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By 
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Chair  : Associate Professor Ir. Norhashila Hashim, PhD  
Faculty  : Engineering 
 
 
Pineapple is a tropical fruit that is highly relished for its unique aroma and sweet 
taste. Monitoring of pineapple quality is essential in order to regulate proper 
postharvest handling and yield production. In the present study, infrared thermal 
imaging was used to determine the variety classification and quality attributes of 
pineapples, specifically total soluble solids (TSS), moisture content, pH, colour 
changes, and firmness based on various storage conditions (storage 
temperatures and storage days). Three pineapple varieties were used in this 
study which are MD2, Morris, and Josapine. A total of 1080 fresh pineapples at 
a ripening stage of Index 2 were used in this study. The samples were stored at 
three different storage temperatures i.e. in a cold storage room (5 °C), a 
controlled refrigerator (10 °C), and an air-ventilated laboratory room (25 °C) with 
a temperature range of ±2 °C and relative humidity of 85 to 90 %. For each 
variety, 30 samples were randomly selected for data collection at every seven 
days intervals (Day 0, Day 7, Day 14, and Day 21). Thermal images of 
pineapples were acquired at three different varieties at various storage 
conditions. By using first-order kinetics, the R2 values of quality changes of 
pineapples ranged from 0.893 to 0.992. The results also demonstrated that the 
samples stored at 10 °C had the longest shelf life in relation to the changes in 
firmness and moisture content of the fruit. Principal component analysis was 
used to develop quantitative prediction models and clustering ability of three 
different varieties of pineapples. The optimal relations among all the image 
parameters successfully explained the robustness of the partial least squares 
(PLS) models which demonstrated a good prediction performance of all quality 
attributes of pineapples with R2 values of up to 0.94. Several machine learning 
algorithms including linear discriminant analysis, quadratic discriminant analysis, 
k-nearest neighbour, support vector machine, decision tree, and Naïve Bayes 
were applied for the classification of pineapple varieties. The results showed that 
the support vector machine achieved the best performance from the combination 
of optimal image parameters with the highest classification rate of 100 %. 
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Convolutional neural networks (CNN) were developed to determine the 
classification of pineapple varieties with the highest accuracy of 99 % via 
InceptionV3. The precision, recall, and F1-score demonstrate promising results 
with the values higher than 0.85 for all pineapple varieties. Multimodal data 
fusion based on three different CNN architectures including ResNet, VGG16, 
and InceptionV3 was designed for the classification of pineapple varieties with 
classification rate up to 92 %. Apart from that, a graphical user interface (GUI)-
based software for determination of classification accuracy and quality prediction 
of the fruit is developed. The application of GUI using the CNN approach can 
also improve the predictive performance of the fruit classification collected in 
multi-batch image datasets. Hence, it is noted that the feasibility of infrared 
thermal imaging coupled with artificial intelligence approaches is a promising 
technique for assessing the variety classification and the quality parameters of 
pineapples during storage. 
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Oleh 
 

MAIMUNAH BINTI MOHD ALI 
 

Julai 2022 
 
 

Pengerusi : Profesor Madya Ir. Norhashila Hashim, PhD 
Fakulti  : Kejuruteraan 
 
 
Nanas adalah buah tropika yang sangat digemari kerana aromanya yang unik 
dan rasa manis. Pemantauan kualiti nanas adalah penting untuk mengawal selia 
pengendalian lepas tuai dan pengeluaran hasil yang betul. Dalam kajian ini, 
pengimejan terma inframerah digunakan untuk menentukan sifat kualiti buah, 
khususnya jumlah pepejal larut (TSS), kandungan lembapan, pH, perubahan 
warna, dan tekstur pada varieti yang berbeza berdasarkan pelbagai keadaan 
penyimpanan (suhu penyimpanan dan hari penyimpanan). Tiga jenis nanas 
telah digunakan dalam kajian ini iaitu MD2, Morris, dan Josapine. Sebanyak 
1080 biji nanas segar pada peringkat masak Indeks 2 telah digunakan dalam 
kajian ini. Sampel disimpan pada tiga suhu penyimpanan yang berbeza iaitu di 
dalam bilik simpanan sejuk (5 °C), peti sejuk terkawal (10 °C), dan bilik makmal 
berventilasi udara (25 °C) dengan julat suhu ±2 °C dan kelembapan relatif 85 
hingga 90 %. Bagi setiap varieti, 30 sampel telah dipilih secara rawak untuk 
pengumpulan data pada setiap selang tujuh hari (Hari 0, Hari 7, Hari 14, dan 
Hari 21). Imej terma nanas diperoleh pada tiga jenis varieti berbeza pada 
pelbagai keadaan penyimpanan berdasarkan hubungan sifat fizikokimia dan 
parameter imej. Dengan menggunakan kinetik peringkat pertama, nilai R2 bagi 
perubahan kualiti nanas adalah antara 0.893 hingga 0.992. Hasil kajian juga 
menunjukkan bahawa sampel yang disimpan pada suhu 10 °C mempunyai 
jangka hayat yang paling lama berhubung dengan perubahan dalam ketegasan 
dan kandungan kelembapan buah. Analisis komponen utama digunakan untuk 
membangunkan model ramalan kuantitatif dan keupayaan pengelompokan tiga 
jenis nanas yang berbeza. Hubungan optimum antara semua parameter imej 
berjaya menerangkan keteguhan model kuasa dua separa terkecil (PLS) yang 
menunjukkan prestasi ramalan kualiti nanas yang baik dengan nilai R2 sehingga 
0.94. Beberapa algoritma pembelajaran mesin termasuk analisis diskriminasi 
linear, analisis diskriminasi kuadratik, jiran terdekat k, mesin vektor sokongan, 
pepohon keputusan dan Naïve Bayes telah digunakan untuk mengklasifikasikan 
variety nanas. Keputusan menunjukkan mesin vektor sokongan mencapai 
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prestasi terbaik daripada gabungan parameter imej optimum dengan kadar 
pengelasan tertinggi sebanyak 100 %. Rangkaian saraf konvolusi (CNN) telah 
dibangunkan untuk menentukan klasifikasi varieti nanas dengan ketepatan 
tertinggi 99 % melalui InceptionV3. Ketepatan, ingatan semula dan skor F1 
menunjukkan hasil yang baik dengan nilai yang lebih tinggi daripada 0.85 untuk 
semua jenis nanas. Gabungan data multimodal daripada tiga jenis model CNN 
menunjukkan hasil yang baik untuk penentuan kualiti nanas dengan kadar 
pengelasan sehingga 92 %. Selain itu, perisian berasaskan antara muka 
pengguna grafik (GUI) untuk penentuan ketepatan pengelasan dan ramalan 
kualiti telah dicipta. Aplikasi GUI menggunakan pendekatan CNN juga boleh 
meningkatkan prestasi ramalan klasifikasi buah yang dikumpul dalam set data 
imej berbilang kelompok. Oleh itu, adalah diambil perhatian bahawa 
kebolehlaksanaan pengimejan terma inframerah ditambah dengan pendekatan 
pintar buatan adalah teknik yang berkesan untuk menilai klasifikasi variety dan 
parameter kualiti nanas semasa penyimpanan.  
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1. CHAPTER 1 
 

INTRODUCTION 

 
 
1.1 Background study 

 
 
Pineapple is a tropical fruit that is native to the coastal lowlands of South America 
such as Columbia, Brazil, and Paraguay, which can either be consumed fresh or 
processed into various food products (Barretto et al., 2013). It is the third-ranked 
most widely cultivated tropical fruit in terms of economic production, after banana 
and citrus (Zainuddin et al., 2020). The pineapple market has been growing 
extensively due to the attractive aroma compounds and nutritional values as well 
as huge demand and competitive retail prices (Martínez et al., 2012). Pineapple 
is mainly cultivated in the tropical and sub-tropical regions due to the temperate 
climate and rainfall distributions. The top five pineapple producers worldwide in 
2020 were reported consisted of Philippines (2.70 million tonnes), Costa Rica 
(2.62 million tonnes), Brazil (2.46 million tonnes), Indonesia (2.45 million tonnes), 
and China (2.22 million tonnes) (FAOSTAT, 2022). The crop can bear fruit at the 
early stage after flowering, allowing the yield production throughout the year 
(Shamsudin et al., 2009). The shelf life of pineapple can be prolonged by storing 
the fruit in specific conditions and storage temperature as well as specific 
treatment to avoid microorganism contamination (Ismail et al., 2018). In this 
context, a well-reasoned anticipation to transform perishable fruit into staple 
products with longer shelf life has been developed to reduce the qualitative 
quality deterioration of the fruit during storage. 
 
 
Infrared thermal imaging is a non-destructive sensing technique that measures 
infrared energy emitted from the object's surface. The detected energy is 
converted by the camera into a thermal map called a thermogram. Infrared 
thermal imaging may be used not only for defect sorting but also for other quality 
attribute sensing because of its non-destructive ability. In agriculture, thermal 
imaging has wide applications in determining crop water stress, irrigation 
scheduling, pathogen and disease detection in plants, bruise detection and 
maturity evaluation of fruits, and yield estimation of fruit in the orchard. Due to 
this characteristics and functions, infrared thermal imaging has shown promising 
results in the determination of fruit quality such as apples (Badia-Melis et al., 
2016), pears (Hahn et al., 2016), grapes (Ding et al., 2017), blueberries (Kuzy et 
al., 2018), and green citrus (Gan et al., 2018). Badia-Melis et al. (2016) 
successfully predicted the surface temperature over a pallet of apples whilst 
comparing packaging (plastic boxes and cardboard boxes) using thermal 
imaging technique. Kuzy et al. (2018) developed a thermal imaging system and 
explored its feasibility in detecting bruised blueberries non-destructively. In the 
same manner, Ding et al. (2017) obtained the classification abilities based on 
the alcoholic volatiles by thermal images of fresh, seriously decayed, and 
moderately decayed grapes with correct classification accuracies of 100 %, 93 
%, and 90 %, respectively. 
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Thermal imaging technology has gone through a constant development process 
over the past decades. Starting with thermal cameras, which use differences in 
contrast for defect detection, imaging technology has advanced to increasingly 
precise thermal colour cameras. This has advantages for the food processing 
industry, where the fruits quickly change apart from the shorter development and 
modification cycles. There are numerous opportunities to integrate thermal 
imaging into portable, mobile, or desktop devices. In addition to the conventional 
method for quality inspection of fruit, thermal imaging has additional unique 
requirements that must be considered by the users to be applied in the real-life 
situation. The thermal imaging technology plays a major role in the temperature 
mapping of essential process and product in many industries and is gaining 
momentum in the agriculture and food industries. The non-contact, non-
destructive, nature of thermal imaging along with the rapid online usability are 
the major reasons for the fast-growing demand for this technique in various 
fields. The researchers are exploring the potential of using thermal imaging in 
various processes in the agriculture and food industry due to its numerous 
advantages.  
 
 
Nowadays, various artificial intelligence-based approaches such as machine 
learning and deep learning methods have been developed to quantify the quality 
and safety evaluation of different kinds of fruit. In this sense, the integration of 
infrared thermal imaging coupled with artificial intelligence could provide an 
efficient approach since the nature of the algorithm is easy to analyse and 
produce rapid results. In recent years, the advance of various data processing 
and hardware technologies exploited a rising trend in deep learning approaches. 
Deep learning is highly regarded as a technique with a strong ability to compute 
data and improve the performance of algorithms. As a branch of artificial 
intelligence, deep learning is capable to analyse a huge amount of data by 
providing more robust analyses with high performance on the thermal 
information. The role of deep learning in food-agriculture related tasks is hugely 
explored due to promising applications including food recognition (Cecotti et al., 
2020; Cotrim et al., 2020), maturity estimation (Villaseñor-Aguilar et al., 2020), 
disease detection (Prabhakar et al., 2020), quality inspection (Guedes et al., 
2020), fruit classification (Momeny et al., 2020), defect detection (Jahanbakhshi 
et al., 2020; Zeng et al., 2020), etc. In this regard, deep learning approach 
provides efficient and precise results compared to conventional and routine 
laboratory analyses. Hence, it offers promising potential to evaluate the variety 
classification and quality attributes of pineapples at different storage conditions 
to ensure the fruit is of high quality when reached the consumers. 
 
 
1.2 Problem statement  

 

Pineapple is an exotic fruit that is well valued due to its aroma, flavour, and 

juiciness. To date, there are many pineapple varieties with various colours, 

shapes, sizes, and flavours. Pineapple is a rather medium size compared to 

other tropical fruits, which consists of multiple fruitlets with a distinctive 
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maturation pattern from the top part near the crown until the bottom part of the 

fruit (Montero-Calderón et al., 2010). Considering the fact that pineapple is a 

non-climacteric fruit, the quality changes of the fruit varies and are not uniform. 

Generally, different pineapple varieties have different unique traits and 

characteristics. For this reason, pineapples are evaluated based on physical, 

physicochemical, and chemical attributes of fruit with acceptable flavour and 

morphological characteristics. The composition of pineapple flesh might also 

vary between different varieties of the fruit. Nevertheless, the changes in 

pineapple attributes may easily cause quality deterioration and the undesirable 

losses are normally accumulated because of the destructive nature of the 

conventional analysis (Adiani et al., 2020; Priyadarshani et al., 2019). Therefore, 

the evaluation of quality attributes of different pineapple varieties is vital to 

ensure the fruit is of acceptable quality range. 

 

 

Keeping appropriate and good quality fruit during storage has been a challenge 

to the pineapple industry. The main problem arises during the postharvest 

handling of pineapple in which the defects start to appear until several days after 

the fruit has been exported (Siti Rashima et al., 2019). This is one of the main 

issues in the pineapple industry since the fruit quality cannot be determined at 

an early stage by visual appearance during postharvest handling which can 

influence the choice and palatability of the consumers. Generally, visual 

inspection such as firmness, bruising, external defects, and colour changes are 

regarded as the key criteria for the customers to assess the quality of the fruit 

(Dittakan et al., 2018). These include texture, flavour, appearance, and chemical 

composition of the fruit that could influence consumer acceptability and 

preference (Padrón-Mederos et al., 2020). Several aspects such as postharvest 

handling and storage temperature could affect the quality and shelf life, as well 

as the sensory characteristics of the fruit during storage (Guimarães et al., 2018; 

Steingass et al., 2015). The fruit quality of pineapple may still deteriorate during 

storage due to various factors such as humidity, temperature, and water activity.  

 

 

Although several studies have been conducted to detect quality attributes of 

pineapple, the methods are mostly destructive or minimally destructive. 

However, these methods may not be implemented efficiently due to the large 

volume of pineapple yield given their limitations in terms of accuracy and speed. 

In addition, some techniques also require human skill and experience for the fruit 

sorting as well as grading processes (Khatiwada et al., 2016). The development 

of a rapid, accurate and non-destructive technique for sensing the quality 

attributes of the fruit at different varieties is expected could resolve this problem. 

For this reason, advanced and non-destructive techniques specifically for 

pineapples are required which could determine the fruit quality without damaging 

the whole fruit. The integration of infrared thermal imaging with artificial 

intelligence techniques offers quality determinations of pineapple fruit in a rapid 

way. Hence, this study attempted to explore the potential of infrared thermal 
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imaging driven by artificial intelligence-based approaches to determine the 

variety classification and quality attributes of pineapples during storage.  

 
 
1.3 Significance of study 

 

 

According to the Food and Agriculture Organization (FAO), the world population 

is estimated to reach 9.7 billion by 2050 which could intensify the global food 

production (FAO, 2002). Since the increase of the human population continues 

to increase, the food production must also keep pace with it to meet the future 

demand, especially for agricultural products (Frona et al., 2019). Recently, the 

pineapple industry has had a growing need for developing robust and efficient 

methods to be used in the quality determination of the fruit. Numerous fast and 

non-destructive methods have been used in tandem with the quality evaluation 

of pineapples. The current studies provide a low-cost and rapid way on the 

variety classification and quality evaluation of pineapple during storage using the 

infrared thermal imaging approach. These trends provide the motivation for the 

future possibility to adopt the artificial intelligence approach which has 

demonstrated reliable success in producing good quality fruit to the consumers.  

 

 

Artificial intelligence methods are used to provide reliable results by means of 

any computational network leading to a rapid surge in the pineapple production. 

Without human intervention, artificial intelligence could be established for 

promoting automated handling systems to reduce the postharvest losses. As an 

added bonus, the artificial intelligence method is suitable to solve real-time 

situations by simulating the models through data training. For this reason, 

infrared thermal imaging techniques are coupled with artificial intelligence-driven 

methods to obtain rapid and objective detection of the sample. This study 

provides a non-destructive solution to overcome the problem of manual 

inspection which is prone to human errors and time-consuming. A baseline 

database has been established which could be utilised as a starting point for 

future work and practical deployment related to the pineapple as well as other 

fruits. Apart from that, the growth of wireless technologies has created more 

diverse applications for data collection. Thus, the overall advantages of artificial 

intelligence are encouraging for the potential uses towards efficient models, 

thereby further real-time monitoring for rapid detection of food and agricultural 

products. 

 

 

1.4 Research objectives  

 
  
The goal of this research is to develop an artificial intelligence system for 
pineapple variety classification and its quality evaluation at different storage days 
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(Day 0, Day 7, Day 14, and Day 21) and storage temperatures (5, 10, and 25 °C) 
using infrared thermal imaging. The specific objectives are: 
 

i. To identify thermal image parameters of pineapples with respect to 
different varieties, storage days and temperatures. 

 
ii. To determine physicochemical properties of pineapples with respect to 

different varieties, storage days, and storage temperatures using 
standard reference methods. 

 
iii. To evaluate the model performance of variety classification of 

pineapples using conventional machine learning and deep learning 
methods. 

 
iv. To develop graphical user interface for determination of classification 

accuracy and quality prediction of different pineapple varieties using 
deep learning algorithms. 

 

 

1.5 Scope and limitations 

 

 

This study is focused on classifying the pineapple fruit at three different varieties 

(MD2, Morris, and Josapine) which were tested at four storage time intervals 

(Day 0, Day 7, Day 14, and Day 21) during storage. The fruit samples were 

stored in three different storage temperatures (5, 10, and 25 °C) with relative 

humidity of 85 to 90 % throughout the experiment. The pineapples were 

harvested 13 months after planting and transported immediately to the 

Biomaterials Processing Laboratory, Universiti Putra Malaysia after harvest. The 

pineapple samples were harvested on the same day to avoid the seasonal 

variances in the physicochemical properties between the varieties. The 

pineapple images were captured under consistent lighting conditions in a 

laboratory room at a temperature of 25 °C. The imaging device used for image 

acquisition is a handheld infrared thermal imaging camera with 320 x 240 pixels 

infrared resolution. The crown/stem is included in the image analysis by 

considering it as the whole fruit despite different types of pineapple varieties. For 

the model development using the deep learning method, similar training, 

validation, and testing sample datasets are used for both single pre-trained CNN 

and multimodal data fusion. The application of GUI does not cover the remaining 

shelf life of the fruit since the implementation of the toolbox is focused only on 

showing the classification accuracy based on fruit variety and quality prediction 

of the fruit. 
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1.6 Thesis outline                                                                                       

 

 

This thesis content is organised into five chapters, which are presented as 

follows: 

 

 

Chapter 1 describes the background study driving this work which highlights the 

pineapple cultivation, quality evaluation of the fruit, and the fundamental concept 

of infrared thermal imaging techniques. This chapter also outlines the research 

objectives as well as the scope and limitations of the study. 

 

 

Chapter 2 provides a literature review of the cultivation and quality evaluation of 

pineapples. It also presents the application of infrared thermal imaging for quality 

evaluation and safety inspection of various food and agricultural products. This 

is followed by a detailed review of artificial intelligence system for fruit quality 

detection and classification. Previous studies relevant to this research were 

summarised and reviewed. This chapter discusses the fundamental concepts 

and mechanisms of deep learning for assessing pineapple quality.  

 

 

Chapter 3 elaborates the methodology and various steps of data processing and 

analysis to determine the capability of infrared thermal imaging to evaluate the 

variety classification and quality changes of pineapples during storage. Image 

parameters were selected based on the feature extraction of pineapple images 

to develop prediction models for the quality detection of the fruit. Several 

machine learning algorithms were applied to develop classification models which 

discriminate the fruit according to the storage days and storage temperatures. It 

also describes the deep learning methods for the variety classification of 

pineapples based on storage days and storage temperatures. The model training 

and evaluation based on various CNN architectures using transfer learning for 

the variety classification of pineapples is discussed in detail. A multimodal data 

fusion of three different CNN models along with the weight information is 

combined to perform the fruit classification. This is followed by the 

implementation of a graphical user interface (GUI) for the determination of 

classification accuracy and quality prediction of different pineapple varieties. 

 

 

Chapter 4 describes the results and findings obtained from each research 

objective. This work demonstrates the identification of image parameters of 

thermal images of pineapples in relation to different varieties, storage days, and 

storage temperatures. The physicochemical properties of pineapples were also 

investigated with respect to different varieties, storage days, and storage 

temperatures using standard reference methods. The best machine learning 

algorithm was determined based on the highest classification accuracy for both 

calibration and prediction datasets. The accuracy of fruit variety classification is 
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enhanced by means of transfer learning and multimodal data fusion based on 

deep learning technique using three CNN architectures. This chapter also 

demonstrates an application of a graphical user interface-based toolbox for 

determination of classification accuracy and quality prediction of different 

pineapple varieties. The toolbox allows the model training and selection based 

on the image datasets of the fruit. 

 

 

Chapter 5 summarises the conclusions and achievements of this research, 

along with the recommendations for future research studies. 
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