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In a software development life cycle, two phases which are considered as critical are 

software testing and software maintenance. The cost involved in both phases is high, 

ranging from 40% to 67% of the total cost of software development. Due to this issue, 

various studies have been done in both phases, especially in fault localization. Finding 

the root cause of the faults in a program is one of the crucial parts in software testing and 

maintenance.  

 

 
Many techniques have been proposed, such as program slicing, code coverage, program 

state, and mutation analysis. Although all these techniques give a good insight into fault 

localization, it appears that these techniques are made based on the assumption that a 

single fault causes the faults. In reality, one fault could also possibly caused by multiple 

faults.  

 

 

In Coverage-Based Fault Localization, several techniques have been proposed to address 

the above problem by using suspiciousness formula to locate the location of the faults. 

However, this formula only indicate the line location containing the fault. It is not 

suitable for cases where a line contains more than one fault. Suspiciousness formula is 

unable to identify which operators are faulty as the technique can only highlight line 
numbers. This requires a search technique which enable suspiciousness formula to 

perform analysis on all faulty operators either on the same line or different line number. 

 

 

In the same light, multiple faults problem might be more complicated in object-oriented 

setting. Object-oriented is made up of multiple classes and methods where they can 

interact through class objects. Eventhough object-oriented is made up of various 

components and better features compared to structured approach, it still has problems 

related with logical errors, operators, and programmatic styles. Considering the three 
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problems related to object-oriented which are logical errors, operators, and 

programmatic styles, it seems that all of these are underpinned by operators. This can be 

explained by the wide usage of operators in logical operations (comparison) and program 

flow directive (condition, counter, looping, etc). Likewise, programmers’ programmatic 

syles also relate to operators such as function, algorithm, checking, and interface. Hence, 

operators are suggested in the investigation of multiple fault localization for both 
structured and object-oriented programming. 

Fault dependency Identification (FDI) and Fault Dependency and Location analysis had 

been proposed to handle to solve problem related to multiple faults. FDI was designed 

to capture the class and method structures as well as the dependencies between classes 

and methods. This is to ensure that all the related object class is examined during 

analysis. FDLA was designed with the aims to find the location of the faults by doing 

some modifications on a part of the code. To achieve this goal, a technique based on 

mutation was used called Hybrid Genetic Algorithm.  

Genetic algorithm (GA) is well known for finding an optimal solution to a problem while 

a local search is capable of removing duplication. Since both have their advantages, both 

were combined into one technique called Hybrid Genetic Algorithm for Multiple Fault 

Localization (HGAMFL). An experiment was executed on five Java programs against 

𝑂𝑝. Results of the experiment and statistical tests showed strong evidence that HGAMFL 

is able to localize multiple faults more effectively and accurately compared to 𝑂𝑝 for a 

situation where multiple faults appear at the same line number or different line numbers. 

As a conclusion, the results of the study show that the combination of Genetic Algorithm 
and local search had improved the effectiveness in localizing multiple faults in Java 

programs. This technique can identify dependency between faults and return the accurate 

coordinate location of the faults.  
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Di dalam kitaran hayat pembangunan perisian, terdapat dua fasa yang dianggap sebagai 

kritikal iaitu ujian perisian dan penyelenggaraan perisian. Kedua-dua fasa ini memakan 

kos yang sangat tinggi, yang meliputi sekitar 40% hingga 67% daripada jumlah kos 

pembangunan perisian. Disebabkan isu ini, pelbagai kajian telah dilakukan oleh 

penyelidik di dalam kedua-dua fasa ini, terutamanya dalam lapangan berkaitan 

penyetempatan kesalahan. Hal demikian kerana mencari punca kesalahan adalah 

bahagian penting dalam ujian dan penyelenggaraan perisian. 

 
 

Pada masa ini, terdapat banyak teknik yang telah dicadangkan seperti program slicing, 

code coverage, program state, dan mutation analysis. Walaupun semua teknik ini 

menunjukkan peningkatan yang baik dalam penyetempatan kesalahan, namun ternyata 

teknik-teknik ini dibuat berdasarkan anggapan bahawa kesalahan disebabkan oleh 

kesalahan tunggal sahaja. Secara realitinya, satu kesalahan juga boleh disebabkan oleh 

pelbagai kesalahan. 

 

 

Dalam Penyetempatan Kesalahan Berasaskan Liputan, beberapa teknik telah diusulkan 

untuk mengatasi masalah di atas dengan menggunakan formula kecurigaan untuk 

mencari lokasi kesalahan. Walau bagaimanapun, formula ini hanya menunjukkan baris 
yang mengandungi kesalahan. Ia tidak sesuai untuk kes di mana sesuatu baris yang 

mengandungi lebih daripada satu kesalahan. Formula kecurigaan tidak dapat mengenal 

pasti operator mana yang salah kerana teknik ini hanya dapat menunjukkan nombor baris 

sahaja. Ini memerlukan teknik carian yang membolehkan formula kecurigaan untuk 

melakukan analisis terhadap semua operator yang salah sama ada pada baris yang sama 

atau nombor baris yang berbeza. 
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Pada masa yang sama, isu berkaitan pelbagai kesalahan adalah lebih rumit di dalam 

persekitaran berorientasikan objek.  

 

 

Objek orientasi mengandungi pelbagai kelas dan fungsi dan ia berkomunikasi melalui 

objek. Walaupun objek orientasi terdiri dari berbagai komponen dan fungsi yang lebih 
baik dibandingkan dengan pendekatan struktur, ia masih mempunyai masalah yang 

berkaitan dengan kesalahan logik, operator, dan gaya program. Mengambil kira tiga 

masalah yang berkaitan dengan objek orientasi iaitu kesalahan logik, pengendali, dan 

gaya program, jelas kelihatan kesemua masalah ini adalah disebabkan oleh penggunaan 

operator. Ini dapat dijelaskan oleh penggunaan operator yang meluas dalam operasi logik 

(perbandingan) dan arahan aliran program (keadaan, kaunter, perulangan, dll). Tidak 

terkecuali juga gaya pengaturcaraan program di mana ianya berkaitan dengan operator 

seperti fungsi, algoritma, pemeriksaan, dan antara muka. Oleh itu, penggunaan operator 

dicadangkan dalam penyiasatan penyetempatan pelbagai kesalahan untuk 

pengaturcaraan berstruktur dan berorientasikan objek. 

 

 
Pengenalpastian kebergantungan kesalahan (FDI) dan Analisis Kebergantungan 

kesalahan dan lokasi telah dicadangkan untuk menyelesaikan masalah berkaitan 

penyetempatan pelbagai kesalahan. FDI direka untuk mendapatkan struktur kelas dan 

fungsi serta kebergantungan diantara pelbagai kelas dan fungsi. Ia untuk memastikan  

semua objek kelas yang berkaitan diperiksa semasa analisis dijalankan. FDLA pula 

direka dengan tujuan untuk mencari lokasi kesalahan  dengan melakukan 

pengubahsuaian pada sebahagian kod aturcara. Untuk tujuan ini, satu teknik berasaskan 

mutase telah dgunakan iaitu Hybrid Genetic Algorithm. 

 

 

Algoritma Genetik (GA) adalah satu teknik yang popular dalam mencari penyelesaian 
yang optimum bagi sesuatu masalah manakala pencarian tempatan pula mampu 

menghapus duplikasi. Oleh kerana kedua-duanya mempunyai kelebihan mereka sendiri, 

kedua-dua teknik telah digabungkan dalam satu teknik yang dikenali sebagai Hibrid 

Algoritma Genetik untuk Penyetempatan Pelbagai Kesalahan (HGAMFL). Eksperimen 

telah dilaksanakan pada HGAMFL dan 𝑂𝑝 dengan menggunakan lima Program Java. 

Hasil eksperimen dan ujian statistik menunjukkan bahawa terdapat bukti yang kuat 

bahawa HGAMFL dapat melaksanakan penyetempatan  pelbagai kesalahan lebih 

berkesan dan tepat berbanding dengan 𝑂𝑝 untuk keadaan di mana banyak kesalahan 

muncul pada baris yang sama atau berbeza. 

 
 

Sebagai kesimpulan, hasil kajian menunjukkan bahawa gabungan Algoritma Genetik 

dan pencarian tempatan telah meningkakan tahap keberkesanan dalam melaksanakan 

proses penyetempatan pelbagai kesalahan di dalam program Java. Teknik ini dapat 

mengenalpasti kebergantungan antara kesalahan dan menunjukkan koordinat lokasi 

yang betul bagi sesuatu kesalahan.  
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CHAPTER 1 

1 INTRODUCTION 

1.1 Research Background and Motivation 

Technology is rapidly changing. To cope with these changes, software development 

setting is also drastically changed. For example, the software itself was transformed from 

just a stand-alone application or software to a cloud-based application. As shown in 

Figure 1.1, software evolution has changed the environment of software development. 

Each paradigm experienced different environmental changes such as organization, 

middleware, requirements, and functionalities. Software should be maintained to ensure 

the functionalities are aligned with the environmental changes.  

 

Figure 1.1 : Evolution of software (Jonathon, 2018)  

 

 

The new technology requires an effective adaptive maintenance effort to ensure the 

particular system works correctly and is adaptable to the latest technology. The 

technological changes in a software development setting will directly affect developers 

(Mens et al., 2005). Figure 1.2 shows various challenges faced by a software developer 

during software development. These challenges are likely to harm the software 
development process (Stack Overflow, 2016), even more so if the software developer 

lacks the skills, knowledge, and experience. It may cause the software developer to 

develop fragile and buggy codes which can affect the produced software quality. 



© C
OPYRIG

HT U
PM

 

 

2 

 

Figure 1.2 : Challenges faced by a software developer (Stack Overflow, 2016) 

 
 

Producing and maintaining high-quality software requires specific skills and adoption of 

good and controlled development and operation practices (Laporte & April, 2017). 

According to ISO/IEC software quality standards, several characteristics need to be 

considered during software development such as functionality, reliability, usability, 

efficiency, maintainability, and portability (Nuseibeh & Easterbrook, 2000). However, 

maintaining software quality is difficult due to software evolution. Evolution of software 

could result in higher complexity and more bugs (Basili & Perricone, 1983; Erdweg et 

al., 2014). 

In this context, McConnel reported that ten defects are found in every 1000 lines of code 

(McConnell, 2004). If a new functionality is added into the software, lines of code as 

well as bugs and program complexity would also be increased. Due to these facts, more 
time is spent by the software developer and tester in the software testing and maintenance 

phase. In software maintenance, slow speed of implementation leads to higher cost 

during maintenance (Sharif, 2012). It is shown that the cost ranges from 60% to 70% of 

the total software development cost (Malhotra & Chug, 2016). Software maintenance 

can be categorized into four classes: adaptive, perfective, corrective, and preventive 

(Bennett & Rajlich, 2000; Lientz et al., 1978). Among these four classes, fixing faults 

requires at least 21% of maintenance effort (Bennett & Rajlich, 2000). The reason is that 

software correction can only be performed if the fault location is found. Therefore, fault 

identification can be achieved through software testing. 

Software testing is one of the critical phases that falls under software engineering. This 

phase aims to observe the execution of a software system and validate the behavior of 
the system, whether it behaves as intended (Bertolino, 2007). As a result, any part of the 

system that contains faults can be detected. Various types of software testing activities 

can be executed by the software developer or tester. They involve testing activities on a 
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piece of a small code developed by the developer (unit testing), testing during source 

code integration (integration testing), testing on the acceptance level of the user against 

the system (acceptance testing), and monitoring service applications during run time (M. 

Ali & Fairouz, 2015). 

 

Figure 1.3 : Total bugs found in the software development phase  

(E. Burton Swanson, 1976) 

 

 

According to E. Burton Swanson, most software needs to go through software 

maintenance due to software failure during execution (Swanson, 1976). As shown in 
Figure 1.3, the cost to fix the bugs increases for each stage in software development 

(Patton, 2001). The later the bugs are detected during SDLC stages, the higher the cost 

incurred as the bugs get more severe. Hence, it is essential to detect bugs as early as 

possible. Most of the bugs can be detected during testing and after the software is 

released to the user. This demonstrates the importance of conducting a more in-depth 

study in finding bugs in computer software. Several techniques had been introduced for 

improving the process of finding faults such as fault prediction (B. Li et al., 2014; Rawat 

& Dubey, 2012), fault detection (Dunwei Gong & Zhang, 2013; Ko-Li Cheng et al., 

2011), and fault localization (Abreu et al., 2009b; Moon et al., 2014; Sun et al., 2013). 

Although fault prediction and detection can help software developers to predict and 

detect the location of the faults, both approaches are not able to identify the root cause 

of the faults. As suggested by Wotawa, fault localization is more significant as it can 
reduce the time taken during debugging and is capable in finding the root cause of the 

fault in a program with less effort (Wong et al., 2016). Work on fault localization has 

been on-going for a number of years. Various techniques have been proposed to tackle 

issues on fault localization as well as reducing its time consumption. With the 
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improvement of single fault localization technique in recent years, it is now possible to 

extend the study to localize multiple faults. However, dealing with multiple faults 

requires a different strategy compared to the single fault localization technique due to 

the nature of multiple faults that can appear anywhere in a program. Hence, it is 

important to ensure that the correct fault is pointed out, and no new faults are generated 

during fault localization process (Demott, 2012; DiGiuseppe & Jones, 2015; Sahoo, 
2012). This is one of the known challenges in this approach. 

Object-oriented framework is designed to support modularity, extensibility, and 

reuseability (Fayad & Schmidt, 1997). Eventhough its features provide a better structure 

and ease the development process, several authors have shown that these features are 

often the limiting factor in object-oriented approach which lead to more bugs in the 

program. Some of the faults found during debugging will also generate more bugs in the 

program (C. T. Chen et al., 2009; Nguyen et al., 2010). Until 2017, object-oriented 

programming such as C++, Java, and Python had been widely used in software 

development. As reported by Putano, about 13.27% of software developers had used 

Java language in developing a software or application (Putano, 2017). It is believed that 

the number of Java language applications will grow in the future. As this can have 

serious consequences, it is imperative to better understand how fault localization 
techniques could leverage their advantages in dealing with object-oriented. 

1.2 Problem Statement 

Various works on finding the correct fault on computer programs have been proposed. 
Although results indicate that current fault localization techniques are capable of 

localizing fault correctly and effectively, they are only tested on a single type of fault 

(Wong et al., 2016). In real software, one program might contain more than one type of 

fault located at different line numbers (Abreu et al., 2011). Indeed, some of the faults 

might be caused by another fault or a combination of faults. Thus, it is essential to 

enhance fault localization research from a single type of fault to multiple types of fault. 

Zoltar-M (Abreu et al., 2011) and Barinel (Abreu et al., 2009b) are two techniques 

proposed to handle multiple faults. Both of the techniques have been executed on 

programs containing multiple faults. However, the output for both techniques only 

indicates the location of the row containing the error. In a cases where more than one 

fault appears on the same row, it is necessary to point out the location more accurately 

and show the type of operator identified as a fault since one line can contain more than 
one operators. 

To deal with multiple faults, a developer cannot simply select all the highest 

suspiciousness statements as the root cause of the fault when they appear at different line 

numbers. The other fault might trigger some of the faults at different lines. Until the day 

the study was conducted, identifying statements in a buggy code that should be 

considered as defective among the highest suspiciousness statement (Pearson et al., 

2017) still needs in-depth study. In some cases, it is crucial to inform software developers 

which fault they need to look first among the other faults. Therefore, they will not waste 

their time fixing the wrong fault. In code coverage, suspiciousness formula is used to 
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identify fault locations inside a program (Abreu et al., 2006; S. Ali et al., 2009). 

However, determining the fault location alone in a case of multiple faults is not enough 

as the formula can only highlight line numbers considered faulty. In a case where a line 

contains more than one operator, this formula is not suitable. Suspiciousness formula is 

unable to identify which operators are faulty as the technique can only highlight line 

numbers. Therefore, a search technique is needed to enable suspiciousness formula to 
perform analysis on all faulty operators either on the same line or different line number.  

In the same light, multiple faults problem might be more complicated in object-oriented 

setting. As described by Mark Stefik, object-oriented is made up of multiple classes and 

methods (Stefik & Bobrow, 1985). Each of the class can interact through class objects. 

If we observe the interaction between classes, the object will create relationship and 

dependency between classes and methods. Indeed, a nested dependency is created if 

more than one class is involved. Eventhough object-oriented is made up of various 

components and better features compared to structured approach (Booch et al., 2008), it 

still has problems related with logical errors, operators, and programmatic styles (Basso 

et al., 2009). This paper also suggests that the programmer tends to commit the same 

mistake either on structured or object-oriented approach. Considering the three problems 

related to object-oriented which are logical errors, operators, and programmatic styles as 
suggested by Basso et al., it seems that all of these are underpinned by operators. This 

can be explained by the wide usage of operators in logical operations (comparison) and 

program flow directive (condition, counter, looping, etc). Likewise, programmers’ 

programmatic syles also relate to operators such as function, algorithm, checking, and 

interface. Hence, operators are suggested in the investigation of multiple fault 

localization for both structured and object-oriented programming. 

1.3 Research Objectives 

The general objective of this study is to improve the existing multiple fault localization 

technique. This is done by considering both structured and object-oriented 

programming. To achieve this general objective, three sub-objectives have been 

outlined: 

i. To propose a technique that can analyze fault dependency in multiple fault 

localization. 

ii. To propose a technique that can localize multiple faults. 

iii. To empirically evaluate the effectiveness of the proposed technique against an 
existing technique when dealing with multiple faults at similar and different 

locations. 

 

 

 



© C
OPYRIG

HT U
PM

 

 

6 

1.4 Research Scope 

The scope of this study is limited to: 

 Object-oriented framework 

This study is focused on the improvement of fault localization technique in the 

object-oriented approach. For this purpose, this study only covers faults that 

appear in the method level and fault dependency between classes, methods, 

statements, and operators. Other faults not stated are not covered and can be 

included in future work. 

 Software testing 

In software testing, several activities can be executed by the software tester to 
identify a fault location such as unit testing, integration testing, system testing,  

interface testing, regression testingand others. However, this research only 

covers two testing activities, which are unit and integration testing. These two 

testing activities were chosen based on their significance with code compared 

to another activity, which is closer to design. These two activities are also 

synonymous with faults that appear in the source code during testing. 

 Fault type 

In this study, the focused types of error are faults that a developer commonly 

does in a method when writing a program.  For this purpose, seven categories 

of faults are covered, which involve logical error, syntax error, and assignment 

error. They are as follows: 
o Arithmetic Operator Replacement (AOR). 

o Relational Operator Replacement (ROR). 

o Conditional Operator Replacement (COR). 

o Assignment Operator Replacement (AOR). 

o Statement Deletion. 

o Replacement of Boolean. 

o Absolute Value Insertion. 

This study also will cover on the fault dependency between the operators in the 
categories above. A combination of the operators will be studied in order to 

identify location of faults inside a program.  

 Multiple fault localization 
Generally, fault localization is divided into two categories, which are single and 

multiple fault localization. In this study, the focus is on multiple fault 

localization. Three characteristics of a fault considered in this study are as 

follows:  

o Two or more faults that appear at different line numbers. 

o Two or more faults that appear at the same line but at a different 

location. 

o Any combination of faults either they appear at the same line or at 

different line numbers. 
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1.5 Research Contributions 

This thesis has made the following contributions: 

 It defined a new technique of localizing multiple faults by analyze the location 

of the fault and its dependencies with another faults. By implemented fault 

dependency analysis, the technique is able to locate the fault location for each 

behavior below: 

o Multiple faults at the same line number. 

o Multiple faults at different line numbers. 

 It defined a technique to retrieve location accurately. Instead of providing line 

number as the output, the technique is able to provide details of the fault such 
as operators, row, and column of the fault location. 

 It provided empirical evidence that the proposed technique can be effective and 

accurate in localizing multiple faults compared to the current approach. 

1.6 Thesis Organization 

This thesis contains six chapters, including the introductory chapter. In the introductory 

chapter, it explains in detail the problem statement, objective of the study, scope of the 

study, and thesis organization. 

The literature review is described in detail in Chapter Two. Background study of 

software testing and maintenance is detailed out. Based on software testing and 

maintenance, the study focuses on fault localization. Also, this chapter lists all the 

suspiciousness formulas and identifies the formulas used in previous studies. Several 

potential techniques are described in this chapter as well. Finally, this chapter highlights 

issues for the relevant literature. 

Chapter Three describes the methodology used throughout the study. Generally, this 

chapter describes all the activities involved in data collection, finding a suitable method 
to be implemented in the proposed technique, and preparation of performing data 

analysis.  

The fourth chapter proposes a new multiple fault localization technique, which combines 

local search and a genetic algorithm called HGAMFL. In this chapter, the proposed 

technique is explained, including the flow and the algorithm. The implementation of the 

proposed technique is also described in this chapter.  
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The fifth chapter describes the evaluation planning and experiment execution for this 

research. The results of the analysis and interpretation are also presented in this chapter. 

The sixth chapter presents the conclusion and future work of this research. In general, 

the conclusions are explained and future work for this research are also listed.  
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