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ADAPTIVE STEP SIZE OF DIAGONALLY IMPLICIT BLOCK
BACKWARD DIFFERENTIATION FORMULAS FOR SOLVING FIRST

AND SECOND ORDER STIFF ORDINARY DIFFERENTIAL EQUATIONS
WITH APPLICATIONS

By

HAZIZAH BINTI MOHD IJAM

December 2020

Chairman: Zarina Bibi binti Ibrahim, PhD
Institute: Mathematical Research

In this thesis, new classes of block methods based on backward differentiation
formula (BDF) for solving first and second order stiff ordinary differential equations
(ODEs) are developed. These methods are implemented in diagonally implicit
structure and generated the solutions of yn+1 and yn+2 simultaneously in a block.
The formulas are constructed by taking a non zero arbitrary, incorporating a free
parameter, ρ and hence producing ρ−diagonally implicit block backward differ-
entiation formula (ρ−DIBBDF) which contain the block backward differentiation
formula (BBDF) as a subclass.

Initially, the derivation of ρ−DIBBDF in fixed and adaptive step approaches for
the solution of first order stiff ODEs have been described. The classes have the
advantage of producing a different set of formulas that possess A-stability properties
by selecting the ρ value within the interval (-1,1). The order, consistency, zero
stability, absolute stability and stability region for the methods have been determined
to ensure their applicability in solving the stiff ODEs. The numerical results have
marginally better performance for the fixed step formula and competitive achieve-
ment for the adaptive step formula when compare to the existing BBDF methods.

To deal with the system of second order stiff ODEs, ρ−DIBBDF is formulated
suited well with the systems in its original form, without transforms it to the first
order ODEs. The convergence and stability properties also have been analyzed.
The stability polynomials for the method have been obtained and their stability
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regions have been discussed. The methods are implemented in fixed and adaptive
step approaches. Comparisons on numerical results to existing BBDF methods
demonstrate a comparable performance of both fixed and adaptive step formulas in
terms of accuracy.

The ρ−DIBBDF algorithms are written in C programming language. All the ap-
proximate solutions of the standard problems and application systems of stiff ODEs
generated by ρ−DIBBDF agrees well with the exact solutions and approximate
solutions computed by Matlab stiff solvers. All developed methods with ρ =−0.75
have shown to perform the computational work in a lesser time when compared to
the existing BBDF methods of the corresponding order.

In conclusion, the proposed methods have shown the suitability and reliability to
solve linear and non-linear systems in different level of stiffness with comparison
to the existing BBDF methods and Matlab stiff solvers. Thus, the new methods
developed can be included as viable alternatives for solving first and second order
stiff ODEs.

ii



© C
OPYRIG

HT U
PM

Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai
memenuhi keperluan untuk ijazah Doktor Falsafah

FORMULA BLOK PEMBEZAAN KE BELAKANG PEPENJURU
TERSIRAT DENGAN SAIZ LANGKAH BERUBAH BAGI

MENYELESAIKAN PERSAMAAN PEMBEZAAN BIASA KAKU
PERINGKAT PERTAMA DAN KEDUA DENGAN APLIKASI

Oleh

HAZIZAH BINTI MOHD IJAM

Disember 2020

Pengerusi: Zarina Bibi binti Ibrahim, PhD
Institut: Penyelidikan Matematik

Dalam tesis ini, kelas baru bagi kaedah blok berdasarkan formula pembezaan ke
belakang (FPB) untuk menyelesaikan persamaan pembezaan biasa (PPB) kaku
peringkat pertama dan kedua dibangunkan. Kaedah ini dilaksanakan dalam struktur
pepenjuru tersirat dan menghasilkan penyelesaian yn+1 dan yn+2 secara serentak
dalam satu blok. Formula baru ini dibina dengan mengambil nilai pembolehubah
bukan sifar dan memasukkan parameter bebas, ρ dan dengan itu menghasilkan
formula ρ−blok pembezaan ke belakang pepenjuru tersirat (ρ−FBPBPT) yang
mengandungi formula blok pembezaan ke belakang (FBPB) sebagai subkelas.

Pada permulaan, formula ρ−FBPBPT dalam pendekatan langkah tetap dan berubah
untuk penyelesaian PPB kaku peringkat pertama telah diterbitkan. Kelas ini
mempunyai kelebihan untuk menghasilkan satu set formula yang berbeza yang
mempunyai sifat kestabilan A dengan menukar nilai ρ dalam selang (-1,1). Urutan,
konsistensi, kestabilan sifar, kestabilan mutlak dan rantau kestabilan untuk kaedah
ini telah ditentukan untuk memastikan kebolehgunaannya dalam menyelesaikan
PPB yang kaku. Hasil berangka menggambarkan prestasi yang sedikit lebih baik
untuk formula langkah tetap dan pencapaian kompetitif untuk formula langkah
berubah apabila dibandingkan dengan kaedah FBPB sedia ada.

Untuk menangani sistem PPB kaku peringkat kedua, ρ−FBPBPT diformulasikan
sesuai dengan sistem dalam bentuk asalnya, tanpa mengubahnya menjadi PPB
peringkat pertama. Ciri penumpuan dan kestabilan juga telah dianalisis. Polinomial
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kestabilan untuk kaedah ini telah diperoleh dan rantau kestabilannya telah dibin-
cangkan. Kaedah ini dilaksanakan dalam pendekatan langkah tetap dan berubah.
Perbandingan hasil berangka dengan kaedah FBPB sedia ada menunjukkan prestasi
yang setanding untuk kedua-dua formula langkah tetap dan berubah dari segi
ketepatan.

Algoritma ρ−FBPBPT ditulis dalam bahasa pengaturcaraan C. Semua penyelesaian
anggaran bagi masalah standard dan sistem aplikasi PPB yang kaku yang dihasilkan
oleh ρ−FBPBPT sangat berpadanan dengan penyelesaian sebenar dan penyelesaian
anggaran yang dikira oleh penyelesai kaku Matlab. Semua kaedah yang diterbitkan
dengan ρ = −0.75 menunjukkan ia dapat melakukan kerja pengiraan dalam masa
yang lebih rendah jika dibandingkan dengan kelas FBPB sedia ada pada peringkat
yang sepadan.

Sebagai kesimpulan, kaedah yang dicadangkan telah menunjukkan kesesuaian dan
kebolehpercayaan untuk menyelesaikan sistem linear dan bukan linear dalam tahap
kekakuan yang berbeza dibandingkan dengan kaedah FBPB sedia ada dan penyelesai
kaku Matlab. Oleh itu, kaedah baru yang dikembangkan ini dapat disertakan sebagai
alternatif yang sesuai untuk menyelesaikan PBB kaku peringkat pertama dan kedua.
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CHAPTER 1

INTRODUCTION

1.1 Introduction

Since beginning of this century, modern theory of the numerical solution of ordinary
differential equations (ODEs) has been established, starting with Adams, Runge
and Kutta. The theory is currently well understood and software development is
available for a wide variety of problems. The ODEs are used to formulate math-
ematically and thus aid to solve physical and other problems including functions
of certain variables, such as problem of determining the charge or current in an
electrical circuit, problem of determining the vibrations of a wire or membrane and
chemical kinetic reactions.

Initial value problems (IVPs) with stiff ODEs are ubiquitous in applications of
science and engineering, particularly in the studies of nuclear reactors, electrical
circuits, vibrations, chemical reactions, astrochemical kinetics, electrical networks,
dynamics and control theory. Stiff ODEs also occur in many non-industrial areas
like weather prediction, mathematical biology and pharmacokinetics.

1.2 Problem to be Solved

Throughout this thesis, without loss of generality, we shall be concerned with d−th
order s−dimensional systems of ODEs of the form:

ỹ(d)i = fi(x, ỹ), ỹ(a) = η̃ , x ∈ [a,b] (1.1)

where i = 1,2, . . . ,s, d = 1,2, ỹ(x) = (y1,y′1, . . . ,y
(d−1)
s )T , η̃ =

(η1,η
′
1, . . . ,η

(d−1)
s )T . With regard to Eq. (1.1), we shall assume that the fol-

lowing theorem in Lambert (1991) are satisfied.

Theorem 1.1 Let f (x, ỹ) be defined and continuous for all (x, ỹ) in the region D
defined by a ≤ x ≤ b, −∞ < ỹ < ∞, where a and b are finite and let there exist a
constant L such that

| f (x, ỹ)− f (x, ỹ∗)| ≤ L|ỹ− ỹ∗|, (1.2)

holds for every x, ỹ, ỹ∗ such that (x, ỹ) and (x, ỹ∗) are both in D. Then, if η̃ is any
given number, there exists a unique solution ỹ(x) of problem in Eq. (1.1), where ỹ(x)
is continuous and differentiable for all (x, ỹ) ∈ D.
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Proof: See Henrici (1962)

The requirement in Eq. (1.2) is known as Lipschitz condition and the constant L
as Lipschitz constant. Throughout this work, we shall assume that Theorem 1.1 is
satisfied and established the existence of the unique solution of Eq. (1.1).

1.3 Stiff System of Ordinary Differential Equations

The literature lacks a precise description of stiffness. Nevertheless, recently
Söderlind et al. (2015) presented a critical analysis of the classical stiffness theories
and the statements on the stiff nature are summarised below:

(i) Stiff equations are equations where certain implicit methods work better, typ-
ically tremendously better than explicit ones, especially backward differentia-
tion formula (BDF) (Curtiss and Hirschfelder (1952)).

(ii) The essence of stiffness is that the solution to be computed is slowly varying
but that perturbations exist which are rapidly damped (Dekker and Verwer
(1984)).

(iii) Stiff equations are problems for which explicit methods do not work (Hairer
and Wanner (1996)).

Prior to that, Brugnano et al. (2011) also compiled some intuitive definitions relating
to stiffness, which have repeating quotes cited from Söderlind et al. (2015), except:

(i) Systems containing very fast components as well as very slow components
(Dahlquist (1973)).

(ii) A stiff system is one for which λmax is enormous so that either the stability
or the error bound or both can only be assured by unreasonable restrictions on
the step size... Enormous means enormous relative to the scale which here is
x̄ (the integration interval)... (Miranker (1975)).

(iii) If a numerical method with a finite region of absolute stability, applied to a
system with any initial condition, is forced to use in a certain interval of inte-
gration a step length which is excessively small in relation to the smoothness
of the exact solution in that interval, then the system is said to be stiff in that
interval (Lambert (1991)).

It is important to note that this thesis follows the comprehensive definition of stiffness
in Lambert (1973) given as follows:

2
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Definition 1.1 Consider the system of

y′ = Ay+Φ(x), (1.3)

where A is a constant s× s matrix with distinct eigenvalues, λi and corresponding
eigenvectors, ci, i = 1,2, . . . ,s. The general solution of the system takes the form

y(x) =
s

∑
i=0

κieλixci +Ψ(x),

where κi are arbitrary constants and Ψ(x) is a particular integral.

The system in Eq. (1.3) is said to be stiff if:

(i) Re(λi)< 0, and

(ii) max
i
|Re(λi)| >> min

i
|Re(λi)| where the ratio, S =

max
i
|Re(λi)|

min
i
|Re(λi)|

is called the

stiffness ratio or stiffness index.

and λi are the eigenvalues of the Jacobian matrix, J =
∂ f
∂ ỹ

evaluated at (x, ỹ). Fol-

lowing this definition, the stiff system has S greater than 1.

1.4 Linear Multistep Method

A numerical method involves a number of consecutive approximations of
yn+ j, j = 0,1, . . . ,k, from which it will compute yn, n = 0,1, . . . ,N sequentially and
also involve the function of f in Eq. (1.1). The integer k is called the step number of
the method. If k = 1, then the method is called as a one-step method. While if k > 1,
the method is called as a multistep or k−step method. This subsection presents
some definitions of linear multistep method (LMM) established by Lambert (1973)
as below.

Definition 1.2 The general form of linear k−step methods are written as:
In the case of first order ODEs,

k

∑
j=0

α jyn+ j = h
k

∑
j=0

β jy′n+ j, (1.4)

In the case of second order ODEs,

k

∑
j=0

α jyn+ j = h
k

∑
j=0

β jy′n+ j +h2
k

∑
j=0

γ jy′′n+ j, (1.5)

3
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where h is the step size. α j,β j and γ j need to be constant and α0,β0 and γ0 are not
all zero. It can be simplified by assuming αk = 1 as αk 6= 0. The equation in (1.4) is
explicit if βk = 0 and implicit otherwise.

Definition 1.3 The Taylor’s series expansion of y(xn +h) about xn is defined by:

y(xn +h) = y(xn)+hy′+
h2

2!
y′′(xn)+ · · ·+

hq

q!
y(q)(xn), (1.6)

where q = 3,4, . . . .

Definition 1.4 The linear difference operator L associated with Eq. (1.5) is:

L[y(x) : h] =
k

∑
j=0

[
α jy(x+ jh)−hβ jy′(x+ jh)−h2

γ jy′′(x+ jh)
]
, (1.7)

where y(x) is an arbitrary function and continuously differentiable on [a,b]. Expand-
ing y(x+ jh),y′(x+ jh) and y′′(x+ jh) as Taylor’s series in Eq. (1.6) and collecting
the common terms gives:

L[y(x) : h] =C0y(x)+C1hy′(x)+ · · ·+Cqhqyq(x). (1.8)

The constants Cq are defined as:

C0 =
k

∑
j=0

α j,

C1 =
k

∑
j=0

[
jα j−β j

]
,

...

Cq =
k

∑
j=0

[
jqα j

q!
−

jq−1β j

(q−1)!
−

jq−2γ j

(q−2)!

]
,q = 2,3, . . . .

(1.9)

Following that, the order of the method can be determined by using the following
definitions provided by Henrici (1962).

Definition 1.5 The first order LMM in Eq. (1.4) is of order p if C0 = C1 = · · · =
Cp = 0,Cp+1 6= 0, where Cp+1 being the error constant.

Definition 1.6 The second order LMM in Eq. (1.5) is of order p if C0 =C1 = · · ·=
Cp+1 = 0,Cp+2 6= 0, where Cp+2 being the error constant.

4
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A key feature of an acceptable LMM is that the solution generated by the method
converges to an exact solution as the step size approaches zero. Hall and Watt (1976)
stated that an LMM in Eq. (1.4) is convergent if and only if it is consistent and
zero stable. The proof for the theorem can be found in Hall and Watt (1976). The
following consistency conditions given by Lambert (1973) must be fulfilled for this
theorem to be satisfied.

Definition 1.7 The LMM is said to be consistent if it has order p ≥ 1. The method
is consistent if and only if the following conditions are satisfied:

k

∑
j=0

α j = 0,

k

∑
j=0

jα j =
k

∑
j=0

β j.

(1.10)

The first and second characteristic polynomials of the LMM are defines as

ρ(ξ ) =
k

∑
j=0

α jξ
j,

σ(ξ ) =
k

∑
j=0

β jξ
j.

(1.11)

The LMM is consistent if and only if ρ(1) = 0 and ρ ′(1) = σ(1). ξ1 is called the
principal root and the following roots ξs,s = 2,3, . . . ,k, are called spurious roots.
The characteristic polynomial of the method may be written as follows

π(r,H) = ρ(r)−Hσ(r) = 0, (1.12)

where H = hλ and λ =
∂ f
∂y

is a complex parameter.

Definition 1.8 The LMM is said to have zero stability if no root of its characteristic
polynomial has a modulus higher than one and if any root with a modulus of one is
simple.

The following definitions provided by Dahlquist (1963) pertinent to absolute
stability, A−stability as described below.

Definition 1.9 The LMM is said to be absolutely stable in a region ℜA, if all the
roots of the stability polynomial satisfy |rs|< 1,s = 1,2, . . . ,k.

5
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Definition 1.10 A numerical method is said to be A−stable if ℜA ⊇ {H | Re(H) <
0}. This means that the stability region covers the whole left-hand of the H−plane
as shown in Figure 1.1.

Figure 1.1: Absolute stability region for an A−stable method

Nonetheless, the requirement of A−stability imposes severe constraints on selecting
suitable LMMs. This constraint is known as the second barrier of Dahlquist,
which states that the order for an A−stable LMM must be less than or equal to
2 (see Dahlquist (1963)). This demanding criterion motivates the concept of stiff
stability and A(α)−stability by Widlund (1967) and redefined by Butcher (2009) as
illustrated in Figure 1.2 and presented in definitions given below.

Definition 1.11 A numerical method is stiffly stable with stiffness abscissa, D if all
complex numbers H are included in the stability region, so that Re(H)≤−D.

Definition 1.12 A numerical method is said to be A(α)−stable, α ∈
(
0,π/2

)
if

ℜA ⊇ {H | −α < π−arg(H)< α}.

Figure 1.2: A(α)−stability and stiff stability as featured in Butcher (2009)

6
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1.5 Problem Statement

Stiff problems generally occur when different parts of the ODEs systems have
differing time dependencies. As stiff ODEs arise in many branches, it is required to
be solved efficiently. Unfortunately, because of the solution with both slowly and
rapidly varying components within a narrow interval, the analytical solutions for
most of these realistic stiff systems have been far from trivial; therefore a numerical
method is advocated.

One common technique used to solve second order ODEs is to transform them into
equivalent first order systems. Nevertheless, these approaches will require more
computational time and hence affect the efficiency of the developed methods. To
gain some advantage in computational work, we will treat the system of second
order ODEs directly.

BDF is the most common class of implicit LMM, which is well-suited to dealing
with stiffness. The block method’s employment with a diagonally implicit structure
in BDF is expected to accelerate the integration process. This advantage has
motivated us to formulate a new diagonally implicit class of block backward dif-
ferentiation formula (BBDF) and thus enhance the performance of existing BBDF
methods for solving the standard stiff systems and some application problems
arising in the literature.

1.6 Objectives of the Thesis

The main objectives of this research are:

(i) To derive diagonally implicit classes of BBDF in fixed step size by taking a
non zero arbitrary, βk−1,k and introducing a free parameter, ρ for solving first
and second order stiff ODEs.

(ii) To derive diagonally implicit classes of BBDF with non zero βk−1,k in adaptive
step size for solving first and second order stiff ODEs.

(iii) To analyze the stability and convergence properties of the derived methods.

(iv) To illustrate the performance of the derived methods in terms of the maximum
error and computational time.

(v) To provide the numerical solutions of the derived methods for some stiff math-
ematical models and application system in medical science, chemical engi-
neering and physical fields.

7
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1.7 Scope and Limitation of the Thesis

This research concentrates on solving first and second order stiff ODEs with differ-
ent level of stiffness ranging from the mildly to highly stiff systems. Therefore, this
study required to explicate the purpose of fixed and adaptive step size approaches in
the execution of the new classes of BBDF for solving the standard and application
stiff problems. By implementing such a strategy, we can increase and exploit the
potential of the existing BBDF methods successfully.

In terms of the numerical results, our developed methods will be compared with the
existing classes of BBDF in the literature and the established stiff solvers in Matlab,
i.e. ode15s and ode23s. However, the execution time presented is limited to some
numerical results due to unavailable codes and different environment and equipment.

This thesis comprises the formulation of new diagonally implicit classes of BBDF
methods in fixed step size of order two and three only. Observed from the analysis of
stability properties and numerical experiments conducted, as we increase the order of
the methods, it becomes less stable and less accurate. This set of circumstances put
a limitation on our research to not extend for higher order, such as order four and five.

In addition, the pharmacokinetics models, chemicals reactions and physical systems
which exhibit stiffness are solved to ensure the capability of the developed methods
in solving real-world problems.

1.8 Outline of the Thesis

This thesis is divided into eight chapters. In Chapter 1, the introduction is presented
briefly encompassing the mathematical concepts of stiff ODEs, objectives, scopes
and outline of this thesis. In Chapter 2, related literature on the block methods,
BBDF, the diagonally implicit structure of the formula, adaptive step approach and
direct methods are reviewed.

Chapter 3 provided detailed derivation and implementation of ρ−Diagonally
Implicit Block Backward Differentiation Formula (ρ−DIBBDF) of order 2 and
3 in fixed step size. The subject in Chapter 4 will be the extension of the idea
in Chapter 3, where the ρ−DIBBDF of order 2 in adaptive step size is to be
derived. The order, convergence, stability regions and restrictive requirement
on the step size of the methods are investigated. Implementation of the meth-
ods using Newton’s iteration is also presented. The numerical results for some
standard stiff and application problems are illustrated for both fixed and adaptive
step formula and compared with several existing BBDF classes and Matlab’s solvers.

8
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The formulation of the ρ−DIBBDF for solving second order stiff ODEs in fixed
and adaptive step approaches have been presented in Chapter 5 and Chapter 6,
respectively. The analysis of the methods, including the order, consistency, zero
stability and stability region, are explained. Implementation of the methods using
Newton’s iteration is also discussed. Numerical results and the comparisons of their
performance with existing BBDF classes, ode15s and ode23s were given in the last
section of the chapter.

In Chapter 7, the numerical solutions for some biological, physical and chemical
dynamic systems approximated by the fixed step and adaptive step size formulae
developed in this thesis are provided. To demonstrate the capability of our meth-
ods, the solution curves for all application systems of real-world problems examined
are plotted. Finally, the conclusion of this thesis which includes the summary and
recommendation for future work are presented in Chapter 8.

9
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