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Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfillment
of the requirement for the degree of Doctor of Philosophy

BOUNDARY LAYER FLOW AND HEAT TRANSFER OF HYBRID
Cu-Al2O3/WATER NANOFLUID PAST A PERMEABLE SURFACE

By

NAJIYAH SAFWA BINTI KHASHI’IE

October 2020

Chairman : Norihan Md Arifin, PhD
Institute : Mathematical Research

Hybrid nanofluid is invented to improve the heat transfer performance of tradi-
tional working fluids in many engineering and industrial applications. This thesis
presents the numerical solutions and stability analysis of five problems related to
the boundary layer flow with heat transfer in Cu-Al2O3/water hybrid nanofluid over
different permeable surfaces. The five considered problems are (1) mixed convec-
tive stagnation point flow towards a vertical Riga plate, (2) magnetohydrodynamics
(MHD) flow past a stretching/shrinking disc with Joule heating, (3) magnetohydro-
dynamics (MHD) flow past a stretching/shrinking cylinder with Joule heating, (4)
three-dimensional flow past a stretching/shrinking sheet with velocity slip and con-
vective boundary condition and (5) three-dimensional flow past a nonlinear stretch-
ing/shrinking sheet with orthogonal surface shear. The combination of copper (Cu)
and alumina (Al2O3) nanoparticles with water as the base fluid is modeled using the
single phase model and modified thermophysical properties of nanofluid. A set of
similarity transformation is opted to reduce the complexity of the governing model
and then, computed using the bvp4c solver in the Matlab software. For all the prob-
lems, the validation of model are conducted by comparing the numerical values of
present and previously published report in a specific case. The surfaces are perme-
able to allow the usage of suction parameter and generate the possible solutions.
Dual solutions exist in all problems within a specified range of parameters, but it is
found that only the first problem has dual solutions without the utilization of suction
parameter. However, higher values of suction parameter can affect the performance
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of hybrid Cu-Al2O3/water nanofluid in augmenting the heat transfer rate as reported
in second to fifth problems. Among all the parameters discussed in this thesis, copper
volumetric concentration, electromagnetohydrodynamics (EMHD), magnetic, veloc-
ity slip and suction parameters can delay the boundary layer separation. Meanwhile,
Biot number (convective condition), EMHD, suction, magnetic, velocity slip and
nonlinear parameters have potential to increase the heat transfer rate of the hybrid
nanofluid. Stability analysis proves that the first solution is more realistic than the
second solution.
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Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai
memenuhi keperluan untuk ijazah Doktor Falsafah

ALIRAN LAPISAN SEMPADAN DAN PEMINDAHAN HABA BAGI
NANOBENDALIR HIBRID Cu-Al2O3/AIR TERHADAP PERMUKAAN

TELAP

Oleh

NAJIYAH SAFWA BINTI KHASHI’IE

October 2020

Pengerusi : Norihan Md Arifin, PhD
Institut : Penyelidikan Matematik

Nanobendalir hibrid dicipta untuk meningkatkan prestasi pemindahan haba cecair
tradisional dalam kebanyakan aplikasi kejuruteraan dan perindustrian. Tesis ini
membentangkan penyelesaian berangka dan analisis kestabilan bagi lima masalah
yang berkaitan dengan aliran lapisan sempadan dan pemindahan haba dalam hibrid
nanobendalir Cu-Al2O3/air ke atas permukaan telap yang berlainan. Lima masalah
yang dipertimbangkan adalah (1) aliran titik genangan dengan olakan campuran
ke arah plat menegak Riga, (2) aliran magnetohidrodinamik (MHD) terhadap cak-
era meregang/mengecut dengan pemanasan Joule, (3) aliran magnetohidrodinamik
(MHD) terhadap silinder meregang/mengecut dengan pemanasan Joule, (4) aliran
tiga dimensi terhadap permukaan meregang/mengecut dengan slip halaju dan syarat
sempadan olakan dan (5) aliran tiga dimensi terhadap permukaan meregang/menge-
cut tak linear dengan permukaan ricih ortogon. Gabungan nanopartikel tembaga (Cu)
dan alumina (Al2O3) dengan air sebagai cecair asas dimodelkan dengan menggu-
nakan model fasa tunggal nanobendalir dan sifat-sifat termofizikal yang diubahsuai.
Satu set penjelmaan keserupaan dipilih untuk menurunkan kerumitan model dan ke-
mudian, dikira menggunakan penyelesaian bvp4c dalam perisian Matlab. Untuk ke-
semua masalah, pengesahan model dijalankan dengan membandingkan nilai-nilai
berangka semasa dengan laporan yang telah diterbitkan dalam kes tertentu. Per-
mukaan adalah telap untuk membenarkan penggunaan parameter sedutan dan men-
jana penyelesaian yang berkemungkinan. Penyelesaian dual wujud dalam kesemua
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masalah dalam julat parameter tertentu, tetapi didapati hanya masalah pertama mem-
punyai penyelesaian dwi tanpa penggunaan parameter sedutan. Walau bagaimana-
pun, nilai parameter sedutan yang tinggi boleh menjejaskan prestasi nanobendalir hi-
brid Cu-Al2O3/air dalam menambah kadar pemindahan haba seperti yang dilaporkan
dalam masalah kedua hingga kelima. Di antara semua parameter yang dibincangkan
dalam tesis ini, kepekatan volumetrik tembaga, parameter EMHD, parameter mag-
net, parameter slip halaju dan parameter sedutan dapat melambatkan pemisahan
lapisan sempadan. Sementara itu, nombor Biot (syarat sempadan olakan), parameter
EMHD, parameter sedutan, parameter magnet, parameter halaju slip dan parameter
tak linear berpotensi untuk meningkatkan kadar pemindahan haba bagi nanobendalir
hibrid. Analisis kestabilan membuktikan bahawa penyelesaian pertama adalah lebih
realistik daripada penyelesaian kedua.

iv
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CHAPTER 1

INTRODUCTION

1.1 Introduction

In the real industrial processes, there exist situations of continuous moving surfaces
in a moving or quiescent ambient environment. For example, the hot steel extrusion,
the lamination and the melt-spinning process in the polymer’s extrusion and the heat
treatment for the material moves between a wind-up roll or conveyor belts and a
feed roll (Moutsoglou and Bhattacharya, 1982). The importance of the final product
quality which depends on the heat transfer and cooling fluid performance attract
many researchers to further the study of the flow field and heat transfer. The problems
of boundary layer flow induced by a moving and deformable surfaces have drawn an
extensive attention among the researchers after first attempt made by Blasius in 1907
and Sakiadis in 1961, respectively (Ahmad et al., 2011).

1.2 Boundary Layer Theory

1.2.1 Velocity and Thermal Boundary Layer

In 1904, Ludwig Prandtl introduced the concept of fluid viscosity and contributed to
the discovery of the boundary layer theory (Acheson, 1990; Anderson, 2005). Before
Prandtl published the report, the viscosity effect was neglected in the ideal flow so-
lution, therefore the equations regarding viscosity became complicated. The Navier-
Stokes equations were used to give exact solutions for flows with small Reynolds
number before the concept of boundary layer flow was introduced. In contrast, the
Navier-Stokes equations gave insignificant solutions for flows with high Reynolds
number. Therefore, the concept by Prandtl stated that the viscosity has a large im-
pact at the solid boundary and this effect is insignificant in areas further away from
the solid boundary. The boundary layer is a region between the wall or surface (be-
low) and the inviscid free-stream (above) as shown in Figure 1.1. The flow past a
solid boundary can be divided into two regions. The first region is thin and near to
the solid boundary which is termed as the boundary layer. In the boundary layer
or first region, fluid viscosity has a great and significant effect on the flow. Mean-
while, the fluid viscosity has very low effect in the second region. Referring to the
concept presented by Prandtl, there are various terms that can be neglected in the
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Navier-Stokes equations through the assumption of a thin boundary layer.

Figure 1.1: An illustration of boundary layer flow

The Cartesian coordinates (x,y) are taken such that the x−axis is measured along
the sheet oriented in the horizontal direction and the y−axis is perpendicular to it.
At any given coordinate, the velocity distribution can be drawn as a function of y.
This is the most common way to illustrate a boundary layer. Referring to Figure
1.1, there are two points of velocity cross sections in the boundary layer. The first
is cross section for a laminar boundary layer while the second is after transition and
represents a turbulent boundary layer. In a boundary layer, the velocity is always
zero at the wall, and asymptotically approaches the free-steam velocity.

y
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T
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T
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( )u y ( )T y

T



Figure 1.2: Velocity and thermal boundary layer

Similar to the velocity boundary layer, a thermal boundary layer develops if there
is a difference between the ambient and surface temperatures. Consider a fluid flow
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over a flat plate (isothermal) with constant temperature Tw as shown in Figure 1.2.
At the leading edge, the fluid temperature profile is uniform with the ambient tem-
perature T∞. However, when the fluid particles contact the surface, the thermal equi-
librium is achieved between the fluid particles and the wall temperature. At this
point, energy flow occurs at the surface where the fluid particles transfer the energy
with those in the adjoining fluid layer (by conduction and diffusion) and tempera-
ture gradients will develop in the fluid. The region of the fluid where the tempera-
ture gradient exists is known as the thermal boundary layer. The thermal boundary
layer thickness δT , is defined as the distance from the surface where the temperature
is 99% of the temperature from an inviscid solution or mathematically written as
(T −Tw)/(T∞−Tw) = 0.99. As the distance x from the leading edge increases, the
thermal boundary layer thickens while the effect of heat transfer penetrates farther
into the free stream.

1.2.2 Stagnation Point Flow

Fluid stagnation is a phenomenon where the fluid is immovable at a region where the
local velocity is zero. The pressure, heat transfer and mass deposition have maximum
value at this region which known as the stagnation point (Wang, 2008). In 1752,
D’ Alembert pioneered the fluidic stagnation point notion and investigated the drag
flow on solid boundaries (Brimmo and Qasaimeh, 2017). During the time, fluid
stagnation was only limited to liquid-solid interfaces and refered as a disturbance.
After Prandtl proposed the boundary layer theory, he concluded that the frictional
force is the reason of the attached fluidic thin layer (stagnation point) to a rigid
boundary (see Figure 1.3). Since then, the concept of fluid stagnation towards a
static or moving body has captivated many researchers from various backgrounds
(mechanical, mathematics, physics) due to its numerous industrial and engineering
applications such as counterflow jet, aerodynamics and heat transfer.

(a) (b)

Figure 1.3: (a) Stagnation flow schematics, (b) Stagnation point flow on a verti-
cal plate (Brimmo and Qasaimeh, 2017)
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1.2.3 Boundary Layer Separation

In general, there are three stages of boundary layer, namely laminar boundary layer,
transition phase and turbulent boundary layer. The transition from laminar bound-
ary layer flow to the turbulent boundary layer flow is known as the boundary layer
separation. The fluid velocity theoretically decreases when the fluid passes a surface
as a result of the skin friction between the fluid and the surface which simultane-
ously, forms a boundary layer. The laminar boundary layer flow is characterized by
a smooth flow while the turbulent flow contains swirls or vortices. In addition, the
laminar flow creates less skin friction forces than the turbulent flow. Separation oc-
curs in the flow with increasing pressure (adverse pressure gradient). As shown in
Figure 1.4, the fluid motion (illustrated by the arrow) starts to change from laminar
flow (left) to turbulent flow (right).The boundary layer separates when it has trav-
elled far enough in an adverse pressure gradient where the velocity boundary layer
relative to the surface has stopped and reversed the direction as illustrated in Figure
1.4.

Counter Point Curve

Separating Point

laminar transition turbulent

Figure 1.4: Boundary layer separation

The flow becomes detached from the surface, and may take the forms of eddies and
vortices. Besides, the boundary layer solution only exist up to the boundary layer
separation point. From mathematical view, no solution can be generated for the flow
beyond this separation point because the boundary layer equation is invalid for a
turbulent flow. A full Navier-Stokes with energy equations are necessary to observe
the flow and heat transfer characteristics beyond this separation point. Therefore, it
is important to identify the possible factors which can decelerate the boundary layer
separation.
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1.3 Regular and Hybrid Nanofluids

Fluid is a substance that can continuously flow and change its shape under applied
shear stress or external force. Fluid can be classified into two categories; Newtonian
and non-Newtonian fluids. Newtonian fluid refers to the fluid that obeys the
Newton’s law of viscosity (direct proportion between the shear stress of the fluids
viscosity and shear rate). Non-Newtonian fluid is represented either by shear
thickening (fluid viscosity enhances due to the reduction of shear rate) or by shear
thinning (fluid viscosity decreases due to the increment of shear rate).

Meanwhile, nanofluids are a special class of fluids with great thermophysical prop-
erties, are expected to improve the heat transfer performance of applications related
to nuclear cooling systems, lubrication, biomedical applications, solar water heating,
thermal storage, coolant in automobile radiator, refrigeration and many others. The
nanofluids are prepared by dispersing single nanoparticles into a base fluid. The fre-
quently used nanoparticles are classified into these groups, (i) metals (copper/Cu,
silver/Ag, Nickel/Ni), metal oxides (aluminum oxide/Al2O3, ferric oxide/Fe2O3,
cupric oxide/CuO, silicon dioxide/SiO2), carbon materials (carbon nanotubes/CNTs,
multi-walled carbon nanotubes/MWCNTs, diamond, graphite), metal nitride (alu-
minium nitride/AIN) and metal carbide (silicon carbide/SiC). On the other hand,
water, ethylene glycol and oil are commonly used as the base fluid in the formation
of nanofluids.

Figure 1.5: An illustration of nanofluid’s preparation (Babar and Ali, 2019)

The nanofluids are not simply made by adding the nanoparticles into the base fluid,
but involves specific physical and chemical procedures for extensive period stability
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and large-scale applications. The process of stabilizing nanofluid is a difficult task
due to the presence of static electricity and Van der Waals force (Sun et al., 2015).
There are two general methods for the preparation of nanofluids; single- or two-step
method. The two-step method is a low cost method and widely used in laboratories.
This method involve preparing and dispersing of solid particles in the base fluid,
separately. First, the raw material (solid particles) are transformed into the powder
form using physical or chemical procedures and then, dispersed in the base fluid
with pH adjustment, ultrasonic agitation, surfactant addition, magnetic stirring
or homogenizing (Yu and Xie, 2012) until the stabilized nanofluid is obtained as
shown in Figure 1.5. Meanwhile, in the single-step method, the agglomeration of
nanoparticles is depreciated by combining the mixing and synthesizing process
of nanoparticles at one time. This method is comparatively expensive and only
convenient for small scale production.

The invention of a stable hybrid nanofluid as a promising heat transfer fluid with
better heat transfer performance can fulfil the industrial demand. There are two
ways to prepare hybrid nanofluids which are (i) by suspending different types
of nanoparticles in a base fluid (water/oil) or (ii) by suspending hybrid form of
nanoparticles in the base fluid. The hybrid nanofluids combine different composite
materials such as metal matrix nanocomposites (Al2O3/Cu, Al2O3/Ni, Mg/CNT,
MgO/Fe), ceramic matrix nanocomposites (Al2O3/SiO2, Al2O3/TiO2, CNT/Fe3O4)
and polymer matrix nanocomposites (polymer/CNT, polyester/TiO2) with traditional
base fluid. According to Sajid and Ali (2018), Turcu et al. (2006) being the first to
report the synthesis of MWCNTs/Fe2O3 hybrid nanoparticles. The aggregation of
nanoparticles will cause sedimentation or clogging, which simultaneously leads to
the reduction in nanofluids’ thermal conductivity. Hence, it is crucial and important
to have a stable hybrid nanofluids.

Not all the combination of the nanoparticles are suitable for the hybrid nanoflu-
ids. Jana et al. (2007) and Baghbanzadeh et al. (2012) reported that the thermal
conductivity of hybrid nanofluids is less than regular nanofluid due to the compat-
ibility issues of nanoparticles. Baghbanzadeh et al. (2012) synthesized and investi-
gated hybrid nanofluid with SiO2-MWCNTs nanoparticles in two set of ratios (80:20
and 50:50). The hybrid nanofluid has lower thermal conductivity than MWCNTs
nanofluid because of poor thermal conductivity of SiO2. The ascending order of
thermal conductivity for nanofluids was SiO2<Hybrid nanofluid (80:20)<Hybrid
nanofluid (50:50)<MWCNTs nanofluids. Jana et al. (2007) compared the thermal
conductivity of regular nanofluids (Au-water, Cu-water, CNTs-water) and hybrid
nanofluids (CNTs-Cu/water, CNTs-Au/water). Hybrid nanofluids showed less en-
hancement in thermal conductivity compared to mono nanofluids. However, there
are many successful experimental works reported for the hybrid nanofluid with Cu
and Al2O3 nanoparticles which can be found in Suresh et al. (2011, 2012) and Par-
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sian and Akbari (2018).

Due to the costly experimental works, many researchers preferred to further inves-
tigate the regular and hybrid nanofluids through numerical simulation (CFD) and
classical boundary layer analysis (Sheremet et al., 2020; Ghalambaz et al., 2019;
Sheikholeslami et al., 2019a; Izadi et al., 2018). The numerical investigations are
conducted using the established mathematical model of nanofluids, (i) single phase
model by Tiwari and Das (2007), and (ii) two phase model by Buongiorno (2006).
Moreover, for this theoretical analysis, the nanofluids are considered as a stable form
of the base fluid and nanoparticles including the exclusion of the aggregation ef-
fect. Further explanation including the thermophysical properties and the theoretical
model of nanofluid used in this research can be found in Chapter 3.

1.4 Heat Transfer

Heat transfer is the process of exchanging thermal energy between physical systems
through the dissipation of heat. The process of transferring heat is induced by pres-
sure and temperature difference that occurs within the physical systems. Generally
heat transfer can be divided into three types; convection, conduction and radiation
as illustrated in Figure 1.6. This research will focus on the convective heat trans-
fer as illustrated in Figure 1.6. Convection describes that the heat transfer from one
place to another through the mass motion of fluids. It occurs when the heated fluid
moves away from the source of heat and carries the energy acquired. The ideal gas
law describes that convection on a hot surface occurs when heated air (temperature
increases) is expanded (volume increases), becomes less dense and then rises. Con-
vection can further be subdivided into various forms that include natural convection,
forced convection and mixed convection. Natural convection occurs when the fluid
has density differences while forced convection describes fluid flow that is induced
by external forces caused by a suction device, pump or fan. Mixed convection occurs
when forced and natural convections simultaneously occur.

Figure 1.6: Convective heat transfer (Levenspiel, 2014)
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1.5 Permeable surface

A permeable (porous) surface is used to allow the wall fluid suction or injection
(fluid removal) in the boundary layer. Suction is one of the boundary layer control
method, which is traditionally used in drag reduction of bodies in an external flow or
energy losses in channels (Gad, 1990). An application of suitable wall mass suction
through the permeable surface can effectively be used to stabilize the vorticity within
the boundary layer and, subsequently, delay the boundary layer separation.

1.6 Dimensionless Numbers in Fluid Mechanics

In fluid mechanics, the dimensionless numbers are the ratio of involving quantities
and widely used to reduce the variables involved in the physical system. The ratio of
involving quantities which are used in this research are:

1.6.1 Prandtl number

Prandtl number (Pr) can be defined as the ratio of viscous diffusion rate (momentum
diffusivity) to thermal diffusion rate (thermal diffusivity) or mathematically written
as

Pr =
ν f

α f
=

µ f /ρ f

k f /
(
ρCp

)
f
=

(
µCp

)
f

k f
, (1.6.1)

where ν f is the kinematic viscosity (momentum diffusivity) and α f is the thermal
diffusivity of the fluid. Meanwhile µ f , ρ f , k f and

(
ρCp

)
f are the dynamic viscosity,

density, thermal conductivity and heat capacitance of the respective fluid. Gener-
ally, for Pr > 1, the momentum diffusivity is higher (dominant) than the thermal
diffusivity, and consequently, augments the heat transfer process and diminishes the
thermal boundary layer thickness. The value of Prandtl number for few of fluids are
presented in Table 1.1.
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Table 1.1: Prandtl number for different fluids.

Fluids Prandtl number

Air 0.71

Water (depends on the temperature) 1-10

Gases 0.7-1

Oil 50-2000

Methanol 7.38

Kerosene 21

1.6.2 Reynolds number

The Reynolds number (Re) is used to predict the patterns of the flow in different
situation where a laminar flow is identified through the low Reynolds number while
at high Reynolds number, the flow is turbulent. The Reynolds number is defined as
the ratio of inertial forces to viscous forces within a fluid and mathematically written
as

Re =
u∞L
ν f

, (1.6.2)

where u∞ is the free stream velocity, L is the characteristic length of the surface and
ν f is the fluid kinematic viscosity.

1.6.3 Skin friction coefficient

Skin friction coefficient
(
C f
)

can be defined as

C f =
2τw

ρ f u∞
2 , (1.6.3)

where u∞ is the free stream velocity, ρ f is the fluid density and τw is the wall shear
stress. The wall shear stress τw or also known as friction force per unit area is
important to drag the fluid motion along the surface and mathematically expressed
as

τw = µ f

(
∂u
∂y

)
y=0

, (1.6.4)
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where
∂u
∂y

is the velocity gradient and µ f is the dynamic viscosity of the fluid.

1.6.4 Nusselt number

The local Nusselt number (Nu) is important in the heat transfer field which indicates
the ratio of convective heat transfer to conductive heat transfer. It is mathematically
written as

Nu =
h f L
k f

=
h f L∆T
k f ∆T

, (1.6.5)

where h f is the heat transfer coefficient of the fluid, L is the characteristic length of
the surface, k f is the fluid thermal conductivity and ∆T is the temperature difference.
The Nusselt number Nu = 1 represents a similar magnitude between convection and
conduction processes.

1.6.5 Grashof number

The Grashof number Gr refers to the ratio of the buoyancy force to the viscous force
which acting on the fluid. It is mathematically expressed as

Gr =
g(βT ) f (Tw−T∞)L3

ν f
2 =

g(βT ) f ∆T L3

ν f
2 , (1.6.6)

where g is the gravitational acceleration, (βT ) f is the coefficient of volume expan-
sion, Tw and T∞ are the surface and ambient (far-field) temperatures, respectively,
and ν f is the kinematic viscosity of the fluid.

1.6.6 Eckert number

In the field of convective heat transfer, the Eckert number (Ec) is used to characterize
the heat transfer dissipation. The Eckert number is the ratio of flow’s kinetic energy
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to the enthalpy difference in boundary layer and expressed as

Ec =
u2(

Cp
)

f (Tw−T∞)
, (1.6.7)

where u is the fluid velocity,
(
Cp
)

f is the specific heat of the fluid at a constant
pressure, Tw and T∞ are the surface and ambient temperatures, respectively. In this
study, the Eckert number is used to measure the effect of Joule (Ohmic) heating.
Joule heating is a process when an electric current flows through any conducting
material and simultaneously, produces heat. The joule heating effect is widely and
practically used in most of the electrical and electronic devices.

1.6.7 Biot number

The Biot number (Bi) is a dimensionless number used to measure the heat transfer
process. It describes the ratio of the heat transfer resistance inside and at the surface
of a solid object (body) and expressed as

Bi =
h f L
ks

. (1.6.8)

The ratio determines if the temperature inside a body will vary significantly in space,
while the body heats or cools over time, from a thermal gradient applied to its sur-
face. From the mathematical expression of the Biot number and the Nusselt number,

both have the same group of physical parameters
h f L

k
where L is the characteristic

length scale and h f is the heat transfer coefficient. The Nusselt Number is used to
characterize the heat flux from a solid surface to a fluid, hence the thermal conduc-
tivity is measured from the fluid. Meanwhile, the Biot number is used to characterize
the heat transfer resistance inside a solid body, hence ks is the thermal conductivity
of the body and h f is the heat transfer coefficient that describes the heat transfer from
the surface of the solid body to the surrounding fluid.

1.6.8 Hartmann number

The Hartmann number (Ha) is the ratio of electromagnetic force to the viscous force
and frequently encountered in the fluid flow through magnetic field or magnetohy-
drodynamics (MHD). Magnetohydrodynamics (MHD) is a branch of physical stud-
ies that focus on the magnetic properties and characteristics of an electrically con-
ducting fluids such as plasmas, electrolytes, liquid metals and salt water. MHD are
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widely embedded in many devices such as heat exchangers, power pumps, genera-
tors and electrostatic filters. The Hartmann number is mathematically written as

Ha = B0L

√
σ f

µ f
, (1.6.9)

where B0 is the strength of the magnetic field, σ f is the electrical conductivity of the
fluid and µ f is the dynamic viscosity of the fluid.

1.7 Stability Analysis

The boundary layer problem are categorized as nonlinear differential equations
which is possible to generate non-unique solution (Schlichting and Gersten, 2017).
The solution of the boundary layer equations can be zero, unique or multiple solu-
tions with the application of suitable physical parameter such as suction (Miklavčič
and Wang, 2006). Generally, for non-unique solutions, the first (upper branch) so-
lution which satisfies the boundary conditions is denoted as the physical and stable
solution. Meanwhile, the lower branch solution refers to the second solution which
asymptotically fulfills the boundary conditions. Hence, it is important to identify
all the possible solutions in the boundary layer problem to avoid misinterpretation
of the fluid motion. In certain cases, the second solution may exhibit the same pat-
tern of the real flow characteristics based on the velocity and temperature profiles.
Therefore, it is necessary to validate the real solution through a proper analysis. The
execution of the stability analysis is mathematically performed to verify the physical
or real solution among all the solutions.

Wilks and Bramley (1981) being the first to perform stability analysis for the convec-
tion boundary layer flow problem past an impermeable vertical surface with variable
surface temperature. They found the existence of dual solutions in the opposing
buoyancy stream and perform the stability analysis to determine the stability of the
particular dual solutions. They found that the smallest eigenvalue of upper branch
solution was positive. However, the lower branch solution has both positive and
negative values for the smallest eigenvalues. With such results, Wilks and Bramley
(1981) concluded that the upper branch solution was a stable solution while the lower
branch solution was unstable.

The study by Merkin (1986) further became the main reference to the other re-
searchers regarding the stability analysis. Later, Merrill et al. (2006), Weidman et al.
(2006) and Harris et al. (2009) have used and improved the stability analysis method
introduced by Merkin (1986).
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1.8 Problem Statement

• The separation of boundary layer flow mostly occurs in the shrinking region
or opposing buoyancy region. Theoretically, the fluid motion past a shrinking
sheet is restricted due to the unconfined vorticity within the boundary layer.
However, dual/multiple solutions are usually detected in this region with the
imposition of wall mass suction parameter (Miklavčič and Wang, 2006) or the
use of stagnation point flow (Wang, 2008).

• The solutions usually exist up to a meeting point or also known as critical or
turning point. This turning point signifies the occurence of boundary layer sep-
aration from laminar to turbulent. Beyond this point, the usual boundary layer
and energy equations are invalid to analyze the fluid flow and heat transfer
characteristics. It is crucial to maintain the laminar flow from the separation
process.

• On the other hand, the application of hybrid nanofluids in the research of
boundary layer flow is still new. There are problems where the hybrid nanoflu-
ids are not useful in the heat transfer enhancement as reported by Jana et al.
(2007) and Baghbanzadeh et al. (2012). Hence, it is beneficial to examine if
the hybrid nanofluid including the governing parameters are capable to delay
the separation process and increase the heat transfer rate.

The research questions associated with the problem statement are

• Does the dual similarity solutions possible for all research problems (Chapters
4-8) if no suction is imposed?

• Does the dual similarity solutions exist for both assisting buoyancy flow and
opposing buoyancy flow (Chapter 4)?

• Does the power law velocity is better than the linear velocity in delaying the
separation and enhancing the heat transfer rate (Chapter 8)?

• Which parameters are potential to delay the boundary layer separation and
increase the heat transfer rate?
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1.9 Objectives and Scope of Study

The objectives are

• construct and derive the mathematical model,

• solve the mathematical model numerically using bvp4c solver

• conduct the stability analysis for the dual solutions to determine which of the
solutions represent a stable flow

• analyze the influence of the considered parameters on the characteristics of the
fluid flow and heat transfer

for the following problems

1. Mixed convective stagnation point flow of Cu-Al2O3/water hybrid nanofluid
towards a permeable vertical Riga plate.

2. MHD flow and heat transfer of Cu-Al2O3/water hybrid nanofluid past a per-
meable stretching/shrinking disc with Joule heating.

3. MHD flow and heat transfer of Cu-Al2O3/water hybrid nanofluid past a per-
meable stretching/shrinking cylinder with Joule heating.

4. Three-dimensional flow and heat transfer of Cu-Al2O3/water hybrid nanofluid
past a permeable stretching/shrinking sheet with velocity slip and convective
boundary condition.

5. Three-dimensional flow and heat transfer of Cu-Al2O3/water hybrid nanofluid
past a permeable nonlinear stretching/shrinking sheet with orthogonal surface
shear.

Meanwhile, the scope of the study is only decisive to

1. Fluid : Hybrid Cu-Al2O3/water nanofluid.
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2. Type of Flow : Boundary layer and stagnation point flow with heat transfer;
two-dimensional flow (Chapter 4-6) and three-dimensional flow (Chapter 7
and 8).

3. Surface : Riga plate (Chapter 4), disc (Chapter 5), circular cylinder (Chapter
6) and flat plate (Chapter 7 and 8).

4. Physical parameters : Suction, mixed convection, EMHD (Riga plate), MHD,
Joule heating, velocity slip and convective condition.

5. Model: Single phase nanofluid model by Tiwari and Das (2007) and thermo-
physical properties of hybrid nanofluid by Devi and Devi (2016a,b).

1.10 Thesis Framework

There are nine chapters in this thesis. Chapter 1 is the introduction and basic descrip-
tion of research background which are boundary layer theory, heat transfer, single
and hybrid nanofluids and the dimensionless numbers in fluid mechanics. Besides,
the research objectives, scopes and framework are also comprised in this chapter.

The review of the previous published literatures which are relevant to the research
objectives and scopes are discussed in Chapter 2. The pioneer works on the boundary
layer flow, stagnation point flow, mixed convective flow, nanofluids and stability
analysis are also highlighted in this chapter.

Chapter 3 is the methodology of the research work which are divided into 5 parts; in-
troduction, boundary layer and energy equations, similarity transformation and equa-
tions, numerical method (bvp4c) and stability analysis. In this chapter, the derivation
of the reduced ordinary differential equations with boundary condition using the sim-
ilarity transformation and linearized eigenvalue problem for the stability analysis are
shown for the first problem.

Chapters 4 to 8 present the five research problems as stated in the Section 1.9. Each
chapter is divided into 5 parts; introduction, problem formulation, temporal stability
analysis, results and discussion, and conclusion. In the results and discussion section,
the reduced skin friction coefficient, local Nusselt number, velocity and temperature
profiles are presented in the graphs and tables form. The comparison of numeri-
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cal values between present and previous studies in limiting case is also conducted
to validate the present model and method. The derivation of the reduced ordinary
(similarity) differential equations for each problem is presented in the Appendix A
(Chapter 4), Appendix B (Chapter 5), Appendix C (Chapter 6), Appendix D (Chapter
7) and Appendix E (Chapter 8).

The conclusion for all the problems are summarized in Chapter 9. Besides, the
recommendation for the future studies is also proposed in this chapter.
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Roşca, A. V. and Pop, I. (2013a). Flow and heat transfer over a vertical permeable
stretching/shrinking sheet with a second order slip. International Journal of Heat
and Mass Transfer, 60:355–364.
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