman : Dr Nor Aini Abd Shukor
Faculty : Forestry

The large-scale propagation of sentang (*A. excelsa* (Jack) Jacobs) through seeds is impractical as the seeds are recalcitrant and they loose viability in a short period. Therefore this study sought to develop a protocol for the micropropagation of sentang. It involved the determination of an appropriate sterilization technique, a suitable explant to be used, appropriate medium and plant growth regulators for shoot formation, multiplication and rooting, as well as estimating the rate of multiplication. Means of solving problems of defoliation during rooting and shoot elongation were also developed. A comparative study on the rootability of shoots excised from the initial culture and final subculture was also conducted.

xxii
Nodal stem segment, petiole nodal segment, shoot tip and young leaves from 7 month-old seedling were explants tested in this study. Shoot tip was found to be the best explant producing the highest percentage of shoot formation (93.3%). A concentration of 20-25% commercial clorox applied for 40 minutes was the best sterilization method for shoot tip explants that yielded 100% aseptic cultures. Shoot formation in terms of percentage of explants with shoot, shoot elongation, number and length of axillary shoot and number of explants obtained per culture was found to be the most prolific when 2.0 mg/l BAP was added to either B5, MS or WPM medium. The most optimum combination of medium and cytokinin was that of MS medium with 0.5 mg/l BAP which produced a multiplication rate of 2 within 53 days.

Following this, short shoots were then transferred into the MS medium containing 1.0 mg/l BAP and 0.24% gelrite to stimulate their elongation. In the rooting study, 2.0 mg/l NAA was found to be the best concentration of auxin in terms of percentage of adventitious root formation, as well as their number and length. Defoliation could be overcome during the rooting phase when the shoots were transferred into MS hormone free medium but with an addition of 0.24% gelrite. A comparative study on the rootability of shoots excised from the initial and fourth subcultures showed that shoots from the latter performed better in terms of the number and length of adventitious roots produced. Survival percentage of 65.4% was achieved after two weeks of transplanting in the nursery.