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NURUL ADILAH BINTI ISMAIL

April 2019

Chair : Geetha Annavi, PhD 
Faculty : Science

Malayan tapir is one of the five tapir species in the world and is listed as 
endangered in the IUCN Red List due to multiple threats such as habitat loss and 
human disturbance that lead to its high population decline. Low population number 
in this species increase the risk of inbreeding that could result in reduction in 
genome-wide genetic variation and particularly risky if it affects the gene 
responsible for immune response i.e. MHC gene. Class I and II MHC genes are 
responsible for encoding MHC molecules in the cells that recognise pathogenic 
peptides and present them to T-Cells on the cell surface for adaptive immune 
response. However, at present there is no study related to MHC gene in Malayan 
tapir yet. This study characterise the MHC peptide-binding region (PBR) of the 
MHC class I and II gene in Malayan tapir by isolating the DNA, amplify the targeted 
region by PCR, cloning and sequencing; investigate if there is evidence of 
balancing selection by calculating the rate of non-synonymous (dN) and 
synonymous (dS) substitutions using MEGA and PAML and study its relationship 
with homologous genes of other species based on phylogenetic tree construction 

alongside two DRA, two DQA, three DRB and three DQB of class II alleles were

evidence of selection with dN /dS > 1. A total of 24 codons within exon 2 DRB gene 
were found to be under selection with ten of the codons under positive selection 
sites (PSS) are part of the codons forming the Antigen Binding Site (ABS). Class 

compared to other species indicating possibility of two different loci. Within class 
II genes, all genes show species specific monophyletic group formation except for 
DRB genes with intersperse relationship in their phylogenetic trees which may 
indicate occurrence of trans-species polymorphism of allelic lineage. To maintain 
and improve the variation within the MHC gene, it is recommended to genotype 
tapir at the MHC gene to avoid mating with similar MHC allele and variation. 
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sebagai memenuhi keperluan untuk ijazah Master Sains
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GEN KELAS I DAN II PADA TAPIR MALAYA (Tapirus indicus Desmarest)

Oleh

NURUL ADILAH BINTI ISMAIL

April 2019

Pengerusi : Geetha Annavi, PhD 
Fakulti : Sains

Tapir Malaya adalah salah satu daripada lima spesis tapir di dunia dan 
disenaraikan sebagai haiwan terancam dalam Senarai Merah IUCN berikutan 
pelbagai ancaman seperti kehilangan habitat dan gangguan manusia yang 
mengakibatkan penurunan populasi yang tinggi. Jumlah populasi yang rendah 
dalam kalangan spesis ini meningkatkan lagi risiko pembiakbakaan dalam yang 
memungkinkan lagi pengurangan dalam variasi genetik sekitar genom dan 
terutamanya amat berisiko sekiranya ia mendatangkan kesan terhadap gen yang 
bertanggungjawab terhadap respons imun, contohnya gen KKM. Gen KKM Kelas 
I dan II bertanggungjawab dalam pengekodan molekul-molekul KKM di dalam sel 
yang bertindak mengenal pasti peptida berpatogen dan membawa ia ke Sel-Sel T 
pada permukaan sel untuk penyesuaian respons imun. Walau bagaimanapun, 
setakat ini tidak terdapat sebarang kajian yang berkaitan dengan gen KKM dalam 
kalangan tapir Malaya. Kajian ini mengelaskan sempadan peptida yang 

peptide-binding r kepada gen KKM kelas I dan II dalam 
tapir Malaya dengan mengasingkan DNA, menggandakan sempadan yang 
disasarkan dengan PCR, pengklonan dan penjujukan; untuk menyiasat sekiranya 
wujud bukti akan pemilihan pengimbangan dengan mengira kadar pengganti 
ketidaksinoniman (dN) dan kesinoniman (dS) menggunakan MEGA dan PAML dan 
mengkaji hubungannya dengan gen berhomolog daripada spesis-spesis lain 
berdasarkan pokok/ranting filogenetik menggunakan model evolusi. Dalam kajian 
ini, terdapat sekurang-kurangnya lima 
DRA, dua DQA, tiga DRB, dan tiga DQB alel kelas II yang telah diasingkan. 

pemilhan dengan dN /dS > 1. Sejumlah 24 kodon dalam ekson 2 gen DRB didapati 
berada di bawah pemilihan dengan 10 kodon di bawah tapak pemilihan positif 
(TPP) adalah sebahagian daripada kodon yang membentuk Tapak Ikatan Antigen 
(TIA). Turutan-turutan 
pada pokok filogenetik apabila dibandingkan dengan spesis-spesis lain 
menandakan kemungkinan wujudnya dua loci berlainan. Manakala dalam gen 
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kelas II, kesemua gen menunjukkan pembentukan kumpulan monofiletik yang 
spesifik terhadap spesis kecuali gen DRB yang menunjukkan hubungan selerak 
dalam pokok filogenetiknya yang mungkin menandakan kewujudan polimorfisme 
spesis trans terhadap leluhur alel. Untuk mengekalkan dan menambah baik 
variasi dalam gen KKM, adalah dicadangkan untuk menggenotipkan tapir pada 
peringkat gen KKM bagi mengelakkan pengawanan dengan alel dan variasi KKM 
yang serupa.
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this domain respectively. Dashes indicate missing 
sequences. Putative ABSs were defined according to 
Reche and Reinherz (2003) and are marked with asterisk
mark above the sequence.
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4.17 Amino acid sequence identity for the Malayan tapir Tapirus 
indicus class II exon 2 DQB clones, human (Homo 
sapiens), equids (Equus caballus), bovine (Bos taurus), 
boar (Sus scrofa) and dog (Canis familiaris). The GenBank 
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accession numbers for DQB (exon2) sequences from 
other mammals are L34101 (HLA_DQB050101), 
JQ254070 (E_caballus_EqcaDQB100101), JQ254069 
(E_caballus_EqcaDQB100201), DQ093609 
(Bos_taurus_BoLa_DQB), AY459300 
(Sus_Scrofa_SLADQB1ax), and AF016905 
(Canis_familiaris_DQB10010). Numbers above the 
sequence 
Single letters and dots represent amino acids that are 
distinct from or identical to Tapirus indicus sequence for 
this domain respectively. Dashes indicate missing 
sequences. Putative ABSs were defined according to 
Reche and Reinherz (2003) and are marked with asterisk 
mark above the sequence.

4.18
sequences from Malayan tapir Tapirus indicus, equids, 
rhinoceros and other mammals including human and 
bovine. Bayesian posterior probabilities above 50% are 
shown above the branches. Tapirus indicus sequences in 
this tree are T_indicus_exon2_SMC154, 
T_indicus_exon2-THC1515, T_indicus_MLC158, 
T_indicus_BYC157 and T_indicus_MLC1522. The 
outgroup for this tree is M_rufogriseus_MaruUA01. 
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4.19
sequences from Malayan tapir Tapirus indicus, equids, 
rhinoceros and other mammals including human and 
bovine. Bayesian posterior probabilities above 50% are 
shown above the branches. Tapirus indicus sequences in 
this tree are T_indicus_exon3_SMC154, 
T_indicus_exon3-BDC153, T_indicus_exon3, and 
T_indicus_exon3_MLC156. The outgroup for this tree is 
M_rufogriseus_MaruUA01. 
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4.20
sequences from Malayan tapir Tapirus indicus, equids, 
rhinoceros and other mammals including human and fish 
(outgroup). Bayesian posterior probabilities above 50% 
are shown above the branches. Tapirus indicus 
sequences from this study in this tree are T.indicus_LR 
and T.indicus_PR. The outgroup in this tree is 
A_platyrthynchos_DRA.
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4.21
sequences from Malayan tapir Tapirus indicus, equids, 
rhinoceros and other mammals including human bovine 
and canine. Bayesian posterior probabilities above 50%
are shown above the branches. Tapirus indicus 
sequences in this tree are T.indicusDQA1 and 
T.indicusDQA2. The outgroup in this tree is 
canis_latrans_DQA01701.
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4.22
sequences from Malayan tapir Tapirus indicus, equids and 
other mammals including human and bovine. Bayesian 
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posterior probabilities above 50% are shown above the 
branches. Tapirus indicus sequences in this tree are 
T_indicus_BDDRbB32, T_indicus_LRDRB33, and 
T_indicus_THDRB1. The outgroup in this tree is 
F_passerinus_DRB. 

4.23
sequences from Malayan tapir Tapirus indicus, equids, 
rhinoceros and other mammals including human and 
canine. Bayesian posterior probabilities above 50% are 
shown above the branches. Tapirus indicus sequences in 
this tree are T_indicus_LRdqb3, T_indicus_bydqb9, and 
T_indicus_MLdqb5. The outgroup for this tree is 
canis_familiaris_DQb100101.
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A1 Figure above shows letter of approved permit for blood 
collection from six Malayan tapir with restricted conditions. 
The permit was approved by Ministry of Natural Resources 
and Environment (NRE) through Department of Wildlife 
and National Park (DWNP) in 2016.
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A2 Sequence confirmation for Malayan tapir MHC class I exon 
2 isolated sequence SMC154  using BLAST program. The 
figure shows list of sequences most similar to the Malayan 
tapir sequence with the highest similarity at the top of the 
list. The figure also max score, total score, query cover, 
calculated e-value, percentage of identification and 
accession numbers of the sequence list. Generally, e-
value lower than 1 is considered strong association of 
similarity.
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A3 Sequence confirmation for Malayan tapir MHC class I exon 
2 isolated sequence THC1515  using BLAST program. 
The figure shows list of sequences most similar to the 
Malayan tapir sequence with the highest similarity at the 
top of the list. The figure also max score, total score, query 
cover, calculated e-value, percentage of identification and 
accession numbers of the sequence list. Generally, e-
value lower than 1 is considered strong association of 
similarity.
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A4 Sequence confirmation for Malayan tapir MHC class I exon 
2 isolated sequence MLC158  using BLAST program. The 
figure shows list of sequences most similar to the Malayan 
tapir sequence with the highest similarity at the top of the 
list. The figure also max score, total score, query cover, 
calculated e-value, percentage of identification and 
accession numbers of the sequence list. Generally, e-
value lower than 1 is considered strong association of 
similarity.
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A5 Sequence confirmation for Malayan tapir MHC class I exon 
2 isolated sequence BYC157  using BLAST program. The 
figure shows list of sequences most similar to the Malayan 
tapir sequence with the highest similarity at the top of the 
list. The figure also max score, total score, query cover, 
calculated e-value, percentage of identification and 
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accession numbers of the sequence list. Generally, e-
value lower than 1 is considered strong association of 
similarity.

A6 Sequence confirmation for Malayan tapir MHC class I exon 
2 isolated sequence MLC1522 using BLAST program. The 
figure shows list of sequences most similar to the Malayan 
tapir sequence with the highest similarity at the top of the 
list. The figure also max score, total score, query cover, 
calculated e-value, percentage of identification and 
accession numbers of the sequence list. Generally, e-
value lower than 1 is considered strong association of 
similarity.
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A7 Sequence confirmation for Malayan tapir MHC class I exon 
3 isolated sequence BDC153 using BLAST program. The 
figure shows list of sequences most similar to the Malayan 
tapir sequence with the highest similarity at the top of the 
list. The figure also max score, total score, query cover, 
calculated e-value, percentage of identification and
accession numbers of the sequence list. Generally, e-
value lower than 1 is considered strong association of 
similarity.
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A8 Sequence confirmation for Malayan tapir MHC class I exon 
3 isolated sequence MLC158 using BLAST program. The 
figure shows list of sequences most similar to the Malayan 
tapir sequence with the highest similarity at the top of the 
list. The figure also max score, total score, query cover, 
calculated e-value, percentage of identification and 
accession numbers of the sequence list. Generally, e-
value lower than 1 is considered strong association of 
similarity.
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A9 Sequence confirmation for Malayan tapir MHC class I exon 
3 isolated sequence MLC156  using BLAST program. The 
figure shows list of sequences most similar to the Malayan 
tapir sequence with the highest similarity at the top of the 
list. The figure also max score, total score, query cover, 
calculated e-value, percentage of identification and 
accession numbers of the sequence list. Generally, e-
value lower than 1 is considered strong association of 
similarity.
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A10 Sequence confirmation for Malayan tapir MHC class I exon 
3 isolated sequence SMC154  using BLAST program. The 
figure shows list of sequences most similar to the Malayan 
tapir sequence with the highest similarity at the top of the 
list. The figure also max score, total score, query cover, 
calculated e-value, percentage of identification and 
accession numbers of the sequence list. Generally, e-
value lower than 1 is considered strong association of
similarity.
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A11 Sequence confirmation for Malayan tapir MHC class II 
DQA exon 2 isolated sequence BYDQA using BLAST 
program. The figure shows list of sequences most similar 
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to the Malayan tapir sequence with the highest similarity at 
the top of the list. The figure also max score, total score, 
query cover, calculated e-value, percentage of 
identification and accession numbers of the sequence list. 
Generally, e-value lower than 1 is considered strong 
association of similarity.

A12 Sequence confirmation for Malayan tapir MHC class II 
DQA exon 2 isolated sequence LRDQA using BLAST 
program. The figure shows list of sequences most similar 
to the Malayan tapir sequence with the highest similarity at 
the top of the list. The figure also max score, total score, 
query cover, calculated e-value, percentage of 
identification and accession numbers of the sequence list. 
Generally, e-value lower than 1 is considered strong 
association of similarity.
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A13 Sequence confirmation for Malayan tapir MHC class II 
DQB exon 2 isolated sequence MLdqb5 using BLAST 
program. The figure shows list of sequences most similar 
to the Malayan tapir sequence with the highest similarity at 
the top of the list. The figure also max score, total score, 
query cover, calculated e-value, percentage of 
identification and accession numbers of the sequence list. 
Generally, e-value lower than 1 is considered strong 
association of similarity.
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A14 Sequence confirmation for Malayan tapir MHC class II 
DQB exon 2 isolated sequence LRdqb3 using BLAST 
program. The figure shows list of sequences most similar 
to the Malayan tapir sequence with the highest similarity at 
the top of the list. The figure also max score, total score, 
query cover, calculated e-value, percentage of 
identification and accession numbers of the sequence list. 
Generally, e-value lower than 1 is considered strong 
association of similarity.
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A15 Sequence confirmation for Malayan tapir MHC class II 
DQB exon 2 isolated sequence bydqb9 using BLAST 
program. The figure shows list of sequences most similar 
to the Malayan tapir sequence with the highest similarity at 
the top of the list. The figure also max score, total score, 
query cover, calculated e-value, percentage of 
identification and accession numbers of the sequence list. 
Generally, e-value lower than 1 is considered strong 
association of similarity.
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A16 Sequence confirmation for Malayan tapir MHC class II 
DRA exon 2 isolated sequence LR9 using BLAST 
program. The figure shows list of sequences most similar 
to the Malayan tapir sequence with the highest similarity at 
the top of the list. The figure also max score, total score, 
query cover, calculated e-value, percentage of 
identification and accession numbers of the sequence list. 
Generally, e-value lower than 1 is considered strong 
association of similarity.

124



© C
OPYRIG

HT U
PM

xxii

A17 Sequence confirmation for Malayan tapir MHC class II 
DRA exon 2 isolated sequence PR6 using BLAST 
program. The figure shows list of sequences most similar 
to the Malayan tapir sequence with the highest similarity at 
the top of the list. The figure also max score, total score, 
query cover, calculated e-value, percentage of 
identification and accession numbers of the sequence list.
Generally, e-value lower than 1 is considered strong 
association of similarity.
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A18 Sequence confirmation for Malayan tapir MHC class II 
DRB exon 2 isolated sequence TuahDRB7 using BLAST 
program. The figure shows list of sequences most similar 
to the Malayan tapir sequence with the highest similarity at 
the top of the list. The figure also max score, total score, 
query cover, calculated e-value, percentage of 
identification and accession numbers of the sequence list. 
Generally, e-value lower than 1 is considered strong 
association of similarity.
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A19 Sequence confirmation for Malayan tapir MHC class II 
DRB exon 2 isolated sequence BDE32 using BLAST 
program. The figure shows list of sequences most similar 
to the Malayan tapir sequence with the highest similarity at 
the top of the list. The figure also max score, total score, 
query cover, calculated e-value, percentage of 
identification and accession numbers of the sequence list. 
Generally, e-value lower than 1 is considered strong 
association of similarity.
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A20 Sequence confirmation for Malayan tapir MHC class II 
DRB exon 2 isolated sequence LRE33 using BLAST 
program. The figure shows list of sequences most similar 
to the Malayan tapir sequence with the highest similarity at 
the top of the list. The figure also max score, total score, 
query cover, calculated e-value, percentage of 
identification and accession numbers of the sequence list. 
Generally, e-value lower than 1 is considered strong 
association of similarity.
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A21
DRA and DQA) sequences from Malayan tapir Tapirus 
indicus, equids, rhinoceros and other mammals including 
human and bovine. Bayesian posterior probabilities above 
50% are shown above the branches.
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A22
DRB and DQB) sequences from Malayan tapir Tapirus 
indicus, equids, rhinoceros and other mammals including 
human and bovine. Bayesian posterior probabilities above 
50% are shown above the branches.
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CHAPTER 1

INTRODUCTION

The Major Histocompatibility Complex (MHC) gene is a multigene family in 
vertebrates that plays important roles in adaptive immune system (Kimura, 1980; 
Klein, 1986; Janeway, Travers, Walport, & Shlomchik, 2001).This gene plays 
essential role in encoding cell surface glycoprotein known as MHC molecules. 
The MHC molecules are encoded by two major classes of the MHC gene which 
are class I and II genes. For example, in human class I genes are HL-A, HLA-B, 
and HLA-C while the class II genes are DR, DP, DQ ( Penn, 2002; Blum, 
Wearsch, & Cresswell, 2013).

When a cell is invaded with foreign pathogens such as viruses and bacteria, both 
class I and II MHC molecules will bind and present fragments of the foreign 

-cells and B-cells (Alberts et al., 
2013). The T cells and B cells, once activated will initiate immediate immune 
response such as lysis of the infected cells. Perhaps due to its important function
to recognise wide range of pathogens, the MHC gene is the most polymorphic 
genes in vertebrates (Janeway, Travers, Walport, & Shlomchik, 2001). The high 
diversity in the gene, particularly at the MHC gene that encode the peptide 
binding region (PBR) of the MHC molecules, is attributed to balancing selection, 
a type of selection that maintains the high allelic frequency and nucleotide 
diversity in the population (Hughes & Hughes, 1995; Llaurens, Whibley, & Joron, 
2017; Koenig et al., 2019).

In most protein coding gene where selection is neutral, the rate of synonymous 
nucleotide substitutions (substitution that does not result in change in amino 
acid) is greater than the non-synonymous nucleotide substitutions (substitutions 
than results in changes in amino acid). This is because, non-synonymous 
nucleotide substitutions tend to change the amino acid and therefore are likely 
to be deleterious (Graur & Li, 2000). However, MHC gene that encode for the 
PBR of MHC molecule, has been observed to display higher rate of non-
synonymous nucleotide substitutions than synonymous nucleotide substitutions. 
The higher rates in this gene may signal that the allele carrying the MHC gene 
is under selection could be advantageous in the population ( Li, 1993; Brandt, 
César, Goudet, & Meyer, 2018). This scenario is common in the MHC gene that 
encode for different species across multiple vertebrates taxa such as European 
badger M. meles (Sin, Dugdale, Newman, Macdonald, & Burke, 2012b, 2012a),
Koala P. cinereus (Cheng et al., 2018) and Spotted pardalote P. punctatus
(Balasubramaniam, Mulder, Sunnucks, Pavlova, & Melville, 2017). Furthermore, 
individuals that are heterozygotes at the MHC gene are deemed to be 
advantageous to survival as their MHC molecules can recognise wide range of 
pathogens (Nelson et al., 2004; Osborne et al., 2015; Phillips et al., 2018). In 
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contrast, individuals with reduced MHC diversity would have limited ability to 
recognise range of pathogens.  
 
 
Malayan tapir (Tapirus indicus) is one of the five tapir species that belongs to the 
family Tapiridae and Order Perissodactyla. Currently, this species is listed as an 
endangered species in the IUCN Red List due to multiple factors predominated 
by habitat loss and human disturbance. Present Malayan tapir worldwide 
population is estimated to be only around 2000-2500 individuals, with 1000-1700 
residing in Malaysia forest, thus calls for more efforts to conserve this mammal 
(Traeholt et al., 2016).  
 
 
Among existing conservation efforts for this species include captive breeding and 
wild population monitoring. However, one of the most challenging factor that 
make it harder to recover from the low population number is that Malayan tapir 
has slow reproduction rate whereby they can generally produce one calf every 
two years after a long gestation period (390-395 days) (Barongi, 1993). The 
small number of population further increases the risk of inbreeding, which could 
lead to inbreeding depression in the population (Sommer, 2005; Benton et al., 
2018). 
 
  
Inbreeding which characterised by the loss of genetic variability including at the 
MHC loci will therefore decrease their ability to fight pathogens and increase their 
susceptibility towards diseases (Hedrick & Miller, 1994; Keller & Waller, 2002; 
Spielman, Brook, & Frankham, 2004) .The loss of genetic variability could 
happen when there is lack of allelic exchange between isolated populations. As 
their ability to fight pathogens decreases, the risk of extinction increases as a 
result of low adaptive flexibility and increased vulnerability to disease (Parmar et 
al., 2017). 
 
 
One of the unfortunate situations can be observed in the case of Tasmanian devil 
(Ujvari & Belov, 2011). The reduced MHC diversity in this species due to 
inbreeding causes the MHC class I gene to lose ability to recognise infectious 
tumour invading this species as foreign and therefore, causes the tumour to 
spread even more (Morris, Wright, Grueber, Hogg, & Belov, 2015) Brien 
(1985) also reported high mortality in inbred cheetah due to coronavirus-
associated feline infectious peritonitis. However, it is not clear in this study if this 
is the effect of genome wide inbreeding or caused by observed reduction in MHC 
variation in this species.  
 
 
Infectious disease is dangerous particularly in endangered species such as 
Malayan tapir because it can wipe out the entire species population (Lafferty & 
Gerber, 2002; Parmar et al., 2017). Hence, adaptive genetic variation is an 
essential part of evolution and of high importance for long-term of a species 
(Smith, Acevedo-Whitehouse, & Pedersen, 2009; Hedrick, 2012). While studies 
on neutral genetic variation such as microsatellite markers, provides information 
on demographic history of natural population, adaptive variation provides 
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evidence of selective processes that act on the gene as a result of Malayan tapir 
s

infectious disease (Sommer, 2005). As mentioned above, because MHC 
molecule interact with antigen to trigger immune response, it is important for the 
host to possess MHC genetic variations to confer disease resistance. Balancing 
selection that accounts for MHC gene diversity, also results in perseverance of 
individual alleles and strongly differentiated allelic lineages in mammals including 
the Malayan tapir (Sommer, 2005; Parmar et al., 2017).  Therefore, MHC gene 
is essential marker to assess genetic variation related to disease resistance in 
host natural population. While extensive studies have been done on MHC gene 
in human and several vertebrates, there is no study that has focused on MHC 
gene in the endangered Malayan tapir. Therefore, characterisation of the gene 
would provide basic understanding on the MHC gene in Malayan tapir.

1.1 Objectives

This study aims to: 

1) Characterise the MHC class I and II genes that encode for PBR in Malayan
tapir
2) Investigate whether Malayan tapir MHC genes belongs to monophyletic group
3) Investigate if there is occurrence of trans-species polymorphism.

Characterisation of this gene in Malayan tapir will facilitate our understanding on 
the evolutionary process that influences the MHC gene diversity in this species. 
Essentially, this study will serve as basis for further studies on MHC variability, 
mate choice and pathogen resistance in Malayan tapir.
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