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Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfilment
of the requirement for the degree of Doctor of Philosophy

TOPOLOGY-AWARE HYPERGRAPH BASED APPROACH TO
OPTIMIZE SCHEDULING OF PARALLEL APPLICATIONS ONTO

DISTRIBUTED PARALLEL ARCHITECTURES

By

SINA ZANGBARI KOOHI

July 2020

Chairman : Associate Professor Nor Asilah Wati Abdul Hamid, PhD
Faculty : Computer Science and Information Technology

It has broadly acknowledged that the rapid progression of computer technology has
brought dramatic growth in the complexity and scale of systems. These complex sys-
tems have designed to solve various types of problems from different areas, resulting
in high-demanding Heterogeneous Parallel Applications (HPAs). HPAs use parallel
processors and assist in parallel execution of tasks with complex interdependency
between data and operations. In such architectures, having less waiting time and
less response time are crucial. However, achieving an optimum solution for these
two metrics is a trivial task because their efficiency relies on modelling, optimizing,
partitioning, and job scheduling methods. In this thesis, an approach to optimize
the scheduling of parallel applications over heterogeneous architectures to achieve
optimum waiting and response time has proposed. The proposed technique has pro-
vided through four fundamental steps, including modelling of parallel applications,
meta-heuristic optimization, partitioning, and parallel job scheduling.

The first step lies at the modelling of parallel applications running on heterogeneous
parallel computers. Modelling refers to constructing a model to depict the structure
of the application with its tasks and describing the interactions between them. The
existing modelling approaches capture the processor heterogeneity information in
the model. However, the network heterogeneity has not considered xv before, and
the crucial data to reflect the network heterogeneity are missing. Consequently, the
metrics provided by them does not cover the network heterogeneity. The first con-
tribution of this thesis is to propose a new modelling approach named MEMPHA
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that would consider heterogeneity and capture all vital metrics, resulting in more ac-
curate modelling of HPAs. MEMPHA, a hypergraphs-based model, aims to aspire
to the challenge by providing topology modelling of the target parallel machine and
application modelling of the parallel application, which is hypergraph-based model,
to abstract the details of HPAs. To demonstrate the effectiveness of MEMPHA, ex-
periments have performed on a set of benchmark hypergraphs. As a result, when
compared with previous modelling approaches, MEMPHA shows promising results
in devising a better plan for assignments of tasks to processors, which in turn aims
to achieve better performance.

Since scheduling and mapping fall into NP problems, and there is no efficient exact
solution for solving scheduling and mapping, the second challenge in HPAs is op-
timization. Meta-heuristic algorithms have widely used in HPAs due to their global
optimization ability. However, the current meta-heuristic algorithms do not ensure an
optimum solution within a reasonable time. Hence, there is yet room for improve-
ment. Moreover, evolutionary algorithms are generally limited in their problem-
solving abilities. Any optimization algorithm is suitable for only a specific domain
of optimization problems. For these reasons, to improve the time and accuracy of
the coverage in population-based meta-heuristics and their utilization in HPAs, this
thesis presents a novel optimization algorithm called the Raccoon Optimization Al-
gorithm (ROA). Mimicking a raccoon’s search behaviour, the ROA concentrates its
searches in the solution space of non-linear continuous problems at finding the global
optimum with higher accuracy and lower time coverage. To evaluate the capability
of ROA at addressing complicated problems, it has subjected to experiment several
benchmark functions. The ROA has then compared with nine well-known optimiza-
tion algorithms. Subsequent results show that the ROA performs at a higher accuracy
with lower coverage time.

The core approach in task scheduling is the partitioning of the tasks, which devise
their distribution pattern over processors. Tasks partitioning refers to the effort of
grouping tasks into several sets. Providing a balanced partitioning with equal weights
are widely studied. However, in heterogeneous architecture, process heterogeneity
demands partitions with different weights. Thus, an efficient partitioning to find an
optimum dividing of a hypergraph into K imbalance partitioning is the third chal-
lenge of HPAs. This thesis provides a new topology-aware multi-level hypergraph
partitioning schema to tackle this issue. The proposed partitioning scheme has based
on a multi-level partitioning approach which consists of three main steps. In the first
step, a sequence of coarsening on the hypergraph has applied to achieve a smaller
coarsened hypergraph. Then, in the second phase, the coarsened hypergraph is par-
titioned to obtain the initial partitions. Finally, the initial partitioning is successively
un-coarsened and re-refined back to the original hypergraph. These steps have con-
ducted using the MEMPHA model and ROA algorithm to optimize three metrics:
execution time, total communication volume, and imbalance ratio (load balancing).
To experiment the efficiency of the proposed topology-aware multi-level hypergraph
partitioning schema, a set of benchmark hypergraphs have used. The results have
compared with other multi-level hypergraph partitioning tools and indicates that the
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proposed approach achieve optimum partitioning and significantly increase the speed
of partitioning.

The final step in scheduling and mapping is the distribution of the jobs. Job distri-
bution (Job scheduling) refers to planning the order and layout of execution for all
submitted jobs. An inefficient layout yields to higher waiting and low speed response
time. To achieve an optimum waiting and response time this thesis has proposed a
new approach utilizing the aforementioned modelling, optimizing and partitioning
algorithms. This approach has simulated on Alea v.4, which is a dedicated simulator
for simulating exascale parallel scheduling. The results have compared with multiple
scheduling methods and indicated that the proposed method achieves substantial per-
formance improvements in terms of reducing the average waiting time and response
time of the jobs.
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PENDEKATAN BERASASKAN HIPERGRAF TOPOLOGI-BERSEDIA
UNTUK MENGOPTIMUMKAN PENJADUALAN APLIKASI SELARI

KE ATAS SENIBINA SELARI TERAGIH

Oleh

SINA ZANGBARI KOOHI

Julai 2020

Pengerusi : Profesor Madya Nor Asilah Wati Abdul Hamid, PhD
Fakulti : Fakulti Sains Komputer dan Teknologi Maklumat

Perkembangan dari segi skala dan kerumitan sistem-sistem terkesan dari perkem-
bangan pesat teknologi pengkomputeran. Sistem-sistem kompleks berskala besar
yang direkabentuk sebagai penyelesaian kepada pelbagai masalah telah secara tidak
langsung menjurus ke arah tuntutan tinggi Aplikasi Heterogen Selari (HPA). HPA
mengguna pakai pemproses selari dan membantu dalam pelaksanaan tugas secara
selari dengan kesalinggantungan rumit antara data dan operasi. Namun, pelaksanaan
aplikasi perisian dalam rekabentuk sebegini merupakan suatu tugas yang mencabar,
terutamanya apabila melibatkan pemetaan dan penjadualan tugas secara selari.

Matlamat tesis ini adalah untuk mengatasi secara optimum, cabaran-cabaran utama
penjadualan tugas secara selari dalam domain pengaturcaraan heterogen selari.
Cabaran yang terutama wujud dalam usaha pemodelan aplikasi selari yang berjalan
di dalam komputer heterogen selari. Dalam fasa pemodelan, metrik-metrik utama
seperti saiz komunikasi total, trafik, kesesakkan hubungan dan pengembangan perlu
dititikberatkan. Pendekatan pemodelan semasa kini berkemampuan untuk mengam-
bil kira beberapa metrik tersebut, namun begitu, sebuah pendekatan pemodelan yang
mengambil kira kesemua metrik secara menyeluruh belum pernah dikaji. Sumban-
gan pertama tesis ini adalah untuk mencadangkan sebuah pendekatan pemodelan
baru yang mampu mengambil kira kesemua metrik yang secara tidak langsung men-
jurus kepada pemodelan HPA yang lebih tepat. MEMPHA, sebuah model hiper-
graf, bermatlamat untuk menyahut cabaran tersebut. Beberapa eksperimen telah di-
jalankan keatas beberapa hipergraf terkemuka sebagai perbandingan dengan MEM-
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PHA untuk mendemonstrasikan keberkesanannya. Hasilnya, apabila dibandingkan
dengan pendekatan-pendekatan sebelum ini, MEMPHA menunjukkan hasil yang
memberangsangkan dalam merancang pelan pembahagian tugas kepada pemproses,
dan secara tidak langsung bermatlamat untuk mencapai prestasi yang lebih baik. Al-
goritma meta-heuristik telah banyak dipergunakan dalam HPA atas sebab kebolehan
pengoptimuman globalnya. Namun, algoritma meta-heuristik semasa tidak dapat
memastikan penyelesaian optimum dalam kadar masa yang berpatutan. Bersebabkan
itu, ruang untuk penambahbaikan masih ada. Selain dari itu, algoritma evolusi secara
umumnya terhad dari segi kebolehan untuk menyelesaikan masalah. Sebarang pe-
nambahbaikan hanya sesuai untuk penambahbaikan yang khusus. Bersebabkan itu,
bagi memperbaiki kadar masa dan ketepatan pengliputan meta-heuristik populasi
dan penggunaannya dalam HPA, tesis ini memperkenalkan Pengoptimuman Algo-
ritma Racoon (ROA). Mengikut tingkah laku cari seekor rakun, ROA menumpukan
pencariannya dalam ruang penyelesaian masalah berterusan tidak-linear untuk men-
cari pengoptimuman global yang lebih tepat dan cepat. Untuk menilai kebolehan
ROA dalam menghadapi masalah rumit, ianya telah diuji dengan beberapa fungsi
terkemuka. Ia juga diperbandingkan dengan 9 algoritma terkemuka lain. Hasil kepu-
tusan berterusan menunjukkan ROA melaksanakan tugasnya dengan lebih tepat dan
cepat.

MEMPHA bersama dengan ROA telah digunakan untuk menghasilkan sebuah
skema pembahagian hipergraf pelbagai peringkat yang peka topologi bagi tujuan
menambah baik kecekapan pembahagian tugas HPA. Pembahagian tugas di sini
merujuk kepada usaha mengumpul tugasan ke dalam beberapa set yang menjurus
kepada pengimbangan bebanan. MEMPHA menyediakan pemodelan hipergraf yang
mengasingkan butiran HPA. Ia juga menyediakan sebuah corak topologi mesin se-
lari yang disasarkan. Hasil dari kaedah model pembahagian, impak keatas prestasi
pengimbangan bebanan, penjadualan dan pemetaan adalah besar. Dalam hal ini,
ROA memainkan peranan yang besar dalam pengoptimuman pembahagian tugas.
Pembahagian dalam hipergraf dibahagi kepada 3 peringatkat utama. Di peringkat 1,
beberapa urutan pengkasaran keatas hipergraf dijalankan bagi memperoleh hipergraf
yang lebih halus. Di peringkat 2 pula, pengkasaran diteruskan lagi bagi memperoleh
bahagian-bahagian awal. Akhir sekali, hipergraf diperhalusi berturut-turut bagi men-
dapatkan kembali hipergraf yang asal. Kesemua peringkat dijalankan berdasarkan
model MEMPHA dan algoritma ROA. Bagi mengukur kecekapan skema pemba-
hagian hipergraf pelbagai peringkat yang peka topologi, beberapa aras ukur telah
digunakan. Hasil keputusannya diperbandingkan pula dengan skema pembahagian
hipergraf yang lain.

Langkah terakhir keseluruhan melibatkan pemetaan. Bagi mencapai pemetaan
prestasi tinggi dalam komputer selari, ianya bergantung kepada kecekapan pebaha-
gian tugas pemproses. Algoritma pemetaan memberi tugas kepada pemproses den-
gan cara supaya kadar masa keseluruhan di minimumkan. Perkataan tugas dalam
tesis ini bermaksud unit pengkomputeran aplikasi yang telah dimodelkan dan diba-
hagikan melalui peringkat yang disebut di atas. Tesis ini menggunakan ALEA
v.4 bagi mensimulasikan penjadualan dan pemetaaan persekitaran pengkomputeran
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selari exaskala. Keputusan kajian telah diperbandingkan dengan berbagai kaedan
pemetaan dan menunjukkan kaedah cadangan ini boleh mencapai penambahbaikan
prestasi yang lebih besar dalam mengurangkan masa pelaksanaan dan pengunaan
tenaga.
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CHAPTER 1

INTRODUCTION

This chapter describes an overview of this thesis. This covers motivation behind this
research, problem statements that have been dealt with, research questions that were
the guidance of the steps, research scope, objectives, and a summary of contributions
of this thesis.

1.1 Motivation

It is broadly acknowledged that the rapid progress of computer technology imposes
significant growth in the complexity and scale of systems. These modern complex
systems could be exascale supercomputers with hundreds of millions of proces-
sors, which are designed to solve numerous types of problems from different fields.
Technically, modern systems should execute complex applications arisen in different
fields, such as monitoring and controlling critical systems, military, communication,
and multimedia. One of the successful paradigms to handle such complexity in the
systems is Heterogeneous Parallel Architectures (HPAs). HPAs take advantage of
having multiple kinds of processing units with different speeds and capabilities. In
contrast to homogeneous architecture, HPAs are more cost-effective. This is because
when all processors are identical, the sequential part of the applications occupies
one of the processors and results in wasting the real power of the processor and
considerably increases the execution time (Amdahl, 2007). Amdahl’s Law simply
demonstrates this issue (Amdahl, 2007):

“The serial fraction of processing dominates the execution time for any
large parallel ensemble of processors, limiting the advantages of parallel
supercomputers.”

Menasce and Almedah in (Menascé and Almeida, 1990; Menasce and Almeida,
1991; Menascé and Almeida, 1991) demonstrate the performance-effectiveness of a
set of small processes that tightly coupled to a larger processor. Similar methods and
their improved versions are presented in the literature (Andrews and Polychronopou-
los, 1991; Schneider, 1991).

These works indicate the importance of HPAs for high-demand modern applications.
However, running software applications in such architectures is a challenging task,
especially in the field of parallel mapping and scheduling. Parallel job scheduling
makes decisions on when and where different tasks are going to be executed. Based
on this fact, parallel job scheduling divide into dynamic (run time) and static (com-
pile) scheduling. The static task scheduling algorithms are the most important topic
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to deal with the problem of task allocation at compile time in HPAs. To achieve a
high-performance static task scheduling algorithms in HPAs in the sense of lower
waiting and response time, taking a few steps are necessary.

The first step to achieve a successful scheduling is modelling. Modelling refers to
constructing a model to depict the structure of the application with its tasks and de-
scribing the interactions between them. The model utilises various mathematical
structures, such as graphs and hyper-graphs to encapsulate this information. The
employment of modelling turns to be more complicated when it comes to heteroge-
neous architectures. These architectures manipulate several types of processing units
along with varieties of network connections. To achieve better performance on these
structures, in addition to previous factors being used for homogeneous architectures,
tasks should be distributed according to the power of processing units and connect-
ing media. The modelling approach should present adequate information to help the
scheduler and mapper in devising better execution plans.

Any modelling approach specifies a set of metrics for the mapping function. The
metrics are the fundamental characteristics of any modelling approach. They raise
the significant differences between modelling methods and assist in optimizing the
scheduling patterns. Minimizing or maximizing these metrics helps to achieve opti-
mized scheduling results, and consequently aids to reduce the overall execution time.
The metrics are different for each model, depending on the structures it uses.

In the scope of mapping and scheduling in parallel and distributed machines, six
different modelling approaches are currently in use: Task Interaction Graph (TIG)
(Long and Clarke, 1989a), Task Precedence Graph (TPG) (Hironori and Seinosuke,
1985), Task Temporal Interaction Graph (TTIG) (Roig et al., 2007a), Temporal Task
Interaction Graph in Heterogeneous Architectures (TTIGHa) (De Giusti et al., 2007),
Model on Parallel Algorithms on Heterogeneous Architectures (MPAHA) (Giusti
et al., 2009), and UMPa (Catalyiirek, 2013). The next Chapter will discuss these
approaches in detail. However, each of these modelling approaches captures only
a few different metrics of the applications. Since optimizing these metrics have a
direct impact on the performance of scheduler, this thesis is motivated to propose a
new modelling approach and maximize the aforementioned metrics.

Modelling the application and obtaining the tasks and their information holds all the
essential information about the application. A partitioning method has to be applied
to this hyper-graph to partition the tasks. Apparently, the partitioning method has a
significant impact on the performance of scheduling. Due to this, in the next step of
achieving a successful HPAs, the modelled hyper-graph partitions to split the jobs
to smaller sets of tasks. Both steps of modelling and partitioning should take the
data interdependency between the tasks and load balancing (imbalance ration) into
account. In the literature, there are plenty of methods proposed, such as Spectral
Bipartitioning (Karypis and Kumar, 1998a), Geometric Partitioning (Miller et al.,

2
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1991, 1993), and multilevel partitioning. All these approaches have their advan-
tages and disadvantages. Next chapter addresses the partitioning methods in details.
However, the multilevel partitioning approach is known as a fast partitioning method
compared to the other state-of-the-art partitioning methods (Chen, 1990; Bui and
Jones, 1993; Hendrickson and Leland, 1995b). Due to this, the thesis proposes a
modified multilevel partitioning method to improve the performance of scheduling.

Previous studies proved the NP-Completeness of graph and hypergraph partitioning
(Koivisto et al., 2018; Bui and Jones, 1992). NP refers to Non-deterministic Poly-
nomial problems, which are a set of problems that have no solution in the feasible
time. Thus, the output of multilevel partitioning or any other partitioning method
is not the exact solution but a good approximation (Williamson and Shmoys, 2011).
Multilevel partitioning methods use meta-heuristics (in the initial partitioning and
un-coarsening steps) to enhance the result and achieve a more optimized solution
(Buluç et al., 2016; Benlic and Hao, 2011). The current meta-heuristic algorithms do
not guarantee the most optimum solution within a reasonable time. Hence, this moti-
vate the researchers to to have novel algorithms in this field (Sörensen, 2015). More-
over, this type of algorithms cannot generally solve all sorts of problems, and each
algorithm is suitable in particular domains of optimization problems (Dixit et al.,
2015). Therefore, this field still needs to have novel algorithms. This thesis presents
a new meta-heuristic algorithm named Raccoon Optimization Algorithm (ROA) to
have more optimum solutions. Later, this algorithm is used to enhance the results of
multilevel hyper-graph partitioning.

The success of static scheduling and mapping in HPAs tightly depends on the per-
formance of each aforementioned steps: modelling, heuristics algorithms and par-
titioning. If these steps do not perform efficiently, the mapping of the processes
quickly become intractable. This raises the need for more reliable approaches and
algorithms to achieve a better performance in the static scheduling and mapping in
HPAs. Dealing with this need is the major motivation behind this thesis.

1.2 Problem Statement

Static scheduling in HPAs involves matching of tasks with available processing re-
sources. There are various types of processors with different processing power (Pro-
cessor Heterogeneity). Moreover, there are different types of communication media
between processors (Network Heterogeneity). The execution time of processes on
different processors and the communication time between them are different. As
a consequence of this variety in processors and communication media, managing
the heterogeneity of the processors and the network media are the main challenges
of the static task scheduling on HPAs. Inability in managing these factors causes
longer waiting times to run and longer execution time of the applications (Dongarra
and Lastovetsky, 2009). The main issues in static task scheduling are optimizing the
waiting time and execution time of the parallel applications on heterogeneous archi-

3
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tectures (Dongarra and Lastovetsky, 2009; Catalyiirek, 2013; Deveci, 2015; Deveci
et al., 2015b). Hence, this thesis focuses on solving these issues to optimize the static
scheduling and mapping methods in HPAs. However, four main problems have to
tackled to improve static scheduling in HPAs.

Modelling of the HPAs and parallel applications is the first step of the scheduling.
Heterogeneity is one of the main characteristics of HPAs, and the modelling ap-
proach should record its relevant information. The existing modelling approaches
capture the processor heterogeneity information in the model (Catalyiirek, 2013;
Giusti et al., 2009; De Giusti et al., 2007). However, the network heterogeneity,
despite its recent demand, is not studied well, and the crucial data to reflect the net-
work heterogeneity are missing. Consequently, the metrics provided by them does
not cover the network heterogeneity. Lack of recording network heterogeneity and
providing its relevant metrics are the main issues in modelling parallel applications.

Meta-heuristic algorithms have widely used in different steps of scheduling and map-
ping. Scheduling and mapping fall into NP category of problems, and there is no effi-
cient exact solution to solve them (Du and Leung, 1989). Therefore, meta-heuristics
algorithms provide a sufficient approximation of these problems. Current meta-
heuristics algorithms need a high number of iterations to provide an accurate so-
lution (Akbaripour and Masehian, 2013; Catalyiirek, 2013), and consequently, they
will need a longer execution time. Additionally, these approaches are going to run
on the HPAs and shorter execution time (lesser use of the resources) is demanding
(Soleymani and Nematzadeh, 2017). In a nutshell, the high number of the itera-
tions to provide accurate solutions, and long execution time is the main issues in this
category of the problems.

In task scheduling, the partitioning is the core approach to devise a distribution pat-
tern for tasks over the processors. K-balanced partitioning (providing k partitions
with equal weights) is a well-studied topic in the literature. However, in heteroge-
neous architectures, process heterogeneity demands partitions with different weights.
Additionally, the network heterogeneity in HPAs causes a difference in communica-
tion times on different mediums (Panda et al., 2018; Catalyiirek, 2013). Using a
typical balanced partitioning method will decrease the load balance and increase
communication costs (Baruah, 2004; Panda et al., 2018). High imbalance ratio and
communication costs are the main concerns in the partitioning of parallel applica-
tions for HPAs.

The final step in scheduling and mapping is the distribution of the jobs1 (job schedul-
ing). Job distribution (Job scheduling) refers to planning the order and layout of ex-
ecution for all submitted jobs. An inefficient layout yields to higher waiting times
(The time each job should wait to access the resources and get executed). Addi-

1. Every job is a parallel application with numerous tasks. The tasks inside a job are communicating
and are dependant. However, jobs are independent units and do not communicate with each other.

4
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tionally, inefficient task scheduling causes longer job execution times and higher
response time2 (Hung et al., 2015; Dakkak et al., 2016). Therefore, high waiting
time and response time are the main issues on job scheduling in HPAs. Optimizing
these factors ends in better resource utilization and lower power consumption.

This research presents a methodology for static scheduling and mapping in heteroge-
neous parallel architectures to overcome these issues. It helps parallel development
in these architectures to run faster and utilize fewer resources. Overcoming these
issues contributes to an optimized execution of the parallel application on heteroge-
neous parallel architectures.

1.3 Research Questions

The following list summarizes the main challenges of the presented research, in the
form of several research questions. The research questions are used as a guideline to
achieve optimum job scheduling and mapping.

• What are the necessary rules to model a parallel application that accommo-
dates its network heterogeneity and cover fundamental metrics of network
heterogeneity?

• What the extensions needed in meta-heuristics algorithms to improve its accu-
racy and execution time and reduce the required number of iterations?

• How to partition a parallel application model to decrease its imbalance ratio
(increase its load balance) and reduce communication costs?

• How to minimize the waiting time and response time of the jobs submitted to
the distributed parallel machine, and manage the resources efficiently?

1.4 Research Objectives

The main research objective of this thesis is to focus on providing a technique to
support parallel computing in the heterogeneous parallel architectures. The list of
sub-objectives of this research is as below.

• To propose a modelling approach to model tasks in parallel applications with
their network heterogeneity characteristics.

2. The response time for any job is the sum of its waiting time and execution time.

5
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• To propose a new meta-heuristic algorithm to enhance the accuracy, the num-
ber of required iterations, and execution time of the optimization process.

• To propose a task partitioning method to decrease imbalance ratio3 and de-
crease communication costs between processors.

• To propose a job scheduling method to minimize the waiting time and response
time of the jobs.

1.5 List of Contributions

This thesis provides a set of methods to support and improve the statistic scheduling,
and mapping of the parallel applications to run on heterogeneous parallel architec-
tures.

Chapter 4 presents the first contribution of this thesis, which is a new modelling
technique to model parallel applications in HPAs. This chapter involves following
sub-contributions:

• Modelling parallel applications using hypergraphs

• Abstracting network heterogeneity in model

• Recognizing all the essential metrics during modelling

• Recording the most useful details of the tasks and their communications

Chapter 5 offers a novel meta-heuristic algorithm called Raccoon Optimization Al-
gorithm (ROA). The ROA inspires from the rummaging behaviours of real raccoons
for food. Later, in the next chapter, it will be used to enhance the multi-level parti-
tioning method. The sub-contributions of this algorithm are:

• Reducing the risk of getting stuck in local optima

• Saving time through exploration

• Reducing the complexity of heuristic algorithms

Chapter 6 provides a topology-aware multi-level hypergraph partitioning schema for
task partitioning. Then, the model hypergraph, obtained from Chapter 4, split up

3. increase load balancing

6
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using this schema along with taking advantages of ROA. The method is elaborated,
formalized, and evaluated using real-world examples.

• Partitioning task hypergraph based on the target machine topology

• Reducing the imbalance ratio (Increasing load balancing)

• Reducing the execution time

• Reducing the total communication cost

Chapter 7 introduces a method based on previous modelling, metaheuristics algo-
rithm and partitioning schema to enhance parallel computing in HPAs in terms of
resource allocation, waiting time and response time. This chapter covers the fourth
and last contribution of this thesis. The sub-contributions of this chapter are:

• Reducing the waiting time of the jobs in the schedule

• Reducing the response time of the jobs in the schedule

• Optimizing the resource management of the parallel systems

1.6 Research Scope

The presented thesis focuses on providing a technique to improve the scheduling and
mapping of jobs in high-performance heterogeneous parallel and distributed comput-
ers. This improvement has done through the proposition of a modelling approach,
a meta-heuristic algorithm, a multilevel partitioning schema, and a scheduling and
mapping algorithm. The proposed modelling approach, named MEMPHA, has based
on hypergraphs, to consider all fundamental metrics of the parallel application and
distributed machine. The meta-heuristic algorithm, called ROA, is an optimization
method which improves the convergence and accuracy of the optimization. The par-
titioning schema named TAMLHP is a topology-aware multilevel method, which
employs the benefits of the modelling and ROA. It reduces the imbalance ratio and
total communication costs of partitioning the parallel application’s model. Based on
the proposed modelling approach, ROA meta-heuristic, and partitioning schema, a
job scheduling and mapping approach, named ROA-CONS, has presented. ROA-
CONS has used to optimize the waiting and response time of the jobs.

7
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1.7 Thesis Structure

This thesis is prepared according to the thesis preparation guidelines of “University
Putra Malaysia”. The author has tried to present the contents and information of this
research in precise details. The final version of this thesis contains eight chapters.
These chapters are organized as below.

Chapter 1 is the introduction that introduces the motivation behind this research.
Moreover, it elaborates the problem statement and research objectives. The research
questions, scope and contributions are also summarised in this chapter.

Chapter 2 is related to the background and literature on multiple aspects of mod-
elling heterogeneous parallel architecture, hyper-graph partitioning, meta-heuristic
algorithms, and job scheduling and mapping. The primary references for this chap-
ter are resource materials such as journals, conference proceedings, seminars, thesis,
books, and online resources.

Chapter 3 presents the designed research methodology which has been utilized in
conducting this thesis.

Chapter 4 formally defines hyper-graphs and modelling methods. Later, it exhibits
the proposed modelling schema. The applicability of the presented model is evalu-
ated, and results are compared to current modelling approaches.

Chapter 5 proposes a new optimization algorithm named ROA (Raccoon Optimiza-
tion Algorithm). The efficiency and quality of the proposed ROA are tested using
different benchmark functions with different properties. The results obtained from
the ROA have compared with those of well-known meta-heuristic algorithms.

Chapter 6 presents the successful partitioning schema of model hyper-graph. This
hyper-graph has obtained as the result of the previous chapter. This chapter also
shows the applicability of the proposed partitioning schema in a real world data sets.

Chapter 7, based on all the steps of modelling, partitioning and mapping, presents
an optimized job scheduling method. Then, Alea 4 job scheduling simulator has
been utilized to measure the performance of the proposed framework compared to
the current schedulers.

Chapter 8 presents the conclusion, contributions and limitations of the research and
indicates potential areas for future studies.

8
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