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By

SITI NUR ALWANI BINTI SALLEH

July 2020

Chairman: Norfifah binti Bachok @ Lati, PhD
Institute: Institute for Mathematical Research

This study focuses on the problem of steady laminar boundary layer flow past a con-
tinuously moving thin needle in a nanofluid. Four different problems are considered
by using two types of nanofluid model which are Tiwari and Das (2007) and Boun-
giorno (2006) models. The Tiwari and Das (2007) model is applied for the first
two problems, namely (i) forced convection flow past a moving horizontal thin nee-
dle in a nanofluid with slip effect and convective boundary condition and (ii) mixed
convection flow past a moving vertical thin needle in a nanofluid. Meanwhile, the
Boungiorno (2006) model is considered for the next two problems, namely (iii) free
convection flow past a moving horizontal thin needle in a nanofluid with chemical re-
action and heat generation and (iv) mixed convection flow past a moving vertical thin
needle in a nanofluid with the magnetic field effect. The governing coupled partial
differential equations are transformed into nonlinear ordinary differential equations
by adopting suitable similarity transformations. The bvp4c solver is used to solve the
given system of equations through MATLAB software. The influences of the govern-
ing parameters which include the needle thickness, velocity ratio, mixed convection
or buoyancy, nanoparticle volume fraction, Brownian motion, thermophoresis, slip,
convective or Biot number, chemical reaction, heat generation and magnetic on the
characteristics of the flow, heat and mass transfer are analyzed. The physical quanti-
ties of interest such as the skin friction coefficient, the heat and mass transfer rate as
well as the velocity, temperature and concentration distribution are graphically pre-
sented through graphs, and discussed further with the variation of governing parame-
ters. Since all the problems possess dual solutions, the stability analysis is performed
to identify which of the solutions are linearly stable. Validation of the present work
is done by comparing the current results with those available in the literature and
found to be in an excellent agreement. It is noticed in this work that the decrement
in the needle thickness increases the skin friction coefficient, heat and mass trans-
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fer rate as well as widening the domain of the dual solutions obtained. Also, the
study shows that the dual solutions exist when the needle surface and the buoyancy
force are against the direction of the fluid motion. In Tiwari and Das problems, it is
noted that the addition of nanoparticle volume fraction offers a greater skin friction
coefficient. It also increases the heat transfer rate for the thin surface of the nee-
dle, and in the meantime decreases the heat transfer rate for the thick surface of the
needle. Meanwhile, for the Buongiorno problems, it is found that the higher Brow-
nian motion rate diminishes the heat and mass transfer rate in the flow. Similarly,
the heat transfer rate decreases with higher values of the thermophoresis parameter,
while the opposite effect is seen for the mass transfer rate. It is noticed in the sta-
bility analysis that the solution for the upper branch is always stable. Meanwhile,
the solution for the lower branch indicates both stable and unstable solutions for the
problem of forced convection flow. Nevertheless, other problems such as free and
mixed convection flow, the lower branch solution represents an unstable solution.
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ALIRAN OLAKAN LAPISAN SEMPADAN TERHADAP JARUM NIPIS
YANG BERGERAK DI DALAM NANOBENDALIR DENGAN ANALISIS

KESTABILAN

Oleh

SITI NUR ALWANI BINTI SALLEH

Julai 2020

Pengerusi: Norfifah binti Bachok @ Lati, PhD
Institut: Institut Penyelidikan Matematik

Kajian ini memfokuskan masalah aliran lapisan sempadan yang mantap berlamina
terhadap jarum nipis yang sentiasa bergerak di dalam nanobendalir. Empat masalah
yang berbeza dipertimbangkan dengan menggunakan dua jenis model nanobendalir
iaitu, model Tiwari dan Das (2007) dan model Buongiorno (2006). Model Tiwari
dan Das (2007) digunakan untuk dua masalah yang pertama, iaitu (i) aliran olakan
paksa melepasi jarum nipis mendatar yang bergerak di dalam nanobendalir dengan
kesan slip dan keadaan sempadan olakan dan (ii) aliran olakan campuran melepasi
jarum nipis menegak yang bergerak di dalam nanobendalir. Sementara itu, model
Buongiorno (2006) dipertimbangkan untuk dua masalah yang berikutnya, iaitu (iii)
aliran olakan bebas melepasi jarum nipis mendatar yang bergerak di dalam nanoben-
dalir dengan tindak balas kimia dan penjanaan haba dan (iv) aliran olakan campuran
melepasi jarum nipis menegak yang bergerak di dalam nanobendalir dengan kesan
medan magnet. Persamaan pembezaan separa menakluk terganding telah dijelmakan
kepada persamaan pembezaan biasa tak linear dengan menggunakan penjelmaan ke-
serupaan yang bersesuaian. Pakej bvp4c digunakan untuk menyelesaikan sistem
persamaan yang diberi melalui perisian MATLAB. Pengaruh parameter menakluk
yang merangkumi ketebalan jarum, nisbah halatuju, olakan campuran atau keapun-
gan, pecahan isipadu nanozarah, gerakan Brown, termoforesis, gelincir, olakan atau
nombor Biot, tindak balas kimia, penjanaan haba dan magnet ke atas ciri-ciri ali-
ran, pemindahan haba dan jisim dianalisis. Kuantiti fizikal seperti pekali geseran
kulit, kadar pemindahan haba dan jisim serta profil halaju, suhu dan kepekatan di-
tunjukkan secara bergraf melalui rajah, dan dibincangkan dengan lebih lanjut dengan
variasi parameter menakluk. Oleh kerana kesemua masalah mempunyai penyele-
saian dual, analisis kestabilan dilakukan untuk mengenal pasti penyelesaian mana
yang stabil. Pengesahan kajian ini dilakukan dengan membandingkan penyelesaian
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semasa dengan kajian terdahulu dan didapati hasil perbandingan sangat baik. Diper-
hatikan dalam kajian ini bahawa pengurangan ketebalan jarum meningkatkan pekali
geseran kulit, kadar pemindahan haba dan jisim serta meluaskan domain penye-
lesaian dual yang diperoleh. Kajian ini juga menunjukkan bahawa penyelesaian
dual wujud apabila permukaan jarum dan daya keapungan melawan arah gerakan
bendalir. Dalam masalah Tiwari dan Das, didapati bahawa penambahan pecahan
isipadu nanozarah menyumbang kepada pekali geseran kulit yang lebih besar. Ia
juga meningkatkan kadar pemindahan haba untuk permukaan jarum yang nipis, dan
dalam masa yang sama menurunkan kadar pemindahan haba untuk permukaan jarum
yang tebal. Sementara itu, untuk masalah Buongiorno, didapati bahawa kadar ge-
rakan Brown yang lebih tinggi mengurangkan kadar pemindahan haba dan jisim di
dalam aliran. Begitu juga, kadar pemindahan haba berkurangan dengan nilai pa-
rameter termoforesis yang tinggi, manakala kesan sebaliknya dilihat untuk kadar pe-
mindahan jisim. Diperhatikan dalam analisis kestabilan bahawa penyelesaian untuk
cabang atas adalah sentiasa stabil. Sementara itu, penyelesaian untuk cabang bawah
menunjukkan kedua-dua penyelesaian stabil dan tidak stabil untuk masalah aliran
olakan paksa. Walau bagaimanapun, masalah-masalah lain seperti aliran olakan be-
bas dan campuran, penyelesaian cabang bawah mewakili penyelesaian yang tidak
stabil.
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CHAPTER 1

INTRODUCTION

1.1 Fluid Dynamics

Fluid dynamics is one of the two main branches of fluid mechanics, which is
concerned with the motion of fluids such as liquids and gases, and their interactions
as two fluids are in contact with each other. The other branch of fluid mechanics is
fluid statics, which deals with the study of fluids at rest (White, 2011). However,
this branch may be considered a bit less appealing than fluid dynamics. Fluid
dynamics is also known as hydrodynamics, and it would be more convenient to say
that when the fluid dynamics is applied to liquids in motion. Otherwise, when the
fluid dynamics are applied to gases in motion, it is called aerodynamics (Batchelor
and Batchelor, 2000; White, 2011). Since two-thirds of the Earth’s surface consists
of water and the planets are surrounded by the atmosphere’s layer, hence, there
are many applications involving fluid dynamics. For instance, it provides ways for
studying the evolution of stars, ocean currents, plate tectonics, weather patterns,
climate trends and even circulation of the blood (Batchelor and Batchelor, 2000).

Fluid dynamics can be studied either experimentally or computationally. In this
study, we consider the computational study in which all the problems considered in
this thesis would be computed numerically. This numerical approach is successfully
applied to our problems with the help of mathematical software. All the physical
phenomena for each problem are demonstrated in the mathematical model. By rep-
resenting such physical problems in the mathematical model, it assists to explain the
behavior of the problem in mathematical form.

1.2 Research Background

In this section, all the definitions of the important terms for this research are ex-
plained in detail. To understand the problems very well, we need to know what kind
of effects or parameters that we want to use, and how these affect the flow system.
The terms used for the present study are discussed in the following Subsection 1.2.1
until Subsection 1.2.8.

1.2.1 Boundary Layer Theory

In fluid mechanics, the boundary layer exists everywhere when there is an interac-
tion between the surface and the fluid flowing over it where the influences of the
viscosity are important. The concept of the boundary layer was first introduced by
a German engineer, Ludwig Prandtl in 1904 at the third International Congress of
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Mathematicians (Acheson, 1990). According to Prandtl’s theory, the fluid in the
boundary layer is subjected to friction forces. The velocity range exists across the
boundary layer from maximum to zero gives the fluid is in contact with the solid
surface. Typically, the boundary layers are thinner at the leading edge (upstream
portion) of the surface and thicker toward the trailing edge (downstream portion).
At the leading or upstream portion, the flow in the boundary layer is laminar,
meanwhile, at the trailing or downstream portion, the flow is turbulent.

In Prandtl’s theory, the boundary layer flow can be divided into two regions (Ander-
son, 2005). First is a tiny region near the solid boundary where the viscous effects
and rotation cannot be ignored. In this region, the effect of friction is to cause the
fluid immediately adjacent to the surface to stick to the surface or can be assumed as
the no-slip condition occurs at the surface. The second is an outer region away from
the solid boundary where the viscous effects are small enough and can be ignored
(Schlichting, 1979). In this region, the flow is essentially inviscid flow or similar to
the upstream flow. In this case, a potential flow must be considered. The boundary
layer theory has many practical applications in aerodynamics, including, heat trans-
fer occurs in high-speed flight, skin friction drag on the object and wing stall. The
formation of the boundary layer can be seen in Figure 1.1.

Figure 1.1: Formation of boundary layer
(https://en.wikipedia.org/wiki/Boundary layer)

1.2.2 Heat Transfer

Heat transfer plays an important role in some kind of application in fluid dynamics.
In terms of the thermodynamic system, heat transfer is the transmission of thermal
energy across the boundary of the system due to the temperature difference between
the system and the surroundings (Ling et al., 2016). The heat will flow from
the high-temperature reservoir to the low-temperature reservoir which is a direct
consequence of the second law of thermodynamics. Heat transfer also occur within
the system due to the difference in temperature at various points inside the system.
The difference in temperature is said to be potential that leads the heat flow and the
heat itself (known as a flux). Heat transfer can take place through three principal
mechanisms which are conduction, radiation and convection as can be seen in Figure
1.2 (see Wong (1977) and Çengel and Ghajar (2011)). These three mechanisms are
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described as follows:

1. Conduction is the transfer of heat between two bodies that kept in contact with
each other (see Ghassemi and Shahidian (2017)). It relies on the difference
in temperature of the hot and cold body. In this process, when the body is
heated, the molecules will gain more energy and vibrate. As a consequence,
these molecules hit with the adjoining molecules and transfer some of their
energy to them. An example of conduction heat transfer is heating one end of
the metal rod and due to the mechanisms of heat conduction, the other end of
the metal rod also gets heated.

2. Radiation heat transfer is a phenomenon of the transmission of energy from
one body to another by propagation through a medium (Howell et al., 2010).
These two bodies must have different temperatures and separated by distance.
All bodies persistently emit energy through electromagnetic radiation (see
Geankoplis (2003)). The intensity of such energy flux depends both on the
temperature of the body and surface characteristics. For instance, if we place
our hands near the campfire, most of the heat that reaches us is called radiant
energy. Another example of radiation heat transfer is Sun’s energy coming on
the earth.

3. Convection heat transfer is a process by which heat is transferred by the
movement or circulation of the heated parts of the fluid such as water or air.
It involves the combined effect of conduction and fluid motion. Typically,
convection takes place in mixtures or soft solids in which the solid particles
can move through each other. Convection can be classified into two types;
natural or free convection and forced convection by depending on how the
motion of the fluid is initiated.

Natural convection occurs when the motion of the fluid is driven by buoy-
ancy forces resulting from the density variations due to the temperature
difference (Pop and Ingham, 2001). In the absence of external source
and when the fluid is in contact with a hot surface, its molecules separate
and clutter causing the fluid to be less dense. Consequently, the fluid is
displaced while the cooler fluid gets denser and the fluid sinks. Hence,
the hotter layer of the fluid transfers the heat towards the cooler ones. A
familiar example of natural convection is when the pot of water is heated
from the bottom. Forced convection or also known as heat advection is
the movement of fluid resulting from the external forces like a pump,
fan or suction device. This convection is commonly used to enhance the
rate of heat exchange. Some examples of the forced convection are heating
and cooling of parts of the body by blood circulation and fluid radiator system.

Interestingly, the combination of forced and free convection will generate
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mixed convection. It occurs when these two convections act together to
transfer heat. In this case, both buoyancy forces and pressure forces interact.
The temperature, orientation, flow and geometry are the main components
to compute the quantity of each form of convection that contributes to the
evacuation of heat. Some applications of the mixed convection are nuclear
reactor and electronic cooling. In general, mixed convection can be described
in two ways (see Çengel (2007)).

First is an aiding or assisting flow. In this case, free convection aids forced
convection. This can be seen when the buoyant motion is in the same direction
as the forced motion and consequently, accelerating the boundary layer and
increasing the heat transfer (Çengel and Ghajar, 2007). As a result, delay the
transition to the turbulent flow (Abedin et al., 2012). An example of this case
is a fan blowing upward on a hot surface. Since heat naturally ascends, the air
is forced upward over the surface leads to the heat transfer.

Second is an opposing flow. In this case, free convection acts in the opposite
way of the forced convection. For instance, a fan forcing air upward over a
cold surface (Çengel and Ghajar, 2007). In such a situation, the buoyant force
of cold air naturally causes the air to fall, however, the air being forced upward
resists the free motion. This case will cause strong shear in the boundary layer
and rapidly transitions into a turbulent flow.

Among these three mechanisms of heat transfer, convection is more related to fluid
dynamics. Hence, the present study only deals with this kind of heat transfer mech-
anism.

Figure 1.2: Mechanisms of heat transfer
(https://science4fun.info/heat-transfer)
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1.2.3 Mass Transfer

In contrast to the heat transfer, mass transfer generally refers to the relative motion
of some chemical species in a mixing process driven by concentration gradients
as shown in Figure 1.3. During the mass transfer process, molecules or other
small particles spontaneously mix and moving from high-concentration regions to
low-concentration regions (Çengel and Ghajar, 2011). The mass transfer can take
place in a single phase or over the phase boundaries in multiphase systems. It is
commonly used in engineering for the physical processes that involve diffusive and
convective transport of chemical species within physical systems (Smith et al., 2005).

Furthermore, heat and mass transfer are kinetic processes that may occur jointly or
separately (Çengel and Ghajar, 2011). In diffusion and convection cases, it is most
appropriate to realize that both processes are modeled by similar mathematical equa-
tions. Thus, it is more suitable to consider them jointly. Some common applications
of mass transfer processes are the purification of the blood in the liver and kidney, the
distillation of alcohol, evaporation of water from a pond to the atmosphere, combus-
tion, absorbers such as stripping or scrubbers and activated carbon beds, separation
of the chemical component in distillation columns and liquid-liquid extraction.

Figure 1.3: Mass transfer processes
(http://ecoursesonline.iasri.res.in/mod/page/view.php?id=2367)

1.2.4 Nanofluid

In fluid dynamics, the thermal conductivity of heat transfer fluid plays a key role
in the development of heat transfer applications. Many kinds of research and
development processes have been done for enhancing heat transfer properties of
conventional heat transfer fluids. The conventional heat transfer fluids such as
lubricants, ethylene glycol, kerosene, oil and water have become less favorable and
reach their thermal performance limitation in certain applications (Bachok et al.,
2010). To overcome such a situation and satisfy the cooling process requirement,
new kinds of fluid are needed to reach the thermal efficiency of heat exchangers
in the future. Following this, Choi (1995) solved the problem by combining
nanometer-sized particles called nanoparticles with the diameter is less than 100 nm
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(see Figure 1.4) into the conventional fluids. This mixture is known as a nanofluid.

Nanoparticles consist of different materials, for instance, metals, nanotubes, ceram-
ics, alloys, semiconductors and composite particles. Interestingly, nanofluids possess
strong suspension stability and the ability to move without clogging the flow system.
Nanofluid also has some special behaviors such as it is very stable and does not
have any additional problems including erosion, sedimentation, additional pressure
drop or non-Newtonian behavior (Khanafer et al., 2003). These good features of
nanofluid are due to the tiny dimension of nanoelements in the fluid. In recent years,
nanofluid has many practical applications since it has good thermal performance in
the heat transfer. Nanofluid has the potential of being a new generation of coolants
particularly in the biomedical applications, heat exchangers, electronic cooling and
automotive cooling applications (Saidur et al., 2011; Huminic and Huminic, 2012;
Colangelo et al., 2017; Selvaraj and Krishnan, 2020).

Figure 1.4: Physical model of nanofluid
(Kakaç and Pramuanjaroenkij, 2009)

There are two models that describe the transport behavior in nanofluid; one is a
model proposed by Boungiorno (2006) and the second is a model proposed by Tiwari
and Das (2007) as given below:

1. Buongiorno model is known as a non-homogeneous or two-component model
in which the slip velocity of the base fluid and nanoparticles are non-zero.
This model comprises of several slip mechanisms such as Brownian diffusion,
inertia, the effect of Magnus, gravity, fluid drainage, diffusiophoresis and
thermophoresis. It is worth mentioning that, the thermophoretic diffusion and
Brownian movement of nanoparticles are two significant effects that enhance
the thermal conductivity of ordinary or base fluids.

(a) Brownian motion is defined as random motion of particles suspended in
a fluid due to collisions with the molecules of the surrounding medium
(see Albert (1956)).

(b) Thermophoresis is defined as a motion of particles suspended in fluid
influenced by a temperature gradient (see Duhr and Braun (2006)).
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2. In contrast to the Buongiorno model, Tiwari and Das model is a homogeneous
or a single component model in which the base fluid and nanoparticles are in
thermal equilibrium flowing at uniform velocity and there is no slip condition
occurs between them. This model considers the viscosity model proposed
by Brinkman (1952) and Maxwell-Garnet thermal conductivity (see Maxwell
(1881)) and it takes into consideration the influence of the nanoparticle volume
fraction. The thermal conductivity of nanofluid increases significantly with an
increase in the nanoparticle volume fraction rate. This consequently increases
the performance of heat transfer in a system. In the published work by Jang
and Choi (2007), they proved that only a small amount of the solid volume
fraction is required to ensure the effectiveness and efficiency of the conventioal
heat transfer fluids.

Thereafter, Nield and Kuznetsov (2009) and Kuznetsov and Nield (2013) conti-
nued the Buongiorno’s work by applying the new boundary condition that has ther-
mophoresis and Brownian movement parameter in the energy and concentration
equations. The presence of these two parameters is to generate their effects directly
into the equations. Hence, the temperature and concentration are paired in a particu-
lar way, and consequently, the thermal and concentration buoyancy effects also being
paired in the usual way (Zaimi et al., 2014). This proposed model is called a revised
model where the nanoparticle fraction on the boundary is controlled passively rather
than actively.

1.2.5 Thin needle

The term thin needle simply means a parabolic revolution about its axes direction in
addition to the variable thickness (Lee, 1967). It is considered thin when its thick-
nesses do not exceed the boundary on it or smaller. The topic of thin needle seems
very famous due to the movement of the needle that distracts the free stream flow.
This criterion is the main concern of the flow and heat transfer process in order
to compute the velocity and temperature distributions in experimental studies. The
boundary layer flow over a thin needle is of considerable importance in the medicine
and engineering industries. For instance, it is commonly used in hot wire anemome-
ter or protected thermocouple for calculating the wind velocity, transportations, cir-
culatory problems, transportation and coating of wires. The study of the thin needle
in the boundary layer flow is first discussed by Lee (1967).

There are two types of thin needle that we have considered in this study, namely
horizontal and vertical surfaces. Figures 1.5 and 1.6 present the physical models of
the horizontal and vertical thin needle, respectively. It is important to note that, in the
case of a vertical thin needle, there exist buoyancy forces due to the pressure exerted
on the surface by the fluid. Hence, we can say that there exists mixed convection
in the vertical case. Meanwhile, for the horizontal case, free and forced convection
occur.

7



© C
OPYRIG

HT U
PM

Figure 1.5: Physical model of horizontal thin needle

Figure 1.6: Physical model of vertical thin needle

1.2.6 Types of Effects

In this study, several physical effects such as partial slip, convective boundary condi-
tion, chemical reaction, heat generation and also magnetohydrodynamics have been
taken into consideration in order to analyze their impact on the characteristics of
the flow, heat and mass transfer. The detail explanation of the effects are described
below:

1. Partial Slip

In recent years, a large number of slip flow models are proposed to illustrate
the slip phenomenon occurring at the solid boundaries. Previously, it has
been proven that the presumption of flow that adheres no-slip condition on
the boundary is no longer appropriate in certain situations, namely rarefied
gas flows in micro-scale tools and some coated surfaces (Wang, 2002). It
is necessary to be changed by a partial slip condition especially in cases
of suspensions, emulsions, polymer solutions and foams (Yoshimura and
Prud’homme, 1988).
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The study of the fluid flow in restricted geometries is highly affected by slip at
the liquid-solid interface. In recent studies, it is shown that the velocity of the
fluid near the solid surface is not equal to the velocity of the solid surface. This
kind of phenomenon is known as a boundary slip which proposed by Navier
(1827). The equation that represents the partial slip condition or first-order
slip can be defined as:

u(x,y) = Ls
∂u
∂y

, (1.2.1)

where u is the velocity of the fluid, Ls is the slip length, ∂u/∂y is the shear
rate at the boundary and y is the coordinate tangential to the surface (see
Navier (1827) and Andersson (2002)).

Experimental and theoretical studies suggest that at the liquid-solid interface,
the existence of nanobubbles is accountable for boundary slip. A partial or
full slip can occur at the liquid-solid interface under certain circumstances.
The slip effect can be described by the slip length or the slip ratio. There are
some factors that affect the slip length, for example, weak wall fluid attraction,
high shear rates and also surface roughness.

2. Convective Boundary Condition

The convection or convective boundary condition is also known as the
Newton boundary condition in heat transfer processes. It corresponds to the
presence of convection heating or cooling at the surface and it is obtained
from the surface energy balance (Çengel and Ghajar, 2011). In some practical
applications, the convective boundary condition is possibly the most common
boundary condition encountered since most heat transfer surfaces are exposed
to a convective situation. This condition presumes that the heat conduction at
the surface of the substance is equivalent to the heat convection at the surface
in a similar direction. Given the fact that since the boundary cannot store the
energy, the net heat entering the surface from the convective edge must leave
the surface from the conduction edge.

The study of the convective boundary condition in the boundary layer flow
was initiated by Aziz (2009). In the study, he assumed that the bottom of the
surface is heated by convection from a hot fluid at temperature Tf which gives
a heat transfer coefficient h f . Hence, the boundary condition at the surface
(y = 0) can be written as:

−k
∂T
∂y

(x,0) = h f
[
Tf −T (x,0)

]
, (1.2.2)

It is important to mention that the dimensionless quantity involved in this sit-
uation is the Biot number (see Makinde and Olanrewaju (2011)).
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3. Chemical Reaction

The chemical reaction is a reaction that occurs due to the presence of a foreign
mass in a fluid (Muthucumaraswamy, 2002). In many chemical reactions, the
reaction rate depends on the concentration of the species itself. The chemical
reactions which take place between nanoparticles and conventional fluid can
be categorized as a homogeneous or heterogeneous reaction (Chambré and
Young, 1958). A reaction that occurs consistency in a single phase such as
gaseous, liquid, or solid is called a homogeneous reaction. A heterogeneous
reaction is a reaction that involves two or more phases like solid and gas, solid
and liquid, two immiscible liquids, and it takes place within the boundary of a
phase.

A chemical reaction is called a first-order reaction, if the reaction rate is di-
rectly proportional to the concentration itself (Muthucumaraswamy, 2002).
Thus, the term that represents the chemical reaction can be expressed as fol-
lows (see Najib et al. (2017a) and Mabood et al. (2016a)):

Chemical reaction⇒ K∗(C−C∞), (1.2.3)

where K∗ is the dimensionless reaction rate, C is the fluid concentration in the
boundary layer and C∞ is the ambient concentration.

4. Heat Generation

Heat generation is a conversion of one form of energy such as nuclear,
electrical or chemical energy into thermal or heats energy inside a solid. Due
to the mechanism of heat generation, the heat source or generator produces a
hot fluid layer adjacent to a solid surface which may exert strong influence on
the heat transfer characteristics (Vajravelu, 1986). As an example, consider
a system undergoing an exothermal reaction raises the temperature of the
system. The system here is the solid and the thermal energy increase in this
solid is known as heat generated.

According to Vajravelu (1986), the analysis of temperature distribution influ-
enced by generation or absorption of heat in moving fluids is significant in
some physical problems such as:

(a) Problems dealing with exothermic or endothermic chemical reactions,
and

(b) Problems concerned with dissociating fluids.

Nowadays, many investigations are dealing with heat generation in the fluids.
Although, exact modeling of internal heat generation or absorption is quite
tough, some simple mathematical models can express its average behavior
for most physical situations (Hakeem et al., 2014). Due to the importance
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of energy conservation, the study of heat generation is a priority in scientific
instrumentation and nuclear reactor engineering. Heat pumps and heat
absorption chillers are essential in the industry due to advantages in renewable
utilization and waste heat recovery.

The term that defines the heat generation in the energy equation is taken as
(see Vajravelu (1986)):

Heat generation⇒ Q∗

ρCp
(T −T∞), (1.2.4)

where Q∗ is the dimensionless heat generation, ρCp is the volumetric heat
capacity, T is the fluid temperature and T∞ is the ambient temperature.

5. Magnetohydrodynamics

Magnetohydrodynamics or MHD is the study of the behavior of electrically
conducting fluids such as liquid metals, plasmas, electrolytes and saltwater
acted on by the magnetic fields. The term “magnetohydrodynamics” is derived
from the words “magneto” which means the magnetic field, “hydro” is the
water and “dynamics” is a movement. The field of magnetohydrodynamics
was proposed by Alfvén (1942), a Swedish electrical engineer and plasma
physicist. Generally, the important concept of magnetohydrodynamics is that
the magnetic fields can induce electrical currents in a moving conductive fluid
which later polarizes the fluid particle and gradually changes the magnetic
field itself.

Physically, the applied magnetic field plays an essential role in controlling
momentum and heat transfer in the boundary layer flow past certain surfaces
in various fluids. It is worth mentioning that, the intensity and the orienta-
tion of the applied magnetic field are two main factors that influenced the
characteristics of the flow. The exerted magnetic field has strongly changed
the heat transfer performance in the flow by manipulating the suspended par-
ticles and also rearranged their concentration in the fluid (Hakeem et al., 2015).

The term for the magnetohydrodynamics in the flow can be defined as (see
Chakrabarti and Gupta (1979) and Hakeem et al. (2015)):

Magnetohydrodynamics⇒
ωB2

0
ρ

u, (1.2.5)

in which ω is the electrical conductivity, ρ is the density, B0 is the uniform
magnetic field imposed along y-axis and u is the velocity component along
x-axis.
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1.2.7 Stability Analysis

Stability analysis is an analysis for identifying the stability of the solutions obtained.
This analysis was initiated by Wilks and Bramley (1981) since, in their problem,
they obtained dual solutions for the mixed convection in the boundary layer flow.
According to their study, it is noticed that the bifurcation point is found to be
different from the point of vanishing skin friction in comparison with Falkner-Skan
solutions. In the Falkner-Skan case, the numerical evidence in the work by Chen
and Libby (1968) had distinguished the upper branch solutions as stable, whilst the
lower branch solutions are unstable in a specific range of pressure gradient parameter.

The results displayed in the published paper by Wilks and Bramley (1981) indicate
that the minimum eigenvalue for the upper branch solution can be identified by the
absence of zeroes in the eigenfunction which show the positive value indicating
all higher eigenvalues must then necessarily be positive. In contrast to that, the
lower branch solutions obtain both negative and positive eigenvalues. Thus, these
solutions must be considered asymptotically unstable. Four years later, Merkin
(1985) continued to study the stability analysis on the dual solutions for the mixed
convection flow in a porous medium by considering a simple time-dependent
problem (see Merkin (1985) for the detail). It is concluded from the study that for
a general time-dependent problem, the upper and lower branches of possible steady
states are stable and unstable, respectively.

Nevertheless, some cases considering moving surfaces preclude the simple eigen-
value problem obtained by Merkin (1985). To overcome suah a situation, Weidman
et al. (2006) suggested that the practical aspect can be determined by initial growth or
decay. In their work, they checked the stability of the steady flow solution f = f0(η)
satisfying the given boundary-value problem by adapting the method discussed by
Merkin (1985) as follows:

f (η ,τ) = f0(η)+ e−γτ F(η ,τ), (1.2.6)

where F(η ,τ) is a small relative to f0(η) and γ is the eigenvalue. According to
Weidman et al. (2006), the initial growth or decay (at t = 0) of the above equation
can be identified by assuming τ = 0 and hence, F can be written as F0(η). It is worth
mentioning that the stability of solutions is significant in physical problems because
if there is a slight deviation from the mathematical model caused by the unavoidable
error in measurement, the mathematical equations describing the problem will not
be able to accurately predict the future outcome.

1.2.8 Dimensionless Parameters

In fluid dynamics, there are several important dimensionless quantities used to pre-
dict the fluid behavior patterns in some cases of fluid flow problems. The followings
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are the dimensionless parameters that we are going to use in the present study:

1. Prandtl Number

Prandtl number, Pr is a dimensionless parameter approximating the ratio of
momentum diffusivity or kinematic viscosity to thermal diffusivity (Coulson
and Richardson, 1999). The Prandtl number is named after the German physi-
cist Ludwig Prandtl in 1904. The Prandtl number is important because it can
be used to compute the thermal conductivity of gases at high temperatures, in
which it is difficult to measure experimentally.

It is important to note that when Pr is small (Pr << 1), it means that the heat
diffuses quickly compared to the velocity. This causes the thermal boundary
layer is much thicker than the velocity boundary layer for the liquid metals.
In contrast to that, when Pr is large (Pr >> 1), it means that the momentum
diffusivity dominates the fluid behavior (Kothandaraman, 2006). For gaseous
water (steam) with a relatively low thermal conductivity, both velocity and
thermal boundary layers are of the same order of magnitude. In this case, the
Prandtl number is about 1 (Schlichting and Gersten, 2017).

The Prandtl number can be expressed as:

Pr =
ν

α
=

µCρ

k
=

viscous diffusion rate
thermal diffusion rate

, (1.2.7)

where ν is the kinematic viscosity or momentum diffusivity, α is thermal dif-
fusivity, µ is the dynamic viscosity, Cρ is the specific heat at the constant
pressure and k is the thermal conductivity.

2. Reynolds number

The Reynolds number, Re is defined as the ratio of inertial forces to vis-
cous forces and is a suitable parameter used to determine whether the fluid
flow is laminar or turbulent (Schlichting and Gersten, 2017). The concept
of Reynolds number is proposed by Anglo-Irish physicist and mathematician,
Stokes (1851). In 1883, Osborne Reynolds has popularized its use, and this
concept is named after Arnold Sommerfeld in 1908 (Rott, 1990).

The Reynolds number is one of the main controlling parameters in all viscous
flows where it can be interpreted that when the Reynolds number is small, the
viscous forces are dominant. Thus, the flow will be laminar. Otherwise, if the
Re is larger, the inertial forces will dominate over the viscous forces. Hence,
the flow will be turbulent. In the laminar case, the flow is characterized by
smooth and constant fluid, while in a turbulent case, the flow tends to produce
vortices, chaotic eddies and other flow instabilities (Acheson, 1990).
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The Reynolds number can be defined as:

Re =
ρuL

µ
=

uL
ν

=
inertial force
viscous force

, (1.2.8)

where ρ is the density, u is the velocity of the fluid, L is a characteristic linear
dimension, µ is the dynamic viscosity and ν is the kinematic viscosity.

3. Nusselt number

Nusselt number, Nu is defined as the ratio of convective to conductive heat
transfer at a boundary in a fluid (Çengel and Ghajar, 2011). It is named after
Wilhelm Nusselt, who made important contributions to the science of con-
vective heat transfer (Çengel, 2002). Convection involves both fluid motion
(advection) and diffusion (conduction). In hypothetically motionless fluid, the
conductive component is measured under the same conditions as the convec-
tive. Noteworthy, the greater the value of Nusselt number, the more effective
the convection compared to conduction.

The Nusselt number can be defined as:

Nu =
h

k/L
=

convective heat transfer
conductive heat transfer

, (1.2.9)

where h is the convective heat transfer coefficient of the flow, k is the thermal
conductivity of the fluid and L is the characteristic length. When Re = 1, it
represents heat transfer by pure conduction (Çengel, 2002).

4. Schmidt number

Schmidt number, Sc is a dimensionless number representing the ratio of mo-
mentum diffusivity (kinematic viscosity) to mass diffusivity (Bergman and
Incropera, 2011). The Schmidt number is named after German engineer Ernst
Heinrich Wilhelm Schmidt (1892–1975). It works to characterize fluid flows
in which there are simultaneous momentum and mass diffusion convection
processes. The Schmidt number physically relates the relative thickness of the
hydrodynamic layer and mass transfer boundary layer.

The Schmidt number are defined as (Bergman and Incropera, 2011):

Sc =
ν

D
=

viscous diffusion rate
mass diffusion rate

, (1.2.10)

where ν is the kinematic viscosity and D is the mass diffusivity.

5. Grashof Number
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Grashof number, Gr is defined as the ratio between the buoyancy forces and
viscous forces acting on a fluid in the momentum or velocity boundary layer
(Çengel, 2002). It is named after Franz Grashof. The Grashof number is
essential in some cases of fluid flow due to natural convection. It is analogous
to the Reynolds number in forced convection.

The Grashof number can be expressed as (Çengel, 2002):

Gr =
gβ (Tw−T∞)L3

ν2 =
buoyant force
viscous force

, (1.2.11)

where g is acceleration due to gravity, β is the thermal expansion coefficient,
Tw is the wall temperature, T∞ is the bulk temperature, L is the vertical length
and ν is the kinematic viscosity. It is important to note that when Gr << 1,
the viscous force is negligible compared to the buoyancy and inertial forces
(Çengel, 2002).

6. Sherwood Number

Sherwood number is defined as the ratio of the convective mass transfer to the
rate of diffusive mass transport (Heldman, 2003). It is applied in the analy-
sis of mass transfer systems such as liquid-liquid extraction. The Sherwood
number is named in honor of Thomas Kilgore Sherwood and represents the
effectiveness of mass convection at the surface.

The Sherwood number is given as follows (Heldman, 2003):

Sh =
h

D/L
=

convective mass transfer rate
diffusion rate

, (1.2.12)

where h is the convective mass transfer, D is the mass diffusivity and L is a
characteristic length.

7. Biot Number

Biot number is a ratio of the heat transfer resistances inside of a body and at
the surface of a body (Incropera et al., 2007). It is used to examine whether or
not the temperatures inside a body will vary significantly in space, while the
body heats or cools over time from a thermal gradient applied to its surface.
The Biot number is named after a French physicist, Jean-Baptiste Biot (1774–
1862). It is widely used in heat transfer processes in order to calculate the
performance of the heat transfer rate.

Generally, for a smaller Biot number (Bi << 1), the problems may be treated
as thermally simple due to uniform temperature fields inside the body. Mean-
while, for a larger Biot number (Bi>> 1), it represents more difficult problems
due to the non-uniformity of temperature fields within the object.
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The Biot number can be defined as (Incropera et al., 2007):

Bi =
Lch

k
=

convection at the surface of the body
conduction within the body

, (1.2.13)

where h is convective heat transfer coefficient, Lc is the characteristic length
and k is the thermal conductivity of the body.

1.3 Problem Statement

In many research and development processes, the axisymmetric boundary layer
flow and heat transfer analysis of the slender needle is significant in fluid dynamics
because of its industrial and technological purposes. Such kind of flow problems
finds application in microscale cooling devices for heat elimination application,
shielded thermocouple for determining the velocity of the wind (hot wire anemome-
ter), and in the biomedical area for blood flow problems and cancer treatment. The
optimization in equipment and manufacturing processes is a normal routine for the
company to enhance the quality of their product (or application). Sometimes, there
are incomplete applications that require improvement. Nevertheless, this improve-
ment will cost a lot of money and takes a long time. Thus, the involved companies
are encouraged to invent new applications or modify them to meet the desired
requirements. Since these tasks are difficult to achieve, hence, more investigations
using the mathematical model are performed nowadays. These investigations are
able to help engineers for designing their applications involving the thin needle.
Motivated by these problems, our intention here to propose several flow models that
may give advantages to overcome such problems in certain applications.

Some of the questions that arise in this research are as follows:

1. How does the mathematical model of the boundary layer flow past a moving
thin needle is formulated?

2. What happens to the skin friction coefficient, heat and mass transfer rate when
a moving horizontal or vertical thin needle is considered?

3. What happens to the fluid flow and heat transfer characteristic when nanopar-
ticles are imposed in the system?

4. What are the effects of Brownian motion and thermophoresis on the fluid flow,
heat and mass transfer characteristics?

5. How does the presence of slip, Biot number, chemical reaction, heat ge-
neration and magnetic field affect the characteristics of the flow, heat and mass
transfer rate?

6. Which of the upper or lower branch solution is linearly stable?
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1.4 Objectives and Scopes

The objectives of the present study are to

1. construct and derive the mathematical model,

2. solve the mathematical model numerically via bvp4c solver in MATLAB soft-
ware,

3. provide the formulation and conduct the stability analysis for the dual solutions
obtained to determine which of the solutions represent a stable flow, and

4. analyze the influence of the considered parameters on the characteristics of the
fluid flow, heat and mass transfer,

for the following problems:

1. forced convection flow past a moving horizontal thin needle in a nanofluid
with slip effect, convective boundary condition and stability analysis using the
Tiwari and Das (2007) model,

2. mixed convection flow past a moving vertical thin needle in a nanofluid with
stability analysis using the Tiwari and Das (2007) model,

3. free convection flow past a moving horizontal thin needle in a nanofluid with
chemical reaction, heat generation and stability analysis using the Buongiorno
(2006) model, and

4. mixed convection flow past a moving vertical thin needle in a nanofluid with
the magnetic field and stability analysis using the Buongiorno (2006) model.

In this study, the scope is restricted to the steady two-dimensional laminar boundary
layer flow of an incompressible nanofluid for both Tiwari and Das (2007) and Boun-
giorno (2006) models. For Tiwari and Das model, three different types of nanoparti-
cles namely, copper (Cu), titania (TiO2) and alumina (Al2O3) are used. Meanwhile,
Brownian motion and thermophoresis are two main effects that we considered in the
Buongiorno model.

1.5 Significant of Study

In recent years, the boundary layer flow past a thin needle becomes one of the
crucial subjects in view of its applications in many areas of biological sciences
and engineering. This subject provides the ways of modeling and capability
for designing some applications including hot wire anemometer for determining
the velocity of the wind, metal spinning, aerodynamics, coating of wires, small
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measuring equipment, paper production, cancer treatment and blood flow problems
(Ahmad et al., 2008a; Sulochana et al., 2017a).

In industrial and engineering areas, conventional heat transfer fluids such as water,
ethylene glycol and oil are essential in the cooling and heating processes, chemical
processes and geothermal power generation. Since these fluids have low thermal
conductivity, this tends to decelerate the heat transfer processes. Hence, a new
class of high-efficiency heat exchange media has been proposed by dispersing
nanoparticles in the base fluid to enhance the thermal conductivity of such fluids.
This fluid is known as a nanofluid (Choi, 1995). Nanofluid is important because
it can be applied in numerous applications involving heat transfer, automotive,
electronic devices and biomedical.

The existence of nanofluid has the potential of being a new generation of coolants
in automotive applications due to their higher thermal conductivities than the base
fluids (Wong and Leon, 2010; Saidur et al., 2011). Ethylene glycol and water
mixture are two types of automotive coolant which has poor heat transfer fluid. The
addition of the nanoparticles in the standard engine coolant has the tendency to
enhance the automotive and heavy-duty engine cooling rates. Such improvement
helps to remove engine heat with a reduced size coolant system. The smaller coolant
systems result in smaller and lighter radiators, which in turn benefit almost every
aspect of the car and the economy. This situation may reduce the coefficient of drag
and thus resulting in less fuel consumption. Alternatively, improved the cooling
rates for automotive and truck engines capable of removing more heat from higher
horsepower engines with the same size of the coolant system (Saidur et al., 2011).

Furthermore, in electronic devices, nanofluid tend to cool down the system effec-
tively by removing the high heat flux, including liquid cooling, air cooling and
two-phase cooling (Saidur et al., 2011; Colangelo et al., 2017). Some examples of
electronic applications are the cooling of microchips in computers and microfluidic
applications (Wong and Leon, 2010). The usage of nanofluid in this field is
necessary due to the rapid development of modern technology where electronic
devices produce a large quantity of thermal energy. The production of more heat
will change the normal performance of the devices, reduces reliability and expected
life. Therefore, in designing the electronic components, the efficient cooling system
is one of the important criteria.

Nowadays, nanofluid is very helpful in cancer imaging and drug delivery for cancer
therapeutics in biomedical industries. In cancer therapeutics, the use of the iron-
based nanoparticles is as the delivery transports for drugs or radiation without dam-
aging nearby healthy tissue in cancer patients, which is a significant side effect of
traditional cancer treatment methods. In addition, the magnetic nanofluid can guide
such particles in the bloodstream to a tumor using magnets. Besides, nanofluid can
be used for safer surgery by providing effective cooling around the surgical region
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and enhance the patient’s chance of survival and reduces the risk of organ damage
(Wong and Leon, 2010). Other than that, the consideration of the thin needle in the
biomedical area is important because it can assist in blood flow problems and cancer
detection or treatment. A thin needle biopsy is a procedure to obtain a sample of
cells from the body for laboratory testing (Frable, 1976). The common thin needle
biopsy procedures include fine-needle aspiration and core needle biopsy. The thin
needle biopsy may be used to take tissue or fluid samples from muscles, bones, and
other organs, such as the liver or lungs (Cianci et al., 1987). The function of the
thin needle biopsy is to help diagnose a medical condition and assess the progress of
treatment.

1.6 Thesis Outline

This thesis consists of eight chapters. Chapter 1 starts with the introduction and
research background which includes the definitions and explanation of the important
terms used in the present study. Next, problem statements, objectives which are the
direction of the study, scopes, significant of study as well as thesis outline are also
included in this chapter. Besides, Chapter 2 presents the comprehensive literature of
the previous works related to the present study.

Chapter 3 discusses the formulation of the mathematical models for Chapter 4 until
Chapter 7 by using two different models of nanofluid which are Tiwari and Das and
Buongiorno model. These mathematical models comprise of the basic equations
which are derived from the conversation laws of mass, momentum and energy,
boundary layer approximation and similarity transformations. Using the appropriate
similarity transformations, partial differential equations (PDEs) are transformed
into ordinary differential equations (ODEs). Besides, this chapter also presents the
formulation of the mathematical models for the stability analysis along with the
numerical method used to solve the four problems considered in this thesis.

Chapter 4 explains the mathematical formulation and stability analysis of the
boundary layer flow and heat transfer over a continuously moving thin needle in
nanofluid under the influences of partial slip and convective boundary conditions
at the surface. This chapter considers the nanofluid model proposed by Tiwari and
Das (2007). Different from Chapter 4, in Chapter 5 the position of the needle from
the horizontal surface is changed to the vertical surface where the mixed convection
flow must be considered. In these two chapters, the equations that governed the flow
and the effects of the embedded parameters on the characteristics of the flow and
heat transfer are presented and have been discussed in detail.

Furthermore, Chapters 6 and 7 discuss the stability analysis and mathematical
formulation of the boundary layer flow, heat and mass transfer past a moving thin
needle in nanofluid using the Boungiorno (2006) model. In particular, Chapter 6
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presents the influence of chemical reaction and heat generation using the horizontal
surface of the needle. Meanwhile, Chapter 7 considers the effect of the magnetic
field using the vertical surface of the needle with a revised boundary condition of
the Buongiorno model. These chapters also present the governing equations of the
system as well as the effects of the physical parameters on the characteristics of the
flow, heat and mass transfer.

Finally, the conclusions for all problems will be summarized in Chapter 8. This
chapter also provides the research suggestions that can be done in the future related
to the thin needle.
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