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This research is aimed at developing optimized process parameters to fabricate 

pineapple leaf fibre (PALF)-vinyl-ester-based hybrid biocomposites utilising the 

industrial robotic arm integrated with fibre spray up mechanism. The optimized 

process parameters are developed through a series of testing using different variable 

process parameters controlled by the integrated spray gun-robotic arm system.  

In the preliminary study, material characterization of pineapple leaf fibre (PALF) of 

273 tex, was conducted, which include physical, morphological, mechanical, and 

thermal testing and analysis.  

PALF yarn fibre with different robot linear travel speed (0.15, 0.23, 0.30, 0.38, and 

0.45) m/s reinforced vinyl ester composites are fabricated and characterized based on 

mechanical (tensile and flexural), thermal (TGA and DMA) and surface morphology. 

For each mechanical result, coefficient of variance (COV) is calculated to measure the 

variability of the mean distribution. The optimum robot linear travel speed obtained is 

0.23 m/s, which produced composite with density of 1.12 g/cm3 and fibre volume 

fraction of 27.4%. The COV for 0.23 m/s robot speed sample is 9.51%, with the 

highest tensile strength of 28.70 MPa. 

The analysis of spray angle showed optimum spray angle of 70°, whereby spray 

distribution of the chopped fibre showed highest degree of uniformity (COV 5.84%), 

as well as high mechanical strength.  
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Linear spray pattern produced more uniform fibre and resin distribution as compared 

to circular and cross, whereby a lot of overlap fibre distribution occurred, which affect 

thickness consistency throughout the sample. Thermal analysis showed that linear 

pattern resulted in the highest Onset Oxidation Temperature (OOT) at 397.56°C, while 

circular pattern recorded the maximum char residue at 5.78%. 

The length of pineapple yarn consists of 3 different combination, namely as L1 (130 -

150) mm, L2 (530 - 550) mm and L3 (130 – 550) mm. The mechanical analysis 

depicted that L1 resulted in the highest tensile strength (29.20 MPa), while L3 resulted 

in better mechanical properties consistency. 

All optimized parameters are later used to fabricate the glass-PALF-VE hybrid 

biocomposites. The mechanical analysis showed that the hybrid biocomposites 

recorded 171.61% higher in tensile strength as compared to PALF-VE composite 

alone. The investigation of optimized process parameters will pave the way towards 

greater usage of PALF as input for robotic spray up process and potentially to be 

scaled up in industrial mass production. 
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April 2019 
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Kajian ini bertujuan untuk membangunkan parameter-parameter proses teroptimum 

untuk menghasilkan biokomposit hibrid berasaskan gentian daun nanas (PALF)-vinil 

ester yang menggunakan lengan robotik industri yang diintegrasikan dengan 

mekanisme semburan gentian. Parameter-parameter proses teroptimum dibangunkan 

menerusi ujian bersiri yang menggunakan parameter proses boleh ubah yang berbeza 

yang dikawal oleh sistem pistol semburan-lengan robotik berintegrasi. Dalam kajian 

awal, pencirian bahan gentian daun nanas (PALF) dengan 273 tex telah dijalankan, 

termasuklah ujian dan analisis fizikal, morfologi, mekanikal, dan terma.  

Gentian bebenang PALF bertetulang komposit vinil ester dengan kelajuan perjalanan 

linear robot yang berbeza (0.15, 0.23, 0.30, 0.38 dan 0.45 m/s) telah difabrikasi dan 

dicirikan berdasarkan morfologi mekanikal (tegangan dan lenturan), terma (TGA dan 

DMA) dan permukaan. Untuk setiap keputusan mekanikal, pekali varians (COV) 

dihitung untuk menilai kebolehubahan taburan min. Kelajuan perjalanan linear robot 

yang diperoleh ialah 0.23 m/s, yang menghasilkan komposit yang mempunyai 

ketumpatan 1.12 g/cm3 dan pecahan isi padu gentian sebanyak 27.4%. COV untuk 

sampel kelajuan robot 0.23 m/s ialah 9.51% yang mempunyai kekuatan tegangan 

tertinggi sebanyak 28.70 Mpa. Analisis sud ut semburan menunjukkan sudut 

semburan yang optimum ialah 70° dan taburan semburan potongan gentian 

menunjukkan darjah keseragaman yang tertinggi (COV 5.84%) dan juga kekuatan 

mekanikal yang tinggi.  

Corak semburan linear menghasilkan gentian dan taburan resin yang lebih seragam 

berbanding corak bulat dan silang, iaitu terdapat banyak pertindihan dalam taburan 

gentian yang berlaku, dan memberi kesan kepada konsistensi ketebalan sepanjang 
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sampel. Analisis terma menunjukkan corak linear menghasilkan suhu pengoksidaan 

permulaan yang tertinggi (OOT) iaitu 397.56°C, manakala corak bulat mencatatkan 

baki arang yang maksimum iaitu 5.78%. Panjang bebenang nanas terdiri daripada 3 

jenis kombinasi, iaitu L1 (130 -150) mm, L2 (530 - 550) mm dan L3 (130 – 550) mm. 

Analisis mekanikal menunjukkan bahawa L1 mempunyai kekuatan tegangan yang 

tertinggi (29.2 MPa) manakala L3 mempunyai sifat-sifat mekanikal yang lebih 

konsisten. 

Kesemua parameter teroptimum telah kemudiannya digunakan untuk memasang siap 

biokomposit hibrid gelas-PALF-VE. Analisis mekanikal menunjukkan bahawa 

biokomposit hibrid mencatatkan kekuatan tegangan yang lebih tinggi sebanyak 

171.61% berbanding komposit PALF-VE. Penyelidikan tentang parameter-parameter 

proses teroptimum akan membuka jalan ke arah peningkatan dalam penggunaan 

PALF sebagai input untuk proses semburan robotik dan berpotensi untuk 

dikembangkan dalam pengeluaran besar-besaran secara industri. 
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CHAPTER 1 

1 INTRODUCTION 

1.1 Background 

The rising on environmental awareness has led to fabrication of aircraft parts from 
sustainable renewable resources. Natural fibre reinforced composites (NFRC) have 
been used in construction and automotive application for quite some time, and now 
becoming more substantial for secondary structures in the next generation of aircrafts 
(Mohd Nurazzi et al., 2017).  

In the recent years, NFRC have been in the limelight of research to be applied in 
industry such as automation and aerospace. The first application of natural composite 
in aircraft manufacturing was from the first flight of Wright Brothers’ Flyer 1, in North 
Carolina on December 17, 1903 (Soutis, 2005). In the aerospace engineering industry, 
one of the main concerns is regarding reliability of using new materials for structural 
components. Challenging environment such as low temperature, low pressure, high 
UV exposure intensity and high stress, contribute to faster degradation of NFRP 
composites. Since ‘defect-free’ is the aim of aerospace structural parts design, 
substitution of synthetic fibre by natural fibre seems to be difficult process. The 
presence of moisture in laminar level and interfacial bonding of NFRP, would greatly 
vary the fibre-matrix adhesion, hence affecting the mechanical properties (Susheel et 
al., 2009). However, there is still opportunity for NFRP to enter aerospace application 
that is on the internal cabin part, which requires lower threshold for mechanical 
strength as compared to structural components. Of the potential substitution seen for 
interior cabin part include food tray, seat frame parts, window frame, galley and 
lavatories. This initiative has been put in place by Boeing through the application of 
flax non-woven mat in the window frame component since 2014 (Boeing, 2014) 

There are various types of NFRP fabrication methods available, which can be divided 
into two main categories, namely as closed and open mould method. For closed mould, 
both top and bottom surfaces of composite part are confined to enable the part to have 
controlled finishing for both surfaces, while for open mould, the top surface is exposed 
which enables only one side to have controlled surface (Gurunathan et al., 2015). 
Some of the closed mould method includes hot compression, resin transfer molding, 
and injection molding, while the open mould fabrication technique consists of manual 
hand lay up, vacuum assisted resin infusion, spray up, filament winding and vacuum 
bagging. 

The advantages of using natural fibre composites are environmental gains, reduced 
energy consumption, light weight, insulation and sound absorption properties and 
reduce dependency on petroleum-based materials. However, there are some limitation 
that restrains the application of natural fibre in mass production, such as inconsistent 
properties resulting in quality variation (Fiore et al., 2012). High dependency on 
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human skill is another factor contributing to low usage of natural fibre in industry. In 
general, natural fibre possessed lower mechanical properties compared to their 
counterpart of petroleum-based source such as carbon fibre, making them limited to 
light loading non-structural parts. Component fabrication using natural fibre is subject 
to several type of deficiencies like porosity, void, layer disbonding, and weak fibre-
matrix interfacial shear stress. 

1.2 Problem Statement 

Spray up or also known as direct fibre preformed (DFP) is a well-known process 
whereby chopped fibre and low-viscosity resin are manually sprayed onto a mould 
surface. The spray up process has been long used in the industry to fabricate light 
loaded structural component such as bathtub, boat and luxury yacht (Ecobiz, 2019).  

In general, spray up process uses synthetic fibre as the main input. Natural fibres has 
been in the limelight of research for the past few decades and has great potential to 
substitute synthetic fibres in the spray up process fabrication (Kikuchi et al., 2014). 
However, there were very few attempts to use natural fibre, due several factors such 
as difficulty in getting the suitable input form (roving with consistent diameter or 
width), variation in physical properties, and difficulty in getting consistent output from 
this process. Spray up required material with consistent width or diameter to ensure 
smooth cutting and material spray out and this has been a big challenge for natural 
fibre in general. 

There were a few studies trying to use natural fibre as the input for spray up 
fabrication. However, the study showed that the spray output varies significantly with 
human skill and expertise (Kikuchi et al., 2014). Another issue related to the usage of 
natural fibres in the manual spray up process is poor part consistency due to uneven 
distribution of fibres on the mould surface during the spray up process (Harper et al., 
2007). There were a few attempts in research that have been conducted to investigate 
the parameters and behavior of the spray up composite such as randomization effect 
(Harper et al., 2007), discontinuous fibre composite strength (Qian et al., 2015), 
critical fibre length (Qian et al., 2012), spray pattern (Harper et al., 2007) and fibre 
volume fraction (Evans et al., 2016). However, these studies were conducted manually 
using synthetic fibres such as carbon or glass fibres.  

One of the main reasons that contribute to the variation and inconsistency of the spray 
up output is the inability to control spray up process parameter manually. The spray 
up process parameters i.e. spray pattern, robot linear travel speed, spray angle, and 
fibre length are critical in controlling the variety of the product quality for spray up 
process. To date, very few systematic studies being conducted in automating the spray 
up process parameters for natural fibres and investigating how these parameters affect 
the properties of the spray up biocomposites. Issue such as low fibre volume fraction 
was also not being addressed effectively (Harper et al., 2007). Without proper study 
in these domains, it is difficult to use natural fibre as an input for spray up process, 
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and to obtain consistent output, which eventually applied in mass rapid production. 
There is also lack of investigation in the performance of hybrid biocomposites 
combining natural fibres and synthetic fibres fabricated using automated spray up 
process. This is where automation is needed to better control the process parameter 
and enhance the consistency and repeatability of the output from spray up process 
using natural fibres. Automation can solve a few major issues such as material 
planning, cycle time, product quality and process efficiency. There are a few 
companies around the world that already automated the spray up process for industrial 
application, such as Matrasur Composites (Didier Barbini, 2018). However, the 
automation is only limited and tailored for the use of synthetic fibre as the input 
material, and generally very costly. This research works aims to explore automation 
of the spray up process, and in the same time to understand the effect of different spray 
up process parameter on the behavior of natural fibre composite properties. By 
automating the spray up method (integration with industrial 6-axis robotic arm), the 
spray output can be controlled automatically, simulation can be run to ensure correct 
spray parameters are achieved, process error and output defect can be minimized, 
consistency of output can be enhanced, and waste material can be reduced. This 
exploration work is vital in determining the suitability of natural fibres being used as 
the replacement for current synthetic fibre-based composite for various industrial 
application. 

1.3 Significance of Study 

1. A novel study on the viability of natural fibre (PALF) to be used as the input 
for automated spray up process. 

2. A novel study of new fabrication process of automated spray up process for 
PALF-vinyl ester biocomposite. 

3. A novel study in developing feasible production process parameters resulting 
in consistent properties for hybrid biocomposite mass production.  

 
 

1.4 Objectives of the Research 

1. To determine physical, morphological, mechanical and thermal properties of 
PALF yarn.  

2. To investigate the effect of various robot linear travel speed on mass flowrate, 
volume fraction, mechanical, thermal and morphological properties of 
pineapple leaf fibre (PALF)-vinyl ester automated spray up biocomposite. 

3. To investigate the effect of various spray angles, spray patterns and PALF 
fibre lengths, on mechanical, thermal and morphological properties of PALF-
vinyl ester automated spray up biocomposite and determine optimized 
process parameter. 

4. To investigate the effects of spray up process parameters on physical, 
mechanical, thermal, and morphological properties of PALF/glass hybrid 
biocomposites. 
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1.5 Scope and Limitation               

The research scope is focusing on the fabrication process parameters of PALF-vinyl 
ester bio-composite using spray gun integrated with robotic arm. The PALF fibre used 
in this study is purchased from India, purchased from Mecha Solve Engineering, that 
comes with single ply, in roving form with 273 tex of twisting. This material is used 
as it is suitable for chop spray process, resulting in consistent fibre chop length. The 
thermosetting polymer used is Polymal Vinylester MFE 711P with MEKP Mepoxe 
hardener (100:3 ratio), purchased from Luxchem Trading Sdn Bhd. The resin is 
chosen, as it has low viscosity (250 – 450 cPs) at 25°C, as required by the spray system, 
and has higher strength compared to polyester resin. The vinyl ester is reinforced with 
chopped PALF fibre and the parameter investigated are the robot linear travel speed, 
spray angle, fibre length and spray pattern.  

The robot linear travel speed studied are 0.5, 0.75, 1.0, 1.25 and 1.50 m/s. The speeds 
are chosen based on the capability of the robotic arm, whereby the maximum speed is 
2.0 m/s. However due to safety issue, the maximum limit of robot speed set for this 
study is capped at 1.50 m/s. All the robot speed is limited to 30% actual robot speed, 
which gives the actual value of 0.15, 0.23, 0.30, 0.38 and 0.45 m/s. For speed below 
0.15 m/s, the spray resulted in excess fibre pile up on the mould surface, hence 
affecting the wettability and composite strength. The spray angle set for this research 
are 60, 65, 70, 75 and 80°. The spray pattern consists of linear, circular and cross spray.  

The fibre length investigated are L1 (130-150) mm, L2 (530-550) mm and L3 (130-
550) mm. The restriction of fibre length is due to the rotary cutter of spray gun that 
has the perimeter of 10.4 mm, 8 equal distance cutting blade, and distance between 
each blade is 13 mm. For each process parameter, analysis is mainly made on their 
mechanical (tensile & flexural), supported by thermal (TGA & DMA) and 
morphological (SEM) properties. The optimized parameters are then used to fabricate 
hybrid glass-PALF-vinyl ester composite, and the mechanical, thermal and 
morphological properties are investigated.  

1.6 Thesis Outline 

The thesis consists of 5 chapters. The first chapter is an overview of the NFRP, the 
application in various industry, significance of study, problem statements, and 
objectives, scope and limitations of the research. Chapter two touched on the literature 
review of natural fibres and their properties, synthetic fibres and hybrid bio-
composites, thermosetting matrix and its application, fabrication methods for bio-
composites, and manufacturing of directed fibre compound (DFC). In chapter three, 
the research methodology was outlined, starting from preliminary study, material 
characterization, research design for different process parameters including robot 
linear travel speed, spray angle, spray path and fibre length. At the end of chapter 
three, the glass-PALF hybrid biocomposite was developed based on the optimized 
parameters obtained from earlier analysis. Chapter four discussed about the results 
obtained and divided into six sections. The sections cover the material selection, 
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preliminary analysis on PALF fibre, the effect of robot linear travel speed, spray angle, 
spray pattern and fibre length on morphological, mechanical and thermal properties of 
biocomposite. The last section in chapter four explains about the characteristics of 
glass-PALF hybrid bio-composite fabricated utilizing optimized parameters. The final 
chapter concludes the research findings and recommendations for future works. 
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