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Deterministic and low latency communications are increasingly becoming essential 

requirements for several safety-critical applications, such as automotive and 

automation industries. Time-sensitive networking (TSN) is a new Ethernet-based 

framework introduced to support these applications. TSN differentiates mixed-

criticality traffic into three different categories: time-triggered (TT), Audio/Video 

Bridging (AVB), and best effort (BE). The TT flows are scheduled using a predefined 

gate control list (GCL) in each selected node targeting deterministic and low latency, 

extremely low jitter, and no congestion loss. The unscheduled traffic (AVB and BE) 

share the remainder bandwidth using the credit-based shaper (CBS), with a 

deterministic latency requirement for AVB but less than TT traffic and no QoS 

requirements for BE.  

 

 

Implementing a suitable predefined schedule in all selected nodes is a complex and 

vital problem. The main challenge is how to guarantee TT requirements without 

missing AVB deadlines. First, complete isolation between TT windows leads to 

wasting bandwidth and missing QoS requirements for AVB traffic. Moreover, non-

optimized window offsets will degrade the end-to-end latency performance for the 

associated TT queues, leading to less bandwidth availability for unscheduled 

transmissions. Also, implementing all GCLs in the selected path based on TT 

evaluations without considering their impacts on the AVB performance results in 

improper scheduling designs. Accordingly, three related phases are introduced in this 

thesis to cover these points as follows. 

 

 

The first part introduces a flexible window-overlapping scheduling (FWOS) algorithm 

that allows the TT windows to overlap in GCL implementations. An analytical model 

for the worst-case end-to-end delay (   ) is derived for TT traffic using the network 

calculus (NC) approach and evaluated using a vehicular use case, considering the 
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overlapping among TT windows by three different metrics: the priority of overlapping, 

the position of overlapping, and the overlapping ratio (  ). For each given latency 

deadline, the FWOS algorithm determines the maximum allowable    that obtains the 

highest unscheduled bandwidth without missing the TT latency deadlines. Even under 

a non-overlapping scenario, FWOS obtains less pessimistic latency bounds than the 

latest related works. 

 

 

The second part proposes an optimized flexible window-overlapping scheduling 

(OFWOS) algorithm that optimizes the offset difference (  ) between the same-

priority TT windows in the adjacent nodes. Using   -based GCL implementations, the 

    bound for TT traffic is formulated using NC for a targeted priority queue and 

assessed with    under non-overlapping and overlapping-based scenarios. OFWOS 

obtains more     reductions than the previous related works, leading to more flexible 

overlapping between TT windows in each node. A new scheduling constraint is 

implemented to control the overlapping, targeting more relaxed GCL implementations 

with guaranteed TT latency deadlines. 

 

 

In the third part, the worst-case AVB latency under overlapping-based TT windows 

(AVB-OBTTW) algorithm is presented to examine the OFWOS effects on AVB-  

latency performance, where   represents an AVB queue, i.e.,   {   }. Separate 

analytical models are derived using NC to calculate     for AVB-  with preemption 

and non-preemption modes. Both models are evaluated under back-to-back and 

porosity configurations with light and heavy load conditions. Compared to the latest 

related works, AVB-OBTTW reduces     for AVB-  flows by different percentages 

depending on    values. The lowest     bound is obtained with the maximum 

allowable    that meets TT latency deadlines using the OFWOS algorithm. Thus, 

combining OFWOS and AVB-OBTTW evaluations can be a helpful guide for TSN 

designers to implement tighter and more trusted GCL schedules. 
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Komunikasi berdeterministik dan berlatensi rendah menjadi keperluan penting untuk 

beberapa aplikasi kritikal keselamatan, seperti industri automotif dan automasi. 

Rangkaian peka masa atau time-sensitive networking (TSN) merupakan kerangka kerja 

baru berasaskan Ethernet yang diperkenalkan untuk menyokong aplikasi-aplikasi ini. 

Seperti yang diketahui, kes ini menjana pelbagai jenis trafik bergantung kepada 

keperluan QoS. Oleh itu, TSN membezakan trafik kritikal bercampur kepada tiga 

kategori yang berbeza: pencetus masa atau time-triggered (TT), penghubung 

Audio/Video atau Audio/Video Bridging (AVB), dan usaha terbaik atau best effort 

(BE). Aliran TT dijadualkan menggunakan senarai kawalan gerbang yang telah 

ditetapkan (GCL) dalam setiap nod menyasarkan deterministik dan latensi rendah, 

gegaran yang sangat rendah, dan tiada kerugian kesesakan. Trafik tidak berjadual 

(AVB dan BE) berkongsi baki lebar jalur menggunakan pembentuk berasaskan kredit 

atau credit-based shaper (CBS), dengan keperluan latensi berdeterministik untuk AVB 

tetapi kurang daripada trafik TT dan tiada keperluan QoS untuk BE.  

 

 

Melaksanakan jadual pratakrif yang sesuai dalam semua nod yang dipilih adalah 

masalah yang rumit dan utama. Cabaran utama ialah bagaimana untuk menjamin 

keperluan TT tanpa kehilangan tarikh akhir AVB. Pertama, pengasingan lengkap antara 

tetingkap TT membawa kepada pembaziran lebar jalur dan kehilangan keperluan QoS 

untuk trafik AVB. Selain itu, ofset tetingkap yang tidak dioptimumkan akan 

merendahkan prestasi kependaman hujung ke hujung untuk baris gilir TT yang 

berkaitan, yang membawa kepada ketersediaan jalur lebar yang kurang untuk 

penghantaran tidak berjadual. Selain itu, adalah penting dan kritikal untuk menilai 

prestasi AVB di bawah kesan TT untuk melaksanakan GCL yang sesuai bagi setiap kes 

penggunaan yang disasarkan. Sehubungan itu, tiga fasa berkaitan diperkenalkan dalam 

tesis ini untuk merangkumi perkara-perkara berikut. 
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Bahagian pertama memperkenalkan algoritma penjadualan bertindih tetingkap (FWOS) 

fleksibel yang membolehkan tetingkap TT bertindih dalam pelaksanaan GCL. Model 

analitik untuk kes terburuk bagi kelewatan hujung ke hujung (   ) diperoleh untuk 

trafik TT menggunakan pendekatan kalkulus rangkaian (NC) dan dinilai menggunakan 

kes penggunaan kenderaan, dengan mengambil kira pertindihan antara tingkap TT 

dengan tiga metrik berbeza: keutamaan pertindihan, kedudukan pertindihan, dan nisbah 

pertindihan (  ). Untuk setiap tarikh akhir kependaman yang diberikan, algoritma 

FWOS menentukan maksimum dibenarkan    yang memperoleh lebar jalur tidak 

berjadual tertinggi tanpa kehilangan tarikh akhir kependaman TT. Walaupun di bawah 

senario yang tidak bertindih, FWOS memperoleh had latensi yang kurang pesimistik 

daripada kerja-kerja berkaitan yang terkini. 

 

 

Dalam bahagian kedua, algoritma penjadualan tindih tetingkap fleksibel yang 

dioptimumkan (OFWOS) dicadangkan untuk mengoptimumkan perbezaan ofset (  ) 

antara tetingkap TT keutamaan yang sama dalam nod bersebelahan. Menggunakan 

  berasas pelaksanaan GCL,     ikatan untuk trafik TT dinyatakan menggunakan 

NC untuk aturan utama yang disasarkan, dan dinilai dengan    di bawah senario tidak 

bertindih dan berasaskan pertindihan. OFWOS memperoleh lebih banyak pengurangan 

    daripada kerja berkaitan sebelumnya, yang membawa kepada pertindihan yang 

lebih fleksibel antara tetingkap TT dalam setiap nod. Kekangan penjadualan baharu 

dilaksanakan untuk mengawal sasaran bertindih pelaksanaan GCL yang lebih santai 

tanpa terlepas tarikh akhir latensi TT. 

 

 

Dalam bahagian ketiga, latensi AVB kes terburuk di bawah algoritma tetingkap TT 

berasaskan pertindihan (AVB-OBTTW) dibentangkan untuk memeriksa kesan 

OFWOS pada prestasi kerelatifan AVB-  , di mana   mewakili baris gilir AVB, iaitu, 

  {    }. Model analisis berasingan diperolehi menggunakan NC untuk mengira 

    untuk AVB-  dengan mod pendahuluan dan bukan pendahuluan. Kedua-dua 

model dinilai di bawah konfigurasi bolak-balik dan porositi dengan keadaan beban 

ringan dan berat. Berbanding dengan kerja-kerja berkaitan terkini, AVB-OBTTW 

mengurangkan     untuk AVB-X aliran dengan peratusan yang berbeza bergantung 

kepada    nilai.     Ikatan terendah diperoleh dengan kadar maksimum yang 

dibenarkan    memenuhi tarikh akhir latensi TT menggunakan algoritma OFWOS. 

Oleh itu, gabungan penilaian prestasi OFWOS dan AVB-OBTTW boleh dianggap 

sebagai panduan berguna bagi pereka bentuk TSN untuk melaksanakan jadual GCL 

yang lebih ketat dan dipercayai. 
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CHAPTER 1 

 
 

INTRODUCTION 

 

 

This chapter first presents the research significance for real-time communications, 

followed by the related research problems. Then research objectives are introduced to 

consider the problems, with a brief methodology explaining how they can be achieved. 

Finally, this chapter ends with listing research contributions followed by thesis 

organization. 

 

 

1.1 Background and motivation 

 
 

For end-to-end data transmissions, safety-critical real-time applications, e.g., automotive 

and automation industries, require deterministic and low latency performance. Failing to 

comply with these requirements may cause dangerous situations for humans or 

considerable economic waste. Many technologies have been proposed to support these 

applications. One of which is the Ethernet network, as it has enough bandwidth and 

feasible cost for real-time scenarios. Although multiple Ethernet-based protocols have 

been previously introduced, such as Audio/Video Bridging (AVB) Ethernet and time-

triggered (TT) Ethernet, they cannot manage safety-critical transmissions and achieve the 

requirements. 

 

 

As an extension to TT-Ethernet protocol, the time-sensitive networking (TSN) has been 

standardized by the IEEE TSN task group to support safety-critical environments. The 

TSN features include synchronization, network management, access control, and 

reliability to support TT flows targeting deterministic and low latency, extremely low 

jitter, and no congestion loss [1]. In the presence of TT traffic, the TSN framework is 

designed to serve AVB traffic with lower quality-of-service (QoS) requirements and Best 

Effort (BE) flows with no QoS guarantees. These extensions interested many experts and 

companies to espouse the TSN technology. 

 

 

As defined in the IEEE 802.1Qbv standard [2], the TSN framework integrates TT flows 

using a time-aware shaping (TAS) technique which operates as a time-gating mechanism 

controlled by the gate control list (GCL) scheduled in each networking node. 

Thesepredefined schedules (GCLs) control accessing TT flows through the physical links 

with a global synchronization constraint. For unscheduled traffic (AVB and BE) 

configurations, the TSN switching applies the credit-based shaping (CBS) technique 

according to those TT schedules, as defined in IEEE 802.1Qav
 

[3]. Designing 

appropriate GCLs in all selected nodes while guaranteeing QoS requirements for 

critical time flows is a complex and vital matter. The designer has to pay the highest 

attention to two significant aspects; the TT latency requirements and the impact on 

unscheduled real-time traffic [4]. 
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1.2 Problem statements 

 
 

As mentioned, TSN standards introduce several protocols to specify synchronization, 

network management, traffic control, and reliability aspects to support mixed-criticality 

applications, such as aerospace, automotive, and automation industries. However, other 

projects targeting some significant amendments are still under research and have not 

standardized yet, such as IEC/IEEE 60802 TSN Profile for industrial automation and 

P802.1DG for automotive in-vehicle networks. Thus, the gap is still open between TSN 

architecture and related applications. One of these ambiguous issues is how to 

implement an appropriate GCL for each targeted use case. Implementing a suitable 

GCL timing table for TT traffic in all selected switches while ensuring latency 

requirements of critical time streams is a complicated and crucial problem. The 

complexity arises from the difficulties to satisfy TT demands without missing the QoS 

requirements for AVB traffic. Accordingly, the following related problems are still 

unconsidered.  

 

 In the TSN standard, the unscheduled traffic (AVB and BE) is prevented to be 

transmitted if any TT window is open and enough bandwidth must be granted for 

TT queues to ensure their requirements. All unscheduled flows will share the 

remaining time intervals when all TT windows are closed. Moreover, in front of 

each TT window, a guard band is assigned to protect TT transmissions from any 

incomplete unscheduled transmissions. Thus, complete isolation between TT 

windows results in considerable bandwidth waste from the guard bands, leading to 

missing QoS requirements for AVB traffic. 

 

 The offset difference between the same priority windows in the adjacent nodes is 

very important. Non-optimized window offsets will degrade the end-to-end latency 

performance for the associated TT queues, leading to more pessimistic worst-case 

performance. Thus, less overlapping flexibility between TT windows must be 

applied to meet targeted latency deadlines, resulting in less bandwidth availability 

for unscheduled transmissions. Although several window-based scheduling 

algorithms have considered the offset difference between different priority queues 

at the same node, no one has optimized the offset difference between the same 

priority windows in the adjacent nodes. 

 

 Implementing all GCLs in the selected path based on TT evaluations without 

considering their impacts on the AVB performance results in improper scheduling 

designs. It is essential and critical to evaluate the AVB performance under TT 

effects to obtain suitable GCL implementations for each targeted use case. All the 

previous worst-case evaluations for AVB traffic have been addressed based on 

complete isolation between TT windows. Thus, a comprehensive view of the 

worst-case AVB performance under TT overlaps is essential to make critical 

tradeoffs with TT evaluations and implement the most appropriate GCL designs. 
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1.3 Research objectives 

 
 
Based on the problems above, the main related objectives of this research are listed as 

follows: 

 

(i) To propose a flexible scheduling approach that allows TT windows to overlap, 

aiming to maximize unscheduled bandwidth as much as possible without missing 

the worst-case latency deadlines for TT traffic. 

 

(ii) To optimize the offset difference between the same priority windows in the 

adjacent nodes under all overlapping situations between TT windows at the same 

node, aiming to increase the overlapping flexibility and then improve unscheduled 

bandwidth. 

 

(iii) To formulate and evaluate the worst-case AVB latency under overlapping-based 

TT windows, aiming to reduce AVB latency and make critical design 

optimizations and tradeoffs for appropriate GCL implementations. 

 

 

1.4 Research scope 

 
 

This research focuses on vehicular application as one of the real-time scenarios that 

require more attentions to meet current and future needs. Higher degree of intelligence 

requires more complicated vehicle architecture and professional communication 

techniques. Currently, several protocols have been presented to facilitate in-vehicle and 

vehicle to outside communications. For in-vehicle communications, the controller area 

network (CAN), local interconnect network (LIN), FlexRay, and media oriented serial 

transport (MOST) protocols are introduced to serve automotive topology with different 

features. However, all these techniques with current versions have some related 

limitations to support higher levels of automation, as discussed in Section 2.1.3. To 

benefit from its flexibility and scalability, the Audio/Video Bridging Ethernet (AVB-

Ethernet) protocol is proposed to serve infotainment application. After that, AVB-

Ethernet is developed into the time-sensitive networking (TSN) technology to support 

safety-critical applications, including autonomous vehicles. Several TSN standards are 

presented to obtain guaranteed QoS requirements for hard real-time traffic, resulting in 

enormous TSN-based research proposals on automotive application. Based on that, the 

TSN protocol is chosen in this research to connect in-vehicle components. 

 

 

The TSN features include synchronization, network control and management, traffic 

scheduling and shaping, preemption, and reliability aspects. This thesis is dedicated to 

studying traffic scheduling and shaping in TSN, considering the preemption and non-

preemption techniques between hard real-time traffic (TT flows) and soft real-time 

traffic (AVB flows). The time-aware shaping (TAS) mechanism is considered under 

full synchronization guarantee between all TSN elements for traffic shaping. A 

predefined GCL implementation is proposed under flexible window-overlapping with a 

comprehensive performance evaluation for TT traffic under all overlapping scenarios, 

as presented in Chapter 4. The presented scheduling algorithm in Chapter 4 is extended 
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in Chapter 5 to include the offset difference (  ) between the same priority TT 

windows in the adjacent nodes. Critical   -based optimizations under non-overlapping 

and overlapping-based GCL implementations are addressed in Chapter 5. Based on the 

proposed model in Chapter 5, the AVB performance is studied using credit-based 

shaping (CBS) in Chapter 6. The preemption techniques defined in the IEEE 802.1Qbu 

protocol are applied to specify the AVB performance under porosity and back-to-back 

configurations. For performance evaluations, we examine the worst-case latency and 

bandwidth for the associated traffic types under all overlapping conditions between TT 

windows. Accordingly, the scope of this thesis is illustrated in Figure ‎1.1. All relevant 

methods and protocols used to achieve this thesis's pertinent objectives are colored in 

grey, as shown in Figure ‎1.1. The uncolored boxes represent other protocols or 

techniques that are not covered in this thesis. 

 

 

 
 

Figure ‎1.1: Study scope. 
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1.5 Brief methodology 

 
 

In order to achieve the aforementioned objectives, the main three phases of this thesis 

are summarized in Figure ‎1.2, showing all main inputs and outputs for each proposed 

algorithm, analytical formulation approach used, use case applied for related 

performance evaluations, evaluation metrics, and the sequence of the associated steps. 

As shown in Figure ‎1.2, the network calculus (NC) approach is used to formulate the 

worst-case end-to-end latency for TT traffic, in Phases 1 and 2, and AVB traffic in 

Phase 3. Also, all models are assessed using a vehicular use case considering the 

latency and bandwidth performances for the associated traffic type, leading to obtain 

some performance enhancements for soft real-time traffic. 

 

 

In the first stage, a flexible window-overlapping scheduling (FWOS) algorithm is 

proposed to improve the solution space for unscheduled critical time traffic by 

specifying the maximum allowable overlapping ratio (  ) between TT windows with 

guaranteed TT latency deadlines. First, the initial network and traffic parameters are 

used to implement GCL schedules in the selected nodes, and then formulate the 

associated arrival and service curves, which can be used to determine worst-case TT 

latency. The TT latency form is assessed using a vehicular topology considering all 

overlapping conditions. After these evaluations, we can determine the maximum 

allowable    that obtains the highest unscheduled bandwidth without missing worst-

case TT latency deadlines. 

 

 

In the second stage, an optimized flexible window-overlapping scheduling (OFWOS) 

algorithm is proposed to optimize the offset difference (  ) between the same priority 

TT windows in the adjacent nodes. From the beginning,    is considered as a primary 

design factor to implement GCL in each selected node with other parameters that are 

considered in the first phase. Using the same steps in the first stage, the worst-case TT 

latency is formulated with adjustable    between adjacent nodes and variable    at 

the same node. After evaluating the derived TT latency form under each overlapping 

condition, the optimal    can be determined when the latency is the lowest.  

 

 

In the third stage, the worst-case AVB latency under overlapping-based TT windows 

(AVB-OBTTW) algorithm is presented to study and evaluate TT impacts on the AVB 

performance according to the OFWOS algorithm. Using the GCL implementation 

based on the OFWOS algorithm with AVB traffic parameters, selected preemption 

mode, and CBS limitations, the worst-case AVB latency is formulated and evaluated 

using the same use case. Based on the selected preemption mode and the configuration 

pattern used, the AVB latency is assessed under all overlapping cases, resulting in a 

complete view for the worst-case AVB latency under TT overlaps. Combining TT and 

AVB evaluations under the same GCL implementation assists TSN designers to make 

critical optimizations and tradeoffs that can be used to obtain a suitable GCL for each 

targeted use case. 



© C
OPYRIG

HT U
PM

6 

 

 
 F

ig
u

re
 ‎1

.2
: 

M
et

h
o

d
o

lo
g
y

 o
rg

a
n

iz
a

ti
o

n
. 



© C
OPYRIG

HT U
PM

7 

 

1.6 Research contributions 

 
 

The research contributions are summarized in the following three parts: 

 

(i) The FWOS algorithm formulates the worst-case end-to-end delay (   ) for TT 

traffic based on flexible overlapping between related transmission windows using 

the network calculus (NC) approach. The FWOS algorithm is evaluated under a 

realistic vehicle use case considering three overlapping metrics: the priority of 

overlapping, the position of overlapping, and the overlapping ratio (  ). A 

critical discussion is introduced based on GCL design parameters. For each given 

latency deadline, the FWOS algorithm defines the maximum allowable    that 

obtains the best solution space for unscheduled traffic, while guaranteeing TT 

latency requirements at the same time. Additionally, even under non-overlapping 

GCL implementation, the FWOS algorithm achieves more     reductions 

compared to the latest related works. 

 

(ii) The OFWOS algorithm optimizes    between the same priority windows in the 

adjoining nodes. First, The OFWOS model presents the GCL schedules as 

mathematical expressions under variable    between same-priority windows in 

the adjacent nodes and adjustable    between different priority windows in each 

selected node. Then,     bounds are formulated using NC and assessed for a 

targeted TT queue under the whole expected range of    and   . Critical    

optimizations are provided and discussed considering all overlapping situations 

between TT windows. The OFWOS algorithm achieves less pessimistic     

bounds for TT traffic compared with the previous related works under all 

overlapping situations, leading to saving more bandwidth for unscheduled 

streams. Based on the optimal    and related maximum allowable   , a new 

scheduling constraint is formulated to ensure worst-case latency deadlines for TT 

queues using more relaxed GCL implementations. 

 

(iii) The AVB-OBTTW algorithm presents closed-form expressions for the worst-case 

AVB-  latency under overlapping-based TT windows, where   represents one of 

AVB queues (i.e.,   {   }). First, the GCL schedules are mathematically 

expressed in each node based on adjustable    between TT windows in the 

hyper-period. Then, the upper bound arrival curve and lower bound service curve 

are determined to calculate     bounds for AVB-  traffic using the Network 

Calculus approach. Separate mathematical models are derived with preemption 

and non-preemption modes. The AVB-OBTTW algorithm is evaluated under 

back-to-back and porosity configurations with light and heavy load conditions. 

Under each evaluation scenario, the preemption and non-preemption impacts on 

    bounds are compared under an adjustable overlapping ratio between TT 

windows. Compared to the latest related works, AVB-OBTTW reduces     

bounds for AVB-  flows by different percentages depending on    values. The 

lowest     bound is obtained with the maximum allowable    that meets TT 

latency deadlines using the OFWOS algorithm. 
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1.7 Thesis organization 

 

 

The remainder of this thesis is organized as follows: 

 

 

Chapter 2 presents a brief background about vehicular application with its intelligence 

requirements and related communications. More details are introduced for in-vehicle 

communication networks with a summarized comparison. Then, a brief overview of 

TSN is presented with its main standards that were introduced to support safety-critical 

applications. More details are presented for TSN amendments in traffic shaping and 

scheduling. Then, an overall classification for TSN scheduling research studies is 

illustrated according to the related objectives and contributions. More critical 

discussions are provided in detail for studies that considered thesis problems drawn in 

Section 1.2. Finally, a quick review of worst-case latency evaluation approaches in 

TSN is presented. 

 

 

Chapter 3 introduces the overall research framework. First, as all thesis contributions 

are analytical-based solutions formulated using NC, its fundamental background to 

calculate worst-case latency bounds for real-time applications is introduced. Then, the 

methodology for each objective is explained in some detail, showing the main 

difference with the benchmarks that are the closest to the proposed models. After that, 

validation of benchmarks is presented based on the referred model assumptions. 

Finally, we specify the vehicular use case with all general assumptions that are used to 

evaluate the proposed algorithms in Chapter 4-6. 

 

 

Chapter 4 proposes a flexible window-overlapping scheduling (FWOS) algorithm that 

allows different priority TT windows to overlap in each selected node. First, the main 

FWOS assumptions with fundamental formulations are illustrated. Then, the worst-case 

end-to-end latency analysis for TT traffic is presented using a lower-bound service 

curve and upper-bound arrival curve. To determine these curves, the duration of 

contention-free intervals and the maximum waiting time in each selected node are 

derived for the targeted TT queue. Based on these analytical formulations, the FWOS 

performance is assessed using a realistic vehicular use case under all overlapping 

situations. Finally, a critical comparison between FWOS and other related works is 

provided proving the QoS improvement using FWOS even under non-overlapping 

scenarios. 

 

 

Chapter 5 proposes an optimized flexible window-overlapping scheduling (OFWOS) 

algorithm that optimizes the offset difference (  ) between the same priority windows 

in the adjoining nodes. First, the initial OFWOS model assumptions are introduced. 

Then, the GCL schedules are mathematically formulated in all selected nodes on each 

transmission path assuming variable    between the same priority windows in the 

adjacent nodes and adjustable    between different priority windows at the same node. 

Based on these formulations, the WCD boundaries for the targeted TT queue are 

analysed using more tight contention-free and waiting time intervals. After that, the 

OFWOS algorithm is assessed, leading to an optimal    for each overlapping 
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condition. A comparison between OFWOS and other related works is provided. 

Finally, a new scheduling constraint is implemented to bound TT overlaps aiming to 

maximize the unscheduled bandwidth without missing TT latency deadlines. 

 

 

Chapter 6 proposes a worst-case AVB latency under overlapping-based TT windows 

(AVB-OBTTW) algorithm. First, some design decisions for the proposed model are 

described. The initial stage for the system model is implementing GCL schedules as 

mathematical relations with assuming flexible overlapping between TT windows. 

Then, the worst impact of TT arrivals according to the formulated GCL designs is 

defined for non-overlapped and overlapped windows. The worst TT impact is assumed 

to formulate a lower-bound AVB service curve, and the upper-bound AVB arrival 

curve is bounded using the aggregate individual arrival shaper, link speed shaper, and 

credit-based shaper. After that, the worst-case latency for AVB traffic is determined 

using these curves. All these formulations are derived with preemption and non-

preemption modes separately. To investigate their performances, the porosity and back-

to-back configurations are applied under light and heavy loading scenarios. A 

comprehensive comparison between preemption and non-preemption modes is made in 

each evaluation scenario. Finally, the AVB-OBTTW findings are compared with the 

previous related works. 

 

 

Chapter 7 concludes the thesis and recommends some future research directions. 
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