

UNIVERSITI PUTRA MALAYSIA

FAULT DEPENDENCY AND LOCATION ANALYSIS TO IMPROVE
MULTIPLE FAULT LOCALIZATION

MUHAMMAD LUQMAN BIN MAHAMAD ZAKARIA

 FSKTM 2020 28

© C
OPYRIG

HT U
PM

i

FAULT DEPENDENCY AND LOCATION ANALYSIS TO IMPROVE

MULTIPLE FAULT LOCALIZATION

By

MUHAMMAD LUQMAN BIN MAHAMAD ZAKARIA

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia,

in Fulfilment of the Requirements for the Degree of Doctor of Philosophy

December 2019

© C
OPYRIG

HT U
PM

ii

COPYRIGHT

All material contained within the thesis, including without limitation text, logos, icons,

photographs, and all other artwork, is copyright material of Universiti Putra Malaysia

unless otherwise stated. Use may be made of any material contained within the thesis for
non-commercial purposes from the copyright holder. Commercial use of material may

only be made with the express, prior, written permission of Universiti Putra Malaysia.

Copyright © Universiti Putra Malaysia

© C
OPYRIG

HT U
PM

i

DEDICATION

This thesis is dedicated to my beloved parent, family, supervisory committee who

always support me through PhD Journey

© C
OPYRIG

HT U
PM

i

Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfilment of

the requirement for the degree of Doctor of Philosophy

FAULT DEPENDENCY AND LOCATION ANALYSIS TO IMPROVE

MULTIPLE FAULT LOCALIZATION

By

MUHAMMAD LUQMAN BIN MAHAMAD ZAKARIA

December 2019

Chairman : Khaironi Yatim Sharif, PhD

Faculty : Computer Science and Information Technology

In a software development life cycle, two phases which are considered as critical are

software testing and software maintenance. The cost involved in both phases is high,

ranging from 40% to 67% of the total cost of software development. Due to this issue,

various studies have been done in both phases, especially in fault localization. Finding

the root cause of the faults in a program is one of the crucial parts in software testing and

maintenance.

Many techniques have been proposed, such as program slicing, code coverage, program

state, and mutation analysis. Although all these techniques give a good insight into fault

localization, it appears that these techniques are made based on the assumption that a

single fault causes the faults. In reality, one fault could also possibly caused by multiple

faults.

In Coverage-Based Fault Localization, several techniques have been proposed to address

the above problem by using suspiciousness formula to locate the location of the faults.

However, this formula only indicate the line location containing the fault. It is not

suitable for cases where a line contains more than one fault. Suspiciousness formula is

unable to identify which operators are faulty as the technique can only highlight line
numbers. This requires a search technique which enable suspiciousness formula to

perform analysis on all faulty operators either on the same line or different line number.

In the same light, multiple faults problem might be more complicated in object-oriented

setting. Object-oriented is made up of multiple classes and methods where they can

interact through class objects. Eventhough object-oriented is made up of various

components and better features compared to structured approach, it still has problems

related with logical errors, operators, and programmatic styles. Considering the three

© C
OPYRIG

HT U
PM

ii

problems related to object-oriented which are logical errors, operators, and

programmatic styles, it seems that all of these are underpinned by operators. This can be

explained by the wide usage of operators in logical operations (comparison) and program

flow directive (condition, counter, looping, etc). Likewise, programmers’ programmatic

syles also relate to operators such as function, algorithm, checking, and interface. Hence,

operators are suggested in the investigation of multiple fault localization for both
structured and object-oriented programming.

Fault dependency Identification (FDI) and Fault Dependency and Location analysis had

been proposed to handle to solve problem related to multiple faults. FDI was designed

to capture the class and method structures as well as the dependencies between classes

and methods. This is to ensure that all the related object class is examined during

analysis. FDLA was designed with the aims to find the location of the faults by doing

some modifications on a part of the code. To achieve this goal, a technique based on

mutation was used called Hybrid Genetic Algorithm.

Genetic algorithm (GA) is well known for finding an optimal solution to a problem while

a local search is capable of removing duplication. Since both have their advantages, both

were combined into one technique called Hybrid Genetic Algorithm for Multiple Fault

Localization (HGAMFL). An experiment was executed on five Java programs against

𝑂𝑝. Results of the experiment and statistical tests showed strong evidence that HGAMFL

is able to localize multiple faults more effectively and accurately compared to 𝑂𝑝 for a

situation where multiple faults appear at the same line number or different line numbers.

As a conclusion, the results of the study show that the combination of Genetic Algorithm
and local search had improved the effectiveness in localizing multiple faults in Java

programs. This technique can identify dependency between faults and return the accurate

coordinate location of the faults.

© C
OPYRIG

HT U
PM

iii

Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai

memenuhi keperluan untuk ijazah Doktor Falsafah

ANALISA KEBERGANTUNGAN KESALAHAN DAN LOKASI BAGI

MENINGKATKAN PENYETEMPATAN PELBAGAI KESALAHAN

Oleh

MUHAMMAD LUQMAN BIN MAHAMAD ZAKARIA

Disember 2019

Pengerusi : Khaironi Yatim Sharif, PhD

Fakulti : Sains Komputer dan Teknologi Maklumat

Di dalam kitaran hayat pembangunan perisian, terdapat dua fasa yang dianggap sebagai

kritikal iaitu ujian perisian dan penyelenggaraan perisian. Kedua-dua fasa ini memakan

kos yang sangat tinggi, yang meliputi sekitar 40% hingga 67% daripada jumlah kos

pembangunan perisian. Disebabkan isu ini, pelbagai kajian telah dilakukan oleh

penyelidik di dalam kedua-dua fasa ini, terutamanya dalam lapangan berkaitan

penyetempatan kesalahan. Hal demikian kerana mencari punca kesalahan adalah

bahagian penting dalam ujian dan penyelenggaraan perisian.

Pada masa ini, terdapat banyak teknik yang telah dicadangkan seperti program slicing,

code coverage, program state, dan mutation analysis. Walaupun semua teknik ini

menunjukkan peningkatan yang baik dalam penyetempatan kesalahan, namun ternyata

teknik-teknik ini dibuat berdasarkan anggapan bahawa kesalahan disebabkan oleh

kesalahan tunggal sahaja. Secara realitinya, satu kesalahan juga boleh disebabkan oleh

pelbagai kesalahan.

Dalam Penyetempatan Kesalahan Berasaskan Liputan, beberapa teknik telah diusulkan

untuk mengatasi masalah di atas dengan menggunakan formula kecurigaan untuk

mencari lokasi kesalahan. Walau bagaimanapun, formula ini hanya menunjukkan baris
yang mengandungi kesalahan. Ia tidak sesuai untuk kes di mana sesuatu baris yang

mengandungi lebih daripada satu kesalahan. Formula kecurigaan tidak dapat mengenal

pasti operator mana yang salah kerana teknik ini hanya dapat menunjukkan nombor baris

sahaja. Ini memerlukan teknik carian yang membolehkan formula kecurigaan untuk

melakukan analisis terhadap semua operator yang salah sama ada pada baris yang sama

atau nombor baris yang berbeza.

© C
OPYRIG

HT U
PM

iv

Pada masa yang sama, isu berkaitan pelbagai kesalahan adalah lebih rumit di dalam

persekitaran berorientasikan objek.

Objek orientasi mengandungi pelbagai kelas dan fungsi dan ia berkomunikasi melalui

objek. Walaupun objek orientasi terdiri dari berbagai komponen dan fungsi yang lebih
baik dibandingkan dengan pendekatan struktur, ia masih mempunyai masalah yang

berkaitan dengan kesalahan logik, operator, dan gaya program. Mengambil kira tiga

masalah yang berkaitan dengan objek orientasi iaitu kesalahan logik, pengendali, dan

gaya program, jelas kelihatan kesemua masalah ini adalah disebabkan oleh penggunaan

operator. Ini dapat dijelaskan oleh penggunaan operator yang meluas dalam operasi logik

(perbandingan) dan arahan aliran program (keadaan, kaunter, perulangan, dll). Tidak

terkecuali juga gaya pengaturcaraan program di mana ianya berkaitan dengan operator

seperti fungsi, algoritma, pemeriksaan, dan antara muka. Oleh itu, penggunaan operator

dicadangkan dalam penyiasatan penyetempatan pelbagai kesalahan untuk

pengaturcaraan berstruktur dan berorientasikan objek.

Pengenalpastian kebergantungan kesalahan (FDI) dan Analisis Kebergantungan

kesalahan dan lokasi telah dicadangkan untuk menyelesaikan masalah berkaitan

penyetempatan pelbagai kesalahan. FDI direka untuk mendapatkan struktur kelas dan

fungsi serta kebergantungan diantara pelbagai kelas dan fungsi. Ia untuk memastikan

semua objek kelas yang berkaitan diperiksa semasa analisis dijalankan. FDLA pula

direka dengan tujuan untuk mencari lokasi kesalahan dengan melakukan

pengubahsuaian pada sebahagian kod aturcara. Untuk tujuan ini, satu teknik berasaskan

mutase telah dgunakan iaitu Hybrid Genetic Algorithm.

Algoritma Genetik (GA) adalah satu teknik yang popular dalam mencari penyelesaian
yang optimum bagi sesuatu masalah manakala pencarian tempatan pula mampu

menghapus duplikasi. Oleh kerana kedua-duanya mempunyai kelebihan mereka sendiri,

kedua-dua teknik telah digabungkan dalam satu teknik yang dikenali sebagai Hibrid

Algoritma Genetik untuk Penyetempatan Pelbagai Kesalahan (HGAMFL). Eksperimen

telah dilaksanakan pada HGAMFL dan 𝑂𝑝 dengan menggunakan lima Program Java.

Hasil eksperimen dan ujian statistik menunjukkan bahawa terdapat bukti yang kuat

bahawa HGAMFL dapat melaksanakan penyetempatan pelbagai kesalahan lebih

berkesan dan tepat berbanding dengan 𝑂𝑝 untuk keadaan di mana banyak kesalahan

muncul pada baris yang sama atau berbeza.

Sebagai kesimpulan, hasil kajian menunjukkan bahawa gabungan Algoritma Genetik

dan pencarian tempatan telah meningkakan tahap keberkesanan dalam melaksanakan

proses penyetempatan pelbagai kesalahan di dalam program Java. Teknik ini dapat

mengenalpasti kebergantungan antara kesalahan dan menunjukkan koordinat lokasi

yang betul bagi sesuatu kesalahan.

© C
OPYRIG

HT U
PM

v

ACKNOWLEDGEMENTS

Firstly, I would like to express my sincere gratitude to my supervisor, Dr. Khaironi

Yatim Sharif for the continuous support of my Ph.D study and related research, for his

patience, motivation, and immense knowledge. His guidance helped me in all the time
of research and writing of this thesis. I could not imagine having a better advisor and

mentor for my Ph.D study.

Apart from my advisor, I would like to thank the rest of my thesis committee, Prof. Dr

Abdul Azim Abd Aziz, Prof. Madya Dr. Hazura Zulzalil, and Dr. Koh Tieng Wei for

their insightful comments and encouragement, as well as the hard questions which led

me to widen my research from various perspectives.

I thank my fellow labmates for the stimulating discussions, for the sleepless nights of

working before deadlines, and for all the fun we have had in the last five years.

Last but not least, I would like to thank my family, my parents, Mahamad Zakaria M

Kabir Sehib and Normadiah Jamaluddin, and my brothers for supporting me spiritually

throughout writing this thesis and my life in general.

© C
OPYRIG

HT U
PM

vii

This thesis was submitted to the Senate of the Universiti Putra Malaysia and has been

accepted as fulfilment of the requirement for the degree of Doctor of Philosophy. The

members of the Supervisory Committee were as follows:

Khaironi Yatim Sharif, PhD
Senior Lecturer

Faculty of Computer Science and Information Technology

Universiti Putra Malaysia

(Chairman)

Abdul Azim Abd Ghani, PhD
Professor

Faculty of Computer Science and Information Technology

Universiti Putra Malaysia

(Member)

Koh Tieng Wei, PhD

Associate Professor

Faculty of Computer Science and Information Technology

Universiti Putra Malaysia

(Member)

Hazura Zulzalil, PhD

Associate Professor

Faculty of Computer Science and Information Technology
Universiti Putra Malaysia

(Member)

ZALILAH MOHD SHARIFF, PhD

Professor and Dean

School of Graduate Studies

Universiti Putra Malaysia

Date: 08 October 2020

© C
OPYRIG

HT U
PM

viii

Declaration by graduate student

I hereby confirm that:

 this thesis is my original work;

 quotations, illustrations and citations have been duly referenced;

 this thesis has not been submitted previously or concurrently for any other degree at

any institutions;

 intellectual property from the thesis and copyright of thesis are fully-owned by

Universiti Putra Malaysia, as according to the Universiti Putra Malaysia (Research)

Rules 2012;

 written permission must be obtained from supervisor and the office of Deputy Vice-

Chancellor (Research and innovation) before thesis is published (in the form of

written, printed or in electronic form) including books, journals, modules,

proceedings, popular writings, seminar papers, manuscripts, posters, reports, lecture

notes, learning modules or any other materials as stated in the Universiti Putra

Malaysia (Research) Rules 2012;

 there is no plagiarism or data falsification/fabrication in the thesis, and scholarly

integrity is upheld as according to the Universiti Putra Malaysia (Graduate Studies)

Rules 2003 (Revision 2012-2013) and the Universiti Putra Malaysia (Research)

Rules 2012. The thesis has undergone plagiarism detection software

Signature: Date:

Name and Matric No: Muhammad Luqman bin Mahamad Zakaria GS40294

© C
OPYRIG

HT U
PM

x

TABLE OF CONTENTS

Page

ABSTRACT i

ABSTRAK iii

ACKNOWLEDGEMENTS v

APPROVAL vi

DECLARATION viii

LIST OF TABLES xiii

LIST OF FIGURES xv

LIST OF ABBREVIATIONS xviii

CHAPTER

1 INTRODUCTION 1
1.1 Research Background and Motivation 1
1.2 Problem Statement 4
1.3 Research Objectives 5
1.4 Research Scope 6
1.5 Research Contributions 7
1.6 Thesis Organization 7

2 LITERATURE REVIEW 9
2.1 Introduction 9
2.2 Software Maintenance 10
2.3 Software Testing 11
2.4 Fault Localization Technique 12

2.4.1 Single Fault Localization Technique 13
2.4.2 Multiple Fault Localization Technique 15

2.5 Fault dependency 16
2.6 Suspiciousness Formula 18
2.7 Summary of Fault Localization Technique 21
2.8 Possible Technique Identification 25

2.8.1 Backpropagation Neural Network 26
2.8.2 Genetic Algorithm (GA) 27

2.9 Technique Selection 29
2.9.1 Fault Dependency 29
2.9.2 Fault Detection 31
2.9.3 Rank Fault 32
2.9.4 Fault Location 32
2.9.5 Summary of Technique Selection 32

2.10 Mutation in fault localtization 33
2.11 Summary 34

3 RESEARCH METHODOLOGY 35
3.1 Introduction 35
3.2 Literature Review 36

© C
OPYRIG

HT U
PM

xi

3.3 Proposed Technique 36
3.3.1 Define Multiple Faults 36
3.3.2 Suspiciousness Formula Selection 37
3.3.3 Conceptual Design of Technique 38

3.4 Technique Implementation 38
3.5 Empirical Evaluation 39

3.5.1 Dataset 39
3.5.2 Fault Injection 42
3.5.3 Benchmark Tools 44
3.5.4 Performance Measurement 44
3.5.5 Empirical Method 46

3.6 Result Analysis Discussion 46
3.7 Summary 47

4 HYBRID GENETIC ALGORITHM FOR MULTIPLE

FAULT LOCALIZATION (HGAMFL) 48
4.1 Introduction 48
4.2 Proposed Technique for Multiple Faults Localization 48

4.2.1 Defines Multiple Faults 48
4.2.2 Suspiciousness Formula Selection 50
4.2.3 Conceptual Design of Hybrid Genetic Algorithm

for Multiple Fault Localization (HGAMFL) 55
4.2.3.1 Fault Dependency Identification

(FDI) 56
4.2.3.2 Fault Dependency and Location

Analysis (FDLA) 60
4.3 Technique Implementation 71

4.3.1 HGAMFL Architecture 71
4.3.2 Implementation of HGAMFL Prototype 72

4.3.2.1 File Loader 72
4.3.2.2 FDI Result 72
4.3.2.3 FDLA Generated Program 73
4.3.2.4 FDLA Result 74

4.4 Summary 74

5 EMPIRICAL EVALUATION 75
5.1 Introduction 75
5.2 Experimental Definition 75
5.3 Experimental Setup 76

5.3.1 Object Program 76
5.3.2 Fault Localization Technique 77
5.3.3 Variables and Measures 77
5.3.4 Data Analysis and Statistical Test 78

5.4 Experimental Execution 79
5.4.1 Execution Environment 79
5.4.2 Experimental Execution Process 79

5.5 Data Analysis 80
5.5.1 Experimental Data Summarization 81
5.5.2 Model Adequacy Check 84

© C
OPYRIG

HT U
PM

xii

5.5.3 Effectiveness of Multiple Fault Localization

Technique at the Same Line Number (RQ1) 86
5.5.4 Effectiveness of Multiple Fault Localization

Technique at Different Line Number (RQ2) 88
5.5.5 Accuracy of Multiple Fault Localization

Technique (RQ3) 90
5.6 Discussion 92

5.6.1 FDI and FDLA Effectiveness in Localizing

Faults at the Same Location 92
5.6.2 FDI and FDLA Effectiveness in Localizing

Faults at a Different Locations 92
5.6.3 Accuracy of FDI and FDLA in Multiple Fault

Localization 92
5.6.4 Overall Effectiveness and Accuracy of FDI and

FDLA Influenced by Fault Location 93
5.6.5 Overall Effectiveness and Accuracy of FDI and

FDLA Influenced by Fault Dependency 93
5.7 Threats to Validity 94
5.8 Summary 95

6 CONCLUSION 96
6.1 Conclusion 96
6.2 Contribution of the Research 97
6.3 The Implications of the Research 97
6.4 Limitations of Research 98
6.5 Future Work 98

REFERENCES 99
BIODATA OF STUDENT 110
LIST OF PUBLICATIONS 111

© C
OPYRIG

HT U
PM

xiii

LIST OF TABLES

Table Page

2.1 Similarity coefficient 19

2.2 Comparison table of fault localization technique 22

2.3 Comparison of potential techniques implementation 29

2.4 Summary of the technique comparison 33

3.1 Generated Java program 38

3.2 List of Java dataset used in fault localization 41

3.3 Frequency of Java program being used as a dataset 41

3.4 Summary of injected fault for each dataset 43

3.5 Confusion matrix 45

4.1 List of operators in a computer program 50

4.2 Weight to evaluate suspiciousness formula 53

4.3 Result of experiment for 3 dataset 53

4.4 Result of experiment for 10 dataset 54

4.5 Result of experiment for 20 dataset 54

4.6 Result and action of suspiciousness value 59

4.7 List of the population in HGAMFL 62

4.8 Suspiciousness operator’s category 65

5.1 Summary of the Java dataset 77

5.2 Average EXAM Score for multiple faults at the same line number 81

5.3 Average EXAM Score for multiple faults at different line number 81

5.4 Result of accuracy in localizing multiple faults 82

5.5 Data distribution for EXAM score of multiple fault localization at

the same location 84

© C
OPYRIG

HT U
PM

xiv

5.6 Test of data normality for multiple fault localization technique at the

same location 85

5.7 Data Distribution for EXAM score of multiple fault localization at a

different location 85

5.8 Test of data normality for multiple fault localization technique at a

different location 86

5.9 Data distribution for multiple fault localization technique accuracy 86

5.10 Test of data normality for fault localization technique accuracy 86

5.11 Paired sample’s statistical data for fault localization at the same

location 87

5.12 Paired sample’s test result for fault localization at the same location 87

5.13 Paired sample’s statistical data for fault localization at a different

location 89

5.14 Paired sample’s test results for fault localization at a different

location 89

5.15 Paired sample’s statistics of multiple fault localization technique

accuracy 90

5.16 Paired sample’s test result of multiple fault localization technique 91

© C
OPYRIG

HT U
PM

xv

LIST OF FIGURES

Figure Page

1.1 Evolution of software 1

1.2 Challenges faced by a software developer 2

1.3 Total bugs found in the software development phase 3

2.1 Flow of literature review 10

2.2 Effort distribution in software development 11

2.3 Overview of fault localization technique 13

2.4 Example of fault dependency 17

2.5 Mid program source code with fault on the same line number 24

2.6 Mid program source code with fault dependency 24

2.7 Neural network architecture 26

2.8 Phases in the neural network 27

2.9 Overview of GA 28

2.10 Mutation process of operators in source code 30

2.11 Crossover of operators in source code 31

2.12 Network node for operators combination 31

3.1 Overview of the Research Method 35

3.2 Flow process of suspiciousness formula identification 37

3.3 Most Popular and Influential Programming Languages of 2018 40

3.4 Flow of fault injection in source code 42

3.5 Merged process of dataset to generate multiple fault program 43

4.1 Behaviour/location of the fault 49

4.2 Illustration of suspiciousness calculation for four suspiciousness

formula 52

© C
OPYRIG

HT U
PM

xvi

4.3 Overview of HGAMFL 56

4.4 Fault dependency identification phase 57

4.5 Structure of MethodInfo variable 57

4.6 Algorithm to retrieve class and method information 58

4.7 Algorithm to calculate average method suspiciousness 59

4.8 Algorithm to select a faulty method 60

4.9 FDLA by using Hybrid genetic algorithm 61

4.10 Algorithm to generate initial population 62

4.11 Algorithm to calculate suspiciousness for unmodified code 63

4.12 Algorithm to calculate suspiciousness for a single operator 64

4.13 Algorithm to calculate suspiciousness for multiple operators 64

4.14 Algorithm to categorize operators 65

4.15 Algorithm to remove operators 66

4.16 Selection process of the algorithm 67

4.17 Mutation of operators in source code 67

4.18 Algorithm to perform mutation and crossover 68

4.19 Algorithm to mutate and generate program 69

4.20 Crossover of operators in source code 69

4.21 Crossover Algorithm 70

4.22 Algorithm to retrieve the location of the fault 70

4.23 Architecture of HGAMFL 71

4.24 File loader page 72

4.25 Result of FDI execution 73

4.26 Generated program by FDLA 73

4.27 Result of FDLA 74

© C
OPYRIG

HT U
PM

xvii

5.1 Overview of the experiment process 80

5.2 EXAM Score for multiple fault localization at the same line number 83

5.3 EXAM Score for multiple fault localization at different line number 83

5.4 Average accuracy of multiple fault localization 84

5.5 t-distribution graph for fault localization at the same location 88

5.6 t-distribution graph for multiple fault localizations at a different
location 89

5.7 t-distribution graph for multiple fault localization accuracy 91

© C
OPYRIG

HT U
PM

xviii

LIST OF ABBREVIATIONS

SDLC Software Development Life Cycle

GA Genetic Algorithm

HGA Hybrid Genetic Algorithm

HGAMFL Hybrid Genetic Algorithm for Multiple Fault Localization

FDI Fault Dependency Identification

FDLA Fault Dependency and Location Analysis

© C
OPYRIG

HT U
PM

1

CHAPTER 1

1 INTRODUCTION

1.1 Research Background and Motivation

Technology is rapidly changing. To cope with these changes, software development

setting is also drastically changed. For example, the software itself was transformed from

just a stand-alone application or software to a cloud-based application. As shown in

Figure 1.1, software evolution has changed the environment of software development.

Each paradigm experienced different environmental changes such as organization,

middleware, requirements, and functionalities. Software should be maintained to ensure

the functionalities are aligned with the environmental changes.

Figure 1.1 : Evolution of software (Jonathon, 2018)

The new technology requires an effective adaptive maintenance effort to ensure the

particular system works correctly and is adaptable to the latest technology. The

technological changes in a software development setting will directly affect developers

(Mens et al., 2005). Figure 1.2 shows various challenges faced by a software developer

during software development. These challenges are likely to harm the software
development process (Stack Overflow, 2016), even more so if the software developer

lacks the skills, knowledge, and experience. It may cause the software developer to

develop fragile and buggy codes which can affect the produced software quality.

© C
OPYRIG

HT U
PM

2

Figure 1.2 : Challenges faced by a software developer (Stack Overflow, 2016)

Producing and maintaining high-quality software requires specific skills and adoption of

good and controlled development and operation practices (Laporte & April, 2017).

According to ISO/IEC software quality standards, several characteristics need to be

considered during software development such as functionality, reliability, usability,

efficiency, maintainability, and portability (Nuseibeh & Easterbrook, 2000). However,

maintaining software quality is difficult due to software evolution. Evolution of software

could result in higher complexity and more bugs (Basili & Perricone, 1983; Erdweg et

al., 2014).

In this context, McConnel reported that ten defects are found in every 1000 lines of code

(McConnell, 2004). If a new functionality is added into the software, lines of code as

well as bugs and program complexity would also be increased. Due to these facts, more
time is spent by the software developer and tester in the software testing and maintenance

phase. In software maintenance, slow speed of implementation leads to higher cost

during maintenance (Sharif, 2012). It is shown that the cost ranges from 60% to 70% of

the total software development cost (Malhotra & Chug, 2016). Software maintenance

can be categorized into four classes: adaptive, perfective, corrective, and preventive

(Bennett & Rajlich, 2000; Lientz et al., 1978). Among these four classes, fixing faults

requires at least 21% of maintenance effort (Bennett & Rajlich, 2000). The reason is that

software correction can only be performed if the fault location is found. Therefore, fault

identification can be achieved through software testing.

Software testing is one of the critical phases that falls under software engineering. This

phase aims to observe the execution of a software system and validate the behavior of
the system, whether it behaves as intended (Bertolino, 2007). As a result, any part of the

system that contains faults can be detected. Various types of software testing activities

can be executed by the software developer or tester. They involve testing activities on a

© C
OPYRIG

HT U
PM

3

piece of a small code developed by the developer (unit testing), testing during source

code integration (integration testing), testing on the acceptance level of the user against

the system (acceptance testing), and monitoring service applications during run time (M.

Ali & Fairouz, 2015).

Figure 1.3 : Total bugs found in the software development phase

(E. Burton Swanson, 1976)

According to E. Burton Swanson, most software needs to go through software

maintenance due to software failure during execution (Swanson, 1976). As shown in
Figure 1.3, the cost to fix the bugs increases for each stage in software development

(Patton, 2001). The later the bugs are detected during SDLC stages, the higher the cost

incurred as the bugs get more severe. Hence, it is essential to detect bugs as early as

possible. Most of the bugs can be detected during testing and after the software is

released to the user. This demonstrates the importance of conducting a more in-depth

study in finding bugs in computer software. Several techniques had been introduced for

improving the process of finding faults such as fault prediction (B. Li et al., 2014; Rawat

& Dubey, 2012), fault detection (Dunwei Gong & Zhang, 2013; Ko-Li Cheng et al.,

2011), and fault localization (Abreu et al., 2009b; Moon et al., 2014; Sun et al., 2013).

Although fault prediction and detection can help software developers to predict and

detect the location of the faults, both approaches are not able to identify the root cause

of the faults. As suggested by Wotawa, fault localization is more significant as it can
reduce the time taken during debugging and is capable in finding the root cause of the

fault in a program with less effort (Wong et al., 2016). Work on fault localization has

been on-going for a number of years. Various techniques have been proposed to tackle

issues on fault localization as well as reducing its time consumption. With the

$0.10 $1.00
$10.00

$100.00 $100.00

$0.00

$20.00

$40.00

$60.00

$80.00

$100.00

$120.00

C
o

st
 t

o
 fi

x
a

b
u

g

Time when bug found

© C
OPYRIG

HT U
PM

4

improvement of single fault localization technique in recent years, it is now possible to

extend the study to localize multiple faults. However, dealing with multiple faults

requires a different strategy compared to the single fault localization technique due to

the nature of multiple faults that can appear anywhere in a program. Hence, it is

important to ensure that the correct fault is pointed out, and no new faults are generated

during fault localization process (Demott, 2012; DiGiuseppe & Jones, 2015; Sahoo,
2012). This is one of the known challenges in this approach.

Object-oriented framework is designed to support modularity, extensibility, and

reuseability (Fayad & Schmidt, 1997). Eventhough its features provide a better structure

and ease the development process, several authors have shown that these features are

often the limiting factor in object-oriented approach which lead to more bugs in the

program. Some of the faults found during debugging will also generate more bugs in the

program (C. T. Chen et al., 2009; Nguyen et al., 2010). Until 2017, object-oriented

programming such as C++, Java, and Python had been widely used in software

development. As reported by Putano, about 13.27% of software developers had used

Java language in developing a software or application (Putano, 2017). It is believed that

the number of Java language applications will grow in the future. As this can have

serious consequences, it is imperative to better understand how fault localization
techniques could leverage their advantages in dealing with object-oriented.

1.2 Problem Statement

Various works on finding the correct fault on computer programs have been proposed.
Although results indicate that current fault localization techniques are capable of

localizing fault correctly and effectively, they are only tested on a single type of fault

(Wong et al., 2016). In real software, one program might contain more than one type of

fault located at different line numbers (Abreu et al., 2011). Indeed, some of the faults

might be caused by another fault or a combination of faults. Thus, it is essential to

enhance fault localization research from a single type of fault to multiple types of fault.

Zoltar-M (Abreu et al., 2011) and Barinel (Abreu et al., 2009b) are two techniques

proposed to handle multiple faults. Both of the techniques have been executed on

programs containing multiple faults. However, the output for both techniques only

indicates the location of the row containing the error. In a cases where more than one

fault appears on the same row, it is necessary to point out the location more accurately

and show the type of operator identified as a fault since one line can contain more than
one operators.

To deal with multiple faults, a developer cannot simply select all the highest

suspiciousness statements as the root cause of the fault when they appear at different line

numbers. The other fault might trigger some of the faults at different lines. Until the day

the study was conducted, identifying statements in a buggy code that should be

considered as defective among the highest suspiciousness statement (Pearson et al.,

2017) still needs in-depth study. In some cases, it is crucial to inform software developers

which fault they need to look first among the other faults. Therefore, they will not waste

their time fixing the wrong fault. In code coverage, suspiciousness formula is used to

© C
OPYRIG

HT U
PM

5

identify fault locations inside a program (Abreu et al., 2006; S. Ali et al., 2009).

However, determining the fault location alone in a case of multiple faults is not enough

as the formula can only highlight line numbers considered faulty. In a case where a line

contains more than one operator, this formula is not suitable. Suspiciousness formula is

unable to identify which operators are faulty as the technique can only highlight line

numbers. Therefore, a search technique is needed to enable suspiciousness formula to
perform analysis on all faulty operators either on the same line or different line number.

In the same light, multiple faults problem might be more complicated in object-oriented

setting. As described by Mark Stefik, object-oriented is made up of multiple classes and

methods (Stefik & Bobrow, 1985). Each of the class can interact through class objects.

If we observe the interaction between classes, the object will create relationship and

dependency between classes and methods. Indeed, a nested dependency is created if

more than one class is involved. Eventhough object-oriented is made up of various

components and better features compared to structured approach (Booch et al., 2008), it

still has problems related with logical errors, operators, and programmatic styles (Basso

et al., 2009). This paper also suggests that the programmer tends to commit the same

mistake either on structured or object-oriented approach. Considering the three problems

related to object-oriented which are logical errors, operators, and programmatic styles as
suggested by Basso et al., it seems that all of these are underpinned by operators. This

can be explained by the wide usage of operators in logical operations (comparison) and

program flow directive (condition, counter, looping, etc). Likewise, programmers’

programmatic syles also relate to operators such as function, algorithm, checking, and

interface. Hence, operators are suggested in the investigation of multiple fault

localization for both structured and object-oriented programming.

1.3 Research Objectives

The general objective of this study is to improve the existing multiple fault localization

technique. This is done by considering both structured and object-oriented

programming. To achieve this general objective, three sub-objectives have been

outlined:

i. To propose a technique that can analyze fault dependency in multiple fault

localization.

ii. To propose a technique that can localize multiple faults.

iii. To empirically evaluate the effectiveness of the proposed technique against an
existing technique when dealing with multiple faults at similar and different

locations.

© C
OPYRIG

HT U
PM

6

1.4 Research Scope

The scope of this study is limited to:

 Object-oriented framework

This study is focused on the improvement of fault localization technique in the

object-oriented approach. For this purpose, this study only covers faults that

appear in the method level and fault dependency between classes, methods,

statements, and operators. Other faults not stated are not covered and can be

included in future work.

 Software testing

In software testing, several activities can be executed by the software tester to
identify a fault location such as unit testing, integration testing, system testing,

interface testing, regression testingand others. However, this research only

covers two testing activities, which are unit and integration testing. These two

testing activities were chosen based on their significance with code compared

to another activity, which is closer to design. These two activities are also

synonymous with faults that appear in the source code during testing.

 Fault type

In this study, the focused types of error are faults that a developer commonly

does in a method when writing a program. For this purpose, seven categories

of faults are covered, which involve logical error, syntax error, and assignment

error. They are as follows:
o Arithmetic Operator Replacement (AOR).

o Relational Operator Replacement (ROR).

o Conditional Operator Replacement (COR).

o Assignment Operator Replacement (AOR).

o Statement Deletion.

o Replacement of Boolean.

o Absolute Value Insertion.

This study also will cover on the fault dependency between the operators in the
categories above. A combination of the operators will be studied in order to

identify location of faults inside a program.

 Multiple fault localization
Generally, fault localization is divided into two categories, which are single and

multiple fault localization. In this study, the focus is on multiple fault

localization. Three characteristics of a fault considered in this study are as

follows:

o Two or more faults that appear at different line numbers.

o Two or more faults that appear at the same line but at a different

location.

o Any combination of faults either they appear at the same line or at

different line numbers.

© C
OPYRIG

HT U
PM

7

1.5 Research Contributions

This thesis has made the following contributions:

 It defined a new technique of localizing multiple faults by analyze the location

of the fault and its dependencies with another faults. By implemented fault

dependency analysis, the technique is able to locate the fault location for each

behavior below:

o Multiple faults at the same line number.

o Multiple faults at different line numbers.

 It defined a technique to retrieve location accurately. Instead of providing line

number as the output, the technique is able to provide details of the fault such
as operators, row, and column of the fault location.

 It provided empirical evidence that the proposed technique can be effective and

accurate in localizing multiple faults compared to the current approach.

1.6 Thesis Organization

This thesis contains six chapters, including the introductory chapter. In the introductory

chapter, it explains in detail the problem statement, objective of the study, scope of the

study, and thesis organization.

The literature review is described in detail in Chapter Two. Background study of

software testing and maintenance is detailed out. Based on software testing and

maintenance, the study focuses on fault localization. Also, this chapter lists all the

suspiciousness formulas and identifies the formulas used in previous studies. Several

potential techniques are described in this chapter as well. Finally, this chapter highlights

issues for the relevant literature.

Chapter Three describes the methodology used throughout the study. Generally, this

chapter describes all the activities involved in data collection, finding a suitable method
to be implemented in the proposed technique, and preparation of performing data

analysis.

The fourth chapter proposes a new multiple fault localization technique, which combines

local search and a genetic algorithm called HGAMFL. In this chapter, the proposed

technique is explained, including the flow and the algorithm. The implementation of the

proposed technique is also described in this chapter.

© C
OPYRIG

HT U
PM

8

The fifth chapter describes the evaluation planning and experiment execution for this

research. The results of the analysis and interpretation are also presented in this chapter.

The sixth chapter presents the conclusion and future work of this research. In general,

the conclusions are explained and future work for this research are also listed.

© C
OPYRIG

HT U
PM

99

7 REFERENCES

Abreu, R., Zoeteweij, P., & Gemund, A. J. C. van. (2009a). Localizing Software Faults

Simultaneously. 2009 Ninth International Conference on Quality Software,

367–376. https://doi.org/10.1109/QSIC.2009.55

Abreu, R., Zoeteweij, P., & Gemund, A. J. C. van. (2009b). Spectrum-Based Multiple
Fault Localization. 2009 IEEE/ACM International Conference on Automated

Software Engineering, 88–99. https://doi.org/10.1109/ASE.2009.25

Abreu, R., Zoeteweij, P., & van Gemund, A. J. ~C. (2008). A Dynamic Modeling

Approach to Software Multiple-Fault Localization. Proceedings of the 19th

International Workshop on Principles of Diagnosis (DX’08), 7–14.

Abreu, R., Zoeteweij, P., & van Gemund, A. J. C. (2011). Simultaneous debugging of

software faults. Journal of Systems and Software, 84(4), 573–586.

https://doi.org/10.1016/j.jss.2010.11.915

Abreu, R., Zoeteweij, P., & van Gemund, A. J. C. (2007). On the Accuracy of Spectrum-
based Fault Localization. Testing: Academic and Industrial Conference

Practice and Research Techniques - MUTATION (TAICPART-MUTATION

2007), 89–98. https://doi.org/10.1109/TAICPART.2007.4344104

Abreu, R., Zoeteweij, P., & Van Gemund, A. J. C. (2006). An Evaluation of Similarity

Coefficients for Software Fault Localization. 2006 12th Pacific Rim

International Symposium on Dependable Computing (PRDC’06), 39–46.

https://doi.org/10.1109/PRDC.2006.18

Adamopoulos, K., Harman, M., & Hierons, R. M. R. (2004). How to Overcome the

Equivalent Mutant Problem and Achieve Tailored Selective Mutation Using
Co-evolution. In K. Deb (Ed.), Genetic and Evolutionary Computation --

GECCO 2004: Genetic and Evolutionary Computation Conference, Seattle,

WA, USA, June 26-30, 2004. Proceedings, Part II (Vol. 5, Issue 3, pp. 1338–

1349). Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-540-24855-

2_155

Agrawal, H., Horgan, J. R., London, S., & Wong, W. E. (1995). Fault localization using

execution slices and dataflow tests. Proceedings of Sixth International

Symposium on Software Reliability Engineering. ISSRE’95, 143–151.

https://doi.org/10.1109/ISSRE.1995.497652

Agrawal, Hiralal, & Horgan, J. R. (1990). Dynamic program slicing. ACM SIGPLAN
Notices, 25(6), 246–256. https://doi.org/10.1145/93548.93576

Ali, M., & Fairouz, T. (2015). Software Testing Concepts and Operations. In John Wiley

& Sons: Vol. XXXIII (Issue 2). https://doi.org/10.1007/s13398-014-0173-7.2

© C
OPYRIG

HT U
PM

100

Ali, S., Andrews, J. H., Dhandapani, T., & Wang, W. (2009). Evaluating the Accuracy

of Fault Localization Techniques. 2009 IEEE/ACM International Conference

on Automated Software Engineering, 76–87.

https://doi.org/10.1109/ASE.2009.89

Amari, S. (1977). Dynamics of pattern formation in lateral-inhibition type neural fields.
Biological Cybernetics, 27(2), 77–87. https://doi.org/10.1007/BF00337259

Aranda, J., & Venolia, G. (2009). The secret life of bugs: Going past the errors and

omissions in software repositories. 2009 IEEE 31st International Conference

on Software Engineering, 298–308.

https://doi.org/10.1109/ICSE.2009.5070530

Askarunisa, A., Manju, T., & Babu, B. G. (2012). Fault Localization for Java Programs

using Probabilistic Program Dependence Graph. International Journal of

Computer Science Issues, 8(6 6-2), 224–232. http://arxiv.org/abs/1201.3985

Assiri, F. Y., & Bieman, J. M. (2014). Fault Localization for Automated Program Repair:
Effectiveness and Performance. SOFTWARE TESTING, VERIFICATION AND

RELIABILITY Softw. Test. Verif. Reliab. 2014; 00:1–17 Fault, Volume 21(Issue

1), 1–17. https://doi.org/10.1002/stvr

Basili, V. R., & Perricone, B. T. (1983). Software errors and complexity: An empirical

investigation. NASA Goddard Space Flight Center Collected Software

Engineering Papers, 2, 24.

Basso, T., Moraes, R., Sanches, B. P., & Jino, M. (2009). An Investigation of Java Faults

Operators Derived from a Field Data Study on Java Software Faults (Issue

May 2014, pp. 1–13).

Bennett, K. H., & Rajlich, V. T. (2000). Software maintenance and evolution: a

Roadmap K. Proceedings of the Conference on The Future of Software

Engineering - ICSE ’00, 73–87. https://doi.org/10.1145/336512.336534

Bertolino, A. (2007). Software Testing Research: Achievements, Challenges, Dreams.

Future of Software Engineering (FOSE ’07), September, 85–103.

https://doi.org/10.1109/FOSE.2007.25

Booch, G., Maksimchuk, R. A., Engle, M. W., Young, B. J., Connallen, J., & Houston,

K. A. (2008). Object-oriented analysis and design with applications, third

edition. ACM SIGSOFT Software Engineering Notes, 33(5), 29.
https://doi.org/10.1145/1402521.1413138

Bose, I., & Mahapatra, R. K. (2001). Business data mining - A machine learning

perspective. Information and Management, 39(3), 211–225.

https://doi.org/10.1016/S0378-7206(01)00091-X

© C
OPYRIG

HT U
PM

101

Cellier, P., Ducassé, M., Ferré, S., & Ridoux, O. (2008). Formal Concept Analysis

Enhances Fault Localization in Software. In Formal Concept Analysis: Vol.

4933 LNAI (pp. 273–288). Springer Berlin Heidelberg.

https://doi.org/10.1007/978-3-540-78137-0_20

Chapin, N., Hale, J. E., Khan, K. M., Ramil, J. F., Tan, W.-G., amd Khaled Md. Khan,
J. E. H., Ramil, J. F., & Tan, W.-G. (2001). Types of software evolution and

software maintenance. Journal of Software Maintenance and Evolution:

Research and Practice, 13(1), 3–30. https://doi.org/10.1002/smr.220

Chen, C. T., Cheng, Y. C., Hsieh, C. Y., & Wu, I. L. (2009). Exception handling

refactorings: Directed by goals and driven by bug fixing. Journal of Systems

and Software, 82(2), 333–345. https://doi.org/10.1016/j.jss.2008.06.035

Chen, G. (2011). Learning efficient software fault localization via genetic programming

(Issue March) [Chalmers University of Technology].

http://publications.lib.chalmers.se/records/fulltext/156589.pdf

Choi, J.-D., & Ferrante, J. (1994). Static slicing in the presence of goto statements. ACM

Transactions on Programming Languages and Systems, 16(4), 1097–1113.

https://doi.org/10.1145/183432.183438

Coe, R. (2002). It ’ s the Effect Size , Stupid: What effect size is and why it is important.

British Educational Research Association, 1–18.

http://www.cem.org/attachments/ebe/ESguide.pdf

Dallmeier, V., Lindig, C., & Zeller, A. (2005). Lightweight bug localization with

AMPLE. Proceedings of the Sixth Sixth International Symposium on

Automated Analysis-Driven Debugging - AADEBUG’05, 99–104.
https://doi.org/10.1145/1085130.1085143

Debroy, V., & Wong, W. E. (2014). Combining mutation and fault localization for

automated program debugging. Journal of Systems and Software, 90(1), 45–60.

https://doi.org/10.1016/j.jss.2013.10.042

Debroy, V., & Wong, W. E. (2009). Insights on Fault Interference for Programs with

Multiple Bugs. 2009 20th International Symposium on Software Reliability

Engineering, 165–174. https://doi.org/10.1109/ISSRE.2009.14

Delahaye, M., Briand, L. C., Gotlieb, A., & Petit, M. (2012). Mutation-based Statistical

Test Inputs Generation for Automatic Fault Localization Micka¨. 2012 IEEE
Sixth International Conference on Software Security and Reliability, 197–206.

https://doi.org/10.1109/SERE.2012.32

Demott, J. D. (2012). Enhancing Automated Fault Discovery and Analysis. Michigan

State University.

DiGiuseppe, N., & Jones, J. a. (2015). Fault density, fault types, and spectra-based fault

localization. Empirical Software Engineering, 20(4), 928–967.

https://doi.org/10.1007/s10664-014-9304-1

© C
OPYRIG

HT U
PM

102

DiGiuseppe, N., & Jones, J. A. (2011). On the influence of multiple faults on coverage-

based fault localization. Proceedings of the 2011 International Symposium on

Software Testing and Analysis - ISSTA ’11, 210.

https://doi.org/10.1145/2001420.2001446

Dinh-Trong, T., & Bieman, J. M. (2004). Open source software development: a case
study of FreeBSD. 10th International Symposium on Software Metrics, 2004.

Proceedings., 96–105. https://doi.org/10.1109/METRIC.2004.1357894

Erdweg, S., Fehrenbach, S., & Ostermann, K. (2014). Evolution of Software Systems

with Extensible Languages and DSLs. IEEE Software, 31(5), 68–75.

https://doi.org/10.1109/MS.2014.99

Eric Wong, W., Debroy, V., & Choi, B. (2010). A family of code coverage-based

heuristics for effective fault localization. Journal of Systems and Software,

83(2), 188–208. https://doi.org/10.1016/j.jss.2009.09.037

Fayad, M., & Schmidt, D. C. (1997). Object-oriented application frameworks.
Communications of the ACM, 40(10), 32–38.

https://doi.org/10.1145/262793.262798

Foster, K. R., Koprowski, R., & Skufca, J. D. (2014). Machine learning, medical

diagnosis, and biomedical engineering research - commentary. BioMedical

Engineering OnLine, 13(1), 94. https://doi.org/10.1186/1475-925X-13-94

Fowler, M., Beck, K., Brant, J., & Opdyke, W. (2002). Refactoring: Improving the

Design of Existing Code.

Fuchs, S., Williams-Jones, A. E., & Przybylowicz, W. J. (2016). The origin of the gold
and uranium ores of the Black Reef Formation, Transvaal Supergroup, South

Africa. Ore Geology Reviews, 72(P1), 149–164.

https://doi.org/10.1016/j.oregeorev.2015.07.010

Gao, M., Li, P., Chen, C., & Jiang, Y. (2018). Research on Software Multiple Fault

Localization Method Based on Machine Learning. MATEC Web of

Conferences, 232, 01060. https://doi.org/10.1051/matecconf/201823201060

Golafshani, N. (2003). Understanding Reliability and Validity in Qualitative Research.

8(4), 597–606.

Gong, Dandan, Su, X., Wang, T., Ma, P., & Yu, W. (2015). State dependency
probabilistic model for fault localization. Information and Software

Technology, 57, 430–445. https://doi.org/10.1016/j.infsof.2014.05.022

Gong, Dunwei, & Zhang, Y. (2013). Generating test data for both path coverage and

fault detection using genetic algorithms. Frontiers of Computer Science, 7(6),

822–837. https://doi.org/10.1007/s11704-013-3024-3

Hailpern, B., & Santhanam, P. (2002). Software debugging, testing, and verification.

IBM Systems Journal, 41(1), 4–12. https://doi.org/10.1147/sj.411.0004

© C
OPYRIG

HT U
PM

103

Jonathon, A. (2018). How Software-as-a-Service (SaaS) Speeds Up Innovation Cycles.

Jones, J. A., & Harrold, M. J. (2005). Empirical evaluation of the tarantula automatic

fault-localization technique. Proceedings of the 20th IEEE/ACM International

Conference on Automated Software Engineering - ASE ’05, 273.

https://doi.org/10.1145/1101908.1101949

Jones, K. O., & Boizanté, G. (2011). Comparison of Firefly algorithm optimisation,

particle swarm optimisation and differential evolution. Proceedings of the 12th

International Conference on Computer Systems and Technologies -

CompSysTech ’11, 191. https://doi.org/10.1145/2023607.2023640

Ju, X., Jiang, S., Chen, X., Wang, X., Zhang, Y., & Cao, H. (2014). HSFal: Effective

fault localization using hybrid spectrum of full slices and execution slices.

Journal of Systems and Software, 90(1), 3–17.

https://doi.org/10.1016/j.jss.2013.11.1109

Juristo, N., & Vegas, S. (2003). Functional Testing, Structural Testing and Code
Reading: What Fault Type Do They Each Detect? In Empirical Methods and

Studies in Software Engineering Experiences from ESERNET (Vol. 2785, Issue

12, pp. 208–232). https://doi.org/10.1007/978-3-540-45143-3_12

Kampstra, P. (2008). Beanplot: A Boxplot Alternative for Visual Comparison of

Distributions. Journal of Statistical Software, 28(Code Snippet 1), 1–9.

https://doi.org/10.18637/jss.v028.c01

Kessentini, M., Kessentini, W., Sahraoui, H., Boukadoum, M., & Ouni, A. (2011).

Design Defects Detection and Correction by Example. 2011 IEEE 19th

International Conference on Program Comprehension, 81–90.
https://doi.org/10.1109/ICPC.2011.22

Knapp, G. M., & Wang, H.-P. (Ben). (1992). Machine fault classification: a neural

network approach. International Journal of Production Research, 30(4), 811–

823. https://doi.org/10.1080/00207543.1992.9728458

Ko-Li Cheng, Ching-Pao Chang, & Chih-Ping Chu. (2011). Software fault detection

using program patterns. 2011 IEEE 2nd International Conference on Software

Engineering and Service Science, 278–281.

https://doi.org/10.1109/ICSESS.2011.5982308

Korel, B., & Rilling, J. (1998). Dynamic program slicing methods. Information and
Software Technology, 40(11–12), 647–659. https://doi.org/10.1016/S0950-

5849(98)00089-5

Land, M. (1998). Evolutionary algorithms with local search for combinatorial

optimization. University of California, San Diego.

Laporte, C. Y., & April, A. (2017). Software Quality Assurance. In Infection and

Immunity (Vol. 24, Issue 1). John Wiley & Sons, Inc.

https://doi.org/10.1002/9781119312451

© C
OPYRIG

HT U
PM

104

Le Goues, C., Nguyen, T., Forrest, S., & Weimer, W. (2012). GenProg: A Generic

Method for Automatic Software Repair. IEEE Transactions on Software

Engineering, 38(1), 54–72. https://doi.org/10.1109/TSE.2011.104

Li, B., Shen, B., Wang, J., Chen, Y., Zhang, T., & Wang, J. (2014). A Scenario-Based

Approach to Predicting Software Defects Using Compressed C4.5 Model. 2014
IEEE 38th Annual Computer Software and Applications Conference, 406–415.

https://doi.org/10.1109/COMPSAC.2014.64

Li, Q., & Clifford, G. D. (2012). Dynamic time warping and machine learning for signal

quality assessment of pulsatile signals. Physiological Measurement, 33(9),

1491. http://stacks.iop.org/0967-3334/33/i=9/a=1491

Lientz, B. P., Swanson, E. B., & Tompkins, G. E. (1978). Characteristics of application

software maintenance. Communications of the ACM, 21(6), 466–471.

https://doi.org/10.1145/359511.359522

M. Nasrabadi, N. (2007). Pattern Recognition and Machine Learning. Journal of
Electronic Imaging, 16(4), 049901. https://doi.org/10.1117/1.2819119

Ma, Y.-S., Offutt, J., & Kwon, Y.-R. (2006). MuJava. Proceeding of the 28th

International Conference on Software Engineering - ICSE ’06, 827.

https://doi.org/10.1145/1134285.1134425

Mala, D. J., Ruby, E., & Mohan, V. (2010). a Hybrid Test Optimization Framework –

Coupling Genetic Algorithm With Local Search Technique. Computing and

Informatics, 29(1), 133–164.

Malhotra, R., & Chug, A. (2016). Software Maintainability: Systematic Literature
Review and Current Trends. International Journal of Software Engineering

and Knowledge Engineering, 26(08), 1221–1253.

https://doi.org/10.1142/S0218194016500431

Martínez, Y., Cachero, C., & Meliá, S. (2013). Empirical study on the maintainability of

Web applications: Model-driven Engineering vs Code-centric. Empirical

Software Engineering, 1–34. https://doi.org/10.1007/s10664-013-9269-5

Masri, W., Abou-Assi, R., El-Ghali, M., & Al-Fatairi, N. (2009). An empirical study of

the factors that reduce the effectiveness of coverage-based fault localization.

Proceedings of the 2nd International Workshop on Defects in Large Software

Systems Held in Conjunction with the ACM SIGSOFT International Symposium
on Software Testing and Analysis (ISSTA 2009) - DEFECTS ’09, 1.

https://doi.org/10.1145/1555860.1555862

McConnell, S. C. (2004). Code Complete, Second Edition (Vol. 136, Issue 1). Microsoft

Press. https://doi.org/10.1039/c0an90005b

McCusker, K., & Gunaydin, S. (2015). Research using qualitative, quantitative or mixed

methods and choice based on the research. Perfusion, 30(7), 537–542.

https://doi.org/10.1177/0267659114559116

© C
OPYRIG

HT U
PM

105

Mens, T., Wermelinger, M., Ducasse, S., Demeyer, S., Hirschfeld, R., & Jazayeri, M.

(2005). Challenges in Software Evolution. Eighth International Workshop on

Principles of Software Evolution (IWPSE’05), 2005, 13–22.

https://doi.org/10.1109/IWPSE.2005.7

Mohapatra, S. K., & Prasad, S. (2013). Evolutionary Search Algorithms for Test Case
Prioritization. 2013 International Conference on Machine Intelligence and

Research Advancement, 115–119. https://doi.org/10.1109/ICMIRA.2013.29

Moon, S., Kim, Y., Kim, M., & Yoo, S. (2014). Ask the Mutants: Mutating Faulty

Programs for Fault Localization. 2014 IEEE Seventh International Conference

on Software Testing, Verification and Validation, 153–162.

https://doi.org/10.1109/ICST.2014.28

Müller, K.-R., Tangermann, M., Dornhege, G., Krauledat, M., Curio, G., & Blankertz,

B. (2008). Machine learning for real-time single-trial EEG-analysis: From

brain–computer interfacing to mental state monitoring. Journal of

Neuroscience Methods, 167(1), 82–90.
https://doi.org/10.1016/j.jneumeth.2007.09.022

Myers, G. J. (2004). The art of software testing, Second Edition. In … 1991.,

Proceedings of the IEEE 1991 National.

Naish, L., Lee, H. J., & Ramamohanarao, K. (2011). A model for spectra-based software

diagnosis. ACM Transactions on Software Engineering and Methodology,

20(3), 1–32. https://doi.org/10.1145/2000791.2000795

Neill, J. (2007). Qualitative versus Quantitative Research: Key Points in a Classic

Debate. Netcraft.

Nguyen, T. T., Nguyen, H. A., Pham, N. H., Al-Kofahi, J., & Nguyen, T. N. (2010).

Recurring bug fixes in object-oriented programs. Proceedings of the 32nd

ACM/IEEE International Conference on Software Engineering - ICSE ’10, 1,

315. https://doi.org/10.1145/1806799.1806847

Nidhra, S., & Dondeti, J. (2012). Black Box and White Box Testing Techniques.

International Journal of Embedded Systems and Applications (IJESA), 2(2),

29–50.

Nosek, J. T., & Palvia, P. (1990). Software maintenance management: Changes in the

last decade. Journal of Software Maintenance: Research and Practice, 2(3),
157–174. https://doi.org/10.1002/smr.4360020303

Nuseibeh, B., & Easterbrook, S. (2000). Requirements engineering. Proceedings of the

Conference on The Future of Software Engineering - ICSE ’00, 41(4), 35–46.

https://doi.org/10.1145/336512.336523

O’Brien, M. P. (2007). Evolving a Model of the Information-Seeking Behaviour of

Industrial Programmers. In Computer Science: Vol. Ph.D. University of

Limerick.

© C
OPYRIG

HT U
PM

106

Ouni, A., Kessentini, M., Sahraoui, H., & Boukadoum, M. (2013). Maintainability

defects detection and correction: a multi-objective approach. Automated

Software Engineering, 20(1), 47–79. https://doi.org/10.1007/s10515-011-

0098-8

P. Alexandre, A. Rui, W. E. W. (2014). A Survey on Fault Localization Techniques. 1(2),
171–186. https://doi.org/10.1.1.167.966

Papadakis, M., & Le Traon, Y. (2014). Effective fault localization via mutation analysis.

Proceedings of the 29th Annual ACM Symposium on Applied Computing - SAC

’14, 1293–1300. https://doi.org/10.1145/2554850.2554978

Pargas, R. P., Harrold, M. J., & Peck, R. R. (1999). Test-data generation using genetic

algorithms. Journal of Software Testing, Verification and Reliability,

282(January), 263–282. http://profs.info.uaic.ro/~ogh/files/sbse/articles/sbse-

articles-testing/pargas99testdata.pdf

Patton, R. (2001). Software Testing. In Sams Publishing.
http://scholar.google.com/scholar?hl=en&btnG=Search&q=intitle:No+Title#0

Pearson, S., Campos, J., Just, R., Fraser, G., Abreu, R., Ernst, M. D., Pang, D., & Keller,

B. (2017). Evaluating and Improving Fault Localization. 2017 IEEE/ACM 39th

International Conference on Software Engineering (ICSE), August 2016, 609–

620. https://doi.org/10.1109/ICSE.2017.62

Perez, A., Abreu, R., & Riboira, A. (2014). A dynamic code coverage approach to

maximize fault localization efficiency. Journal of Systems and Software, 90(1),

18–28. https://doi.org/10.1016/j.jss.2013.12.036

Prakash, B. V. A., Ashoka, D. V, & Aradya, V. N. M. (2015). Application of Data

Mining Techniques for Defect Detection and Classification. In S. C. Satapathy,

B. N. Biswal, S. K. Udgata, & J. K. Mandal (Eds.), Proceedings of the 3rd

International Conference on Frontiers of Intelligent Computing: Theory and

Applications (FICTA) 2014 (Vol. 327). Springer International Publishing.

https://doi.org/10.1007/978-3-319-11933-5

Putano, B. (2017). Most Popular and Influential Programming Languages of 2018.

https://stackify.com/popular-programming-languages-2018/

Rangwala, S. S., & Dornfeld, D. A. (1989). Learning and Optimization of Machining

Operations Using Computing Abilities of Neural Networks. IEEE Transactions
on Systems, Man and Cybernetics, 19(2), 299–314.

https://doi.org/10.1109/21.31035

Rawat, M. S., & Dubey, S. K. (2012). Software defect prediction models for quality

improvement: A literature study. International Journal of Computer Science

Issues, 9(5 5-2), 288–296.

© C
OPYRIG

HT U
PM

107

Rodríguez, D., Ruiz, R., Riquelme, J. C., & Aguilar–Ruiz, J. S. (2012). Searching for

rules to detect defective modules: A subgroup discovery approach. Information

Sciences, 191, 14–30. https://doi.org/10.1016/j.ins.2011.01.039

Rutenbar, R. a. (1989). Simulated annealing algorithms: An overview. In IEEE Circuits

and Devices Magazine (Vol. 5, Issue 1, pp. 19–26).
https://doi.org/10.1109/101.17235

Sahoo, S. K. (2012). A Novel Invariants-Based Approach For Automated Software Fault

Localization. University of Illinois at Urbana-Champaign.

Salas, E., Rosen, M. A., & DiazGranados, D. (2010). Expertise-Based Intuition and

Decision Making in Organizations. Journal of Management, 36(4), 941–973.

https://doi.org/10.1177/0149206309350084

Santelices, R., Jones, J. a., Yanbing Yu, & Harrold, M. J. (2009). Lightweight fault-

localization using multiple coverage types. 2009 IEEE 31st International

Conference on Software Engineering, 56–66.
https://doi.org/10.1109/ICSE.2009.5070508

Schneidewind, N. F. (1987). The State of Software Maintenance. IEEE Transactions on

Software Engineering, SE-13(3), 303–310.

https://doi.org/10.1109/TSE.1987.233161

Sharif, K. Y. (2012). Observing Open Source Programmers’ Information Seeking (Issue

June). University of Limerick.

Simon, H. A. (1959). Theories of Decision-Making in Economics and Behavioral

Science. The American Economic Review, 49(3), 253–283.
http://www.jstor.org/stable/1809901

Srinivas, M., & Patnaik, L. M. (1994). Genetic algorithms: a survey. Computer, 27(6),

17–26. https://doi.org/10.1109/2.294849

Stack Overflow. (2016). Developer Hiring Landscape 2016 Global Report.

Stefik, M., & Bobrow, D. G. (1985). Object-Oriented Programming: Themes and

Variations. The AI MagazineAI Magazine, 6(4), 40–62.

https://doi.org/10.1609/aimag.v6i4.508

Stephen R., S. (2010). Object-Oriented and Classical Software Engineering (8th ed.).
The McGraw-Hill Companies, Inc.

Sun, C., Zhai, Y. M., Shang, Y., & Zhang, Z. (2013). BPELDebugger: An effective

BPEL-specific fault localization framework. Information and Software

Technology, 55(12), 2140–2153. https://doi.org/10.1016/j.infsof.2013.07.009

Swanson, E. B. (1976). The Dimensions of Maintenance. Proceedings of the 2nd

International Conference on Software Engineering, 492–497.

https://doi.org/10.1017/CBO9781107415324.004

© C
OPYRIG

HT U
PM

108

Venkatasubramanian, V., & Chan, K. (1989). A neural network methodology for process

fault diagnosis. AIChE Journal, 35(12), 1993–2002.

https://doi.org/10.1002/aic.690351210

Weiser, M. (1984). Program Slicing. IEEE Transactions on Software Engineering, SE-

10(4), 352–357. https://doi.org/10.1109/TSE.1984.5010248

Wong, W. E., & Debroy, V. (2009). Software Fault Localization. Technology, 1–6.

Wong, W. E., Debroy, V., Gao, R., & Li, Y. (2014). The DStar Method for Effective

Software Fault Localization. IEEE Transactions on Reliability, 63(1), 290–308.

https://doi.org/10.1109/TR.2013.2285319

Wong, W. E., Gao, R., Li, Y., Abreu, R., & Wotawa, F. (2016). A Survey on Software

Fault Localization. IEEE Transactions on Software Engineering, 42(8), 707–

740. https://doi.org/10.1109/TSE.2016.2521368

Wong, W. E., & Qi, Y. (2006). Effective program debugging based on execution slices
and inter-block data dependency. Journal of Systems and Software, 79(7), 891–

903. https://doi.org/10.1016/j.jss.2005.06.045

Wong, W. E., & Qi, Y. (2009). BP Neural Network-Based Effective Fault Localization.

International Journal of Software Engineering and Knowledge Engineering,

19(04), 573–597. https://doi.org/10.1142/S021819400900426X

Xuan, J., & Monperrus, M. (2014a). Learning to Combine Multiple Ranking Metrics for

Fault Localization. 2014 IEEE International Conference on Software

Maintenance and Evolution, 191–200. https://doi.org/10.1109/ICSME.2014.41

Xuan, J., & Monperrus, M. (2014b). Test case purification for improving fault

localization. Proceedings of the 22nd ACM SIGSOFT International Symposium

on Foundations of Software Engineering - FSE 2014, 52–63.

https://doi.org/10.1145/2635868.2635906

Xue, X., & Namin, A. S. (2013). How significant is the effect of fault interactions on

coverage-based fault localizations? International Symposium on Empirical

Software Engineering and Measurement, 113–122.

https://doi.org/10.1109/ESEM.2013.22

Yu, K., Lin, M., Gao, Q., Zhang, H., & Zhang, X. (2011). Locating faults using multiple

spectra-specific models. Proceedings of the 2011 ACM Symposium on Applied
Computing - SAC ’11, 1404. https://doi.org/10.1145/1982185.1982490

Zeller, A., & Hildebrandt, R. (2002). Simplifying and isolating failure-inducing input.

IEEE Transactions on Software Engineering, 28(2), 183–200.

https://doi.org/10.1109/32.988498

Zhang, L., Zhou, W., & Jiao, L. (2004). Wavelet Support Vector Machine. IEEE

Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, 34(1),

34–39. https://doi.org/10.1109/TSMCB.2003.811113

© C
OPYRIG

HT U
PM

109

Zhang, P., Mao, X., Lei, Y., & Zhang, Z. (2014). Fault localization based on dynamic

slicing via JSlice for Java programs. 2014 IEEE 5th International Conference

on Software Engineering and Service Science, 565–568.

https://doi.org/10.1109/ICSESS.2014.6933631

Zhao, L., & Hayes, J. H. (2011). Rank-based refactoring decision support: Two studies.
Innovations in Systems and Software Engineering, 7(3), 171–189.

https://doi.org/10.1007/s11334-011-0154-3

© C
OPYRIG

HT U
PM

110

8 BIODATA OF STUDENT

Muhammad Luqman bin Mahamad Zakaria was born on 16th Mac 1990 in Subang Jaya

Medical Centre, Malaysia. He obtained his primary school study at SK Bandar Tun

Hussein Onn from 1997-2002. He move further to secondary school at SMK Bandar Tun

Hussein Onn (2) from 2003- 2007.

He was enrolled n Universiti Tun Hussein Onn Malaysia at 2008 and graduated with
Diploma in Information Technology in 2011. He then further his Bachelor Degree at the

same university on 2011 and graduated in Bachelor of Information technology in 2013.

During his study, he had received Chancelor Award during Diploma and Bachelor

graduation.

In 2014, he was enrolled as a student at Universiti Putra Malaysia, where he is currently

pursuing his PhD degree in Software Engineering.

© C
OPYRIG

HT U
PM

111

9 LIST OF PUBLICATIONS

Zakaria, M. L. M., Sharif, K. Y., Ghani, A. A. A., Wei, K. T., & Zulzalil, H. (2016).

fault localization by using hybrid genetic algorithm. 4TH International

Conference e-proceeding of the 3rd World Conferences Artificial Intelligence &

Computer Science 2016.

Zakaria, M. L. M., Sharif, K. Y., Ghani, A. A. A., Wei, K. T., & Zulzalil, H. (2018).

Hybrid Genetic Algorithm for Improving Fault Localization. Advanced Science

Letters, 24(3), 1587–1590. https://doi.org/10.1166/asl.2018.11115

Mahamad Zakaria, M. L., Sharif, K. Y., Abd. Ghani, A. A., Koh, T. W., & Zulzalil,

H. (2018). Finding multiple fault by using Hybrid genetic Algorithm. 2018

Global Conference on Engineering and Applied Science (GCEAS).

https://doi.org/10.1166/asl.2018.11115

	Blank Page

