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Abstract of thesis presented to the Senate of Universiti Putra Malaysia in 
fulfilment of the requirement of the degree of Master of Science 

FUNCTIONAL ANALYSIS OF BARLEY (Hordeum vulgare L.) CELLULOSE 
SYNTHASE-LIKE F6 PROMOTER THROUGH TRANSGENE EXPRESSION 

IN RICE (Oryza sativa L.) 

By 

AZREENA BINTI JAMAHARI 

November 2020 

Chairman : Wong Sie Chuong, PhD
Faculty  : Agricultural and Food Sciences, UPM Bintulu Campus

The knowledge of the functional aspects of the promoters are necessary prior 
to the application of the interested promoters to overexpress transgene in
transgenic plants for gene study, improvement of quality traits and 
biofortification. Currently, there are lacking of characterised endosperm-specific
promoters to produce strong transgene expression in the endosperm tissue of
cereal plants at a specific grain development or maturation period.
The Cellulose synthase-like F6 (CslF6) gene is majorly responsible for the
production of beta-glucan in the cereal plants, including barley, oat, wheat and
rice. Beta-glucan can be found ubiquitously in the endosperm tissues of barley
grains. The HvCslF6 promoter is predicted to drive strong endosperm-specific
expression at mid to late grain development stage in transgenic rice, based on
previous HvCslF6 gene expression studies. The present study characterised 
the functional length of HvCslF6 promoter and its tissue-specificity expression
pattern through transgene expression in rice. The 2771 bp putative promoter of 
HvCslF6 gene from Sloop barley was isolated and analysed in-silico. Multiple
endosperm-specific elements were identified along the promoter region,
suggesting that the promoter may drive endosperm-specific expression pattern.
Two transformation vectors, F6Prom1 (2771 bp HvCslF6prom::GUS gene) and
F6Prom3 (1257 bp HvCslF6prom::GUS gene) were successfully constructed
and permanently transformed into the Nipponbare rice. The HvCslF6 promoter
was functional in transgenic rice as the GUS blue staining was observed in all
tested body part of mature T0 plants and remained in the T1 seedlings. The
promoter also drove selectively strong expression activity in the endosperm
tissue and embryo of the rice grain in comparison to other plant body parts
regardless of the promoter lengths. Both GUS histochemical staining and
quantitative GUS activity analysis revealed that the expression of the
GUS gene driven by 1257 bp HvCslF6 promoter was more potent than that of
2771 bp. The data suggested that the 1257 bp HvCslF6 promoter was
sufficient to direct strong transgene expression specifically in the endosperm
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tissue of the transgenic rice. This verified endosperm-specific promoter will be 
useful to drive the expression of transgene in rice grain, including beta-glucan 
synthase, for generating high beta-glucan content rice in the future. 
 

Keywords: Endosperm-specific promoter, CslF6 gene, barley, transgenic rice, 
permanent plant transformation, GUS reporter gene  
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CELLULOSE SYNTHASE-LIKE F6” MELALUI EKSPRESI TRANSGEN 

DALAM PADI (Oryza sativa L.)  
 
 

Oleh 
 
 

AZREENA BINTI JAMAHARI 
 
 

November 2020 
 
 

Pengerusi : Wong Sie Chuong, PhD 
Fakulti  : Sains Pertanian dan Makanan, UPM Kampus Bintulu  
 
 
Maklumat tentang fungsi sesebuah promoter adalah sangat penting sebelum 
promoter tersebut boleh digunakan untuk mengkaji fungsi gen, 
penambahbaikan kualiti ciri tumbuhan dan biofortifikasi. Kini, promoter khusus 
endosperma untuk mengarahkan ekspresi transgen yang tinggi dalam tisu 
endosperma tanaman bijirin pada waktu tertentu masih diperlukan. Gen 
Sintase selulosa-seperti F6 (CslF6) bertanggungjawab untuk  menghasilkan 
sejumlah besar beta-glukan dalam tanaman bijirin termasuk barli, oat, gandum 
dan padi. Beta-glukan boleh didapati dalam kuantiti yang besar dalam tisu 
endosperma biji barli. Berdasarkan hasil penyelidikan sebelumnya, promoter 
HvCslF6 dijangka dapat mendorong ekspresi yang kuat pada tisu endosperma 
padi transgenik pada pertengahan sehingga hujung fasa permatangan biji 
benih. Tujuan kajian ini adalah untuk mengenalpasti saiz HvCslF6 promoter 
yang berfungsi  dan corak ekspresinya melalu ekspresi transgen di dalam padi. 
Promoter HvCslF6 bersaiz 2771 bp dari barli jenis Sloop telah diasingkan dan 
elemen pengatur-cis juga telah dikenal pasti. Terdapat beberapa elemen yang 
berkaitan dengan tisu endosperma telah ditemui dalam promoter tersebut yang 
mencadangkan bahawa promoter ini boleh mendorong corak ekspresi yang 
khusus di dalam tisu endosperma sahaja. Dua vektor transformasi, F6Prom1 
(2771 bp PromHvCslF6::gen GUS) dan F6Prom3 (1257 bp PromHvCslF6::gen 
GUS) telah dibina dan dimasukkan secara kekal ke dalam padi jenis 
Nipponbare. Promoter HvCslF6 berfungsi di dalam pada transgenik apabila 
perwarnaan biru GUS kelihatan di semua bahagian tumbuhan yang diuji pada 
matang pokok generasi T0  dan aktivitinya masih kekal pada anak pokok 
generasi T1. Promoter HvCslF6 juga dapat mendorong ekpresi yang kuat pada 
tisu endosperma dan embrio biji padi tanpa menghiraukan saiz promoter yang 
digunakan. Analisis perwarnaan GUS dan kuantitatif aktiviti GUS protein 
menunjukkan bahawa ekspresi gen GUS yang didorong oleh 1257 bp promoter 
HvCslF6 lebih kuat berbanding dengan 2771 bp. Oleh itu, 1257 bp promoter 
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HvCslF6 berpotensi untuk dipilih sebagai promoter  khusus  endosperma  
untuk menyatakan ekspresi transgen dalam bijipadi. Promoter khusus 
endosperma yang telah dikenalpasti ini sangat berguna untuk mendorong 
ekspresi transgen termasuk gen yang bertanggungjawab untuk membuat beta-
glukan di dalam beras untuk mencipta beras yang mengandungi kandungan 
beta-glukan yang tinggi di masa yang akan datang.    
 
 
Kata kunci: Promoter pengkhususan endosperm, gen CslF6, barli, beras 
transgenik, transformasi tumbuhan kekal, GUS gen lapor  
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CHAPTER 1 
 
 

INTRODUCTION 
 
 

Mixed-linkage 1,3;1,4-β-D-glucan or also known as beta-glucan is a functional 
food component in barley that able to reduce the blood cholesterol level upon 
direct consumption. It is a randomly arranged linear polymer of glucose linked 
by 1,3- or 1,4- glycosidic bonds. The irregular insertion of 1,3-linkage in between 
1,4-linkaged beta-glucan chain forming non-rigid conformation of beta-glucan, 
making it soluble in water. The beta-glucan is not digested by enzymes in human 
gastrointestinal tract. Thus, it acts as a source of dietary fibre, increases digesta 
viscosity as well as act as a food source for gut microbes to improve good gut 
microbes which help to improve human health. 
 
 
Beta-glucan is mainly found in the Poaceae family, including barley, oat, wheat, 
rye and others. In cereal plants, beta-glucan presents mostly in the endosperm 
tissues of the grains with some also being detected transiently in the vegetative 
tissue with limited quantity (Burton et al., 2008; Coon, 2012; Wong et al., 2015). 
Beta-glucan is thought to act as energy storage in the grains where it will be 
consumed for germination. It is a simpler energy source in comparison to starch 
as the beta-glucan can be broken down by 1,3;1,4-beta-glucan endohydrolase 
and beta-glucan glucohydrolase enzymes to release the glucose monomers 
(Bulone et al., 2019).  
 
 
The Cellulose synthase-like sub-family genes (CslF, CslH and CslJ) were found 
to produce beta-glucan through transgene expression in the monocotyledonous 
and dicotyledonous plants (Burton et al., 2011; Doblin et al., 2009; Little et al., 
2018; Vega‐Sánchez et al., 2015). Among them, barley CslF6 (HvCslF6) was 
the most potent beta-glucan synthesis gene and highly expressed in the barley 
endosperm tissues (Burton et al., 2011). Other CslF and CslH genes, despite 
expressed relatively low level in other body tissues, were shown to synthesise 
beta-glucan with distinctive ratio of cellotriose:cellotetraose residues (DP3:DP4) 
(Little et al., 2018). The DP3:DP4 ratio is assumed to affect the water solubility 
of the beta-glucan. High water solubility beta-glucan is preferred as an energy 
source in plants as it improves the surface area for enzyme digestion in aqueous 
solution (Burton et al., 2010). Meanwhile, beta-glucan in less soluble form is 
preferable when it is in a plant structural support role (Burton et al., 2010). Based 
on the previous result, it is concluded that each beta-glucan synthase genes 
produce beta-glucan with different DP3:DP4 ratio.  
 
 
However, it is currently not possible to further confirm the assumption without 
proper transgene expression study in a clean background. Previously, 
researches were conducted to induce transgene expression in barley grain using 
constitutive promoters. The resulting grains were malformed, and the plant 
growth was not normal since the high amount of beta-glucan in all plant tissues 
negatively    affected    the    plant    growth    (Burton    et   al.,   2011).   Meanwhile, 
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expression of the HvCslF6 gene in Nicotiana benthamiana leaves produced 
minute amount of beta-glucan, which was insufficient for further analysis (Wong 
et al., 2015).  
 
 
It is essential to produce transgene expressions in large quantities, and in 
spatiotemporal-specific manner before we can identify the role of 
each CslF and CslH genes in beta-glucan synthesis and fine structure 
determination. Given this, the best option is by using the HvCslF6 promoter to 
drive transgene expression in cereal grain with almost non-existence beta-
glucan content. The attempt to overexpress Luciferase gene driven by the 3 kb 
HvCslF6 promoter was shown to be not reactive in Nicotiana 
benthamiana leaves (Dimitroff, 2016). In contrast, relatively strong expression of 
the reporter gene was observed when driven by 1.75 kb HvCslF6 promoter in 
the transiently expressed barley coleoptile, root and first base leaf (Dimitroff, 
2016). An alternative for studying the role and expression pattern of the HvCslF6 
promoter is by using rice as the host candidate since it is lacking beta-glucan in 
their grain and belongs to the cereal plant group. Hence, current project is 
designed to identify the functional HvCslF6 promoter region that drives the 
expression of reporter gene when integrated into rice host plants. The objectives 
of this project are: 
 

1. To identify the cis-regulatory elements within the putative promoter of 
HvCslF6 gene that drive the endosperm-specific expression of the 
transgene 

2. To characterise the tissue-specific expression of HvCslF6 promoter 
through transgene expression in rice 

 
 
Scope and Limitation  
 
The study covers the fundamental information on the HvCslF6 promoter activity 
and expression pattern in the transgenic rice. The isolation of HvCslF6 promoter 
from Sloop barley cultivar and identification of the endosperm-specific cis-
regulatory elements within the promoter region were performed following the 
protocol by Dimitroff (2016). The promoter was fused with β-Glucuronidase 
(GUS) reporter gene using Hot Fusion cloning to develop the interested plant 
expression construct (Fu et al., 2014). The permanent rice transformation 
procedure was performed using Nipponbare rice cultivar according to the 
protocol established by Liu et al. (1998). The quantitative and qualitative analysis 
of GUS expression pattern was conducted in accordance to the GUS fluorometry 
and histochemical staining analyses directed by Jefferson (1990) and Alotaibi et 
al. (2018). The HvCslF6 promoter activity was analysed from 35 day after 
pollination (DAP) of the mature transgenic rice plant as well as 3 weeks old T1 
generation rice seedlings, based on the HvCslF6 gene expression profile in 
barley (Burton et al. 2008). All the chemicals used were purchased from Merck 
(Germany) otherwise stated.  
 
 
Research works related to the generation of transgenic rice as well as the 
analysis  of  GUS  expression  pattern  and  activity  was  completed  during eight 
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months research attachment at Yangzhou University, China. This includes 
permanent rice transformation using Agrobacterium infection on rice callus, 
cultivation of transgenic rice until they mature, selection of positive transgenic 
rice, GUS histochemical staining and GUS fluorometry procedures. 
 
 
Thesis layout 
 
There are six main chapters outlined in this thesis. The fundamental information 
of this study was mentioned in Chapter 1. The subsequent chapter shed lights 
on the detailed knowledge gained about the plant promoter, the importance of 
studying endosperm-specific promoter to overexpress transgene in plants that 
lack beta-glucan content and the potential of endogenous promoter of HvCslF6 
gene as an endosperm-specific promoter. In the next section, the methods used 
to construct the plant expression vector, develop transgenic rice and analysis of 
the reporter gene activity were outlined. Thereafter, the findings on the cis-
regulatory elements that may affect the functionality of the HvCslF6 promoter 
and its tissue-specificity expression pattern in transgenic rice were evaluated 
experimentally. The findings were further discussed while limitations of this study 
were highlighted in Chapter 5. Finally, the conclusion and future research 
recommendations were also outlined to further improve the knowledge of the 
HvCslF6 promoter activity and its applications to express strong transgene 
expression in rice grain. 
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