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The hydropower industry is a crucial catalyst for improving the European Union’s 

National Renewable Energy Action Plan (NREAP), energy efficiency, and 

mitigation of greenhouse gas (GHG) emissions. Meanwhile, the hydropower 

industry's deteriorating status, from conventional to marginal renewable technology, 

is currently struggling head-on with other sustainable energy sources. Several factors 

are causing the struggle; the installed capacity cost of the EU hydropower industry 

is high compared with other key countries or regions, lack of additional installed 

capacity in many EU countries, policy and public support, among others.  

 

 

The thesis, therefore, builds on secondary data from 26 European Union (EU) 

member countries from the World Development Indicators (WDI), Food and 

Agriculture Organization of the United Nations statistics (FAOSTAT), European 

Union statistics (Eurostat), Organization for Economic Co-operation and 

Development (OECD), Economic Policy Uncertainty (EPU), and AQUASTAT. The 

dataset for this research covers the period from 1990-2018. Throughout the empirical 

sections, we divided the EU26 member countries into EU15 (developed) & EU11 

(developing) countries. 

 

 

The first objective investigates the hydropower industry's cost efficiency and the role 

of socio-economic factors on cost efficiency in the EU region. This is a two-stage 

analysis where the first stage calculates the cost efficiency (CE) and its 

decomposition, i.e., technical efficiency (TE) and allocative efficiency (AE), using 

a multi-stage approach of data envelopment analysis (DEA). The second stage 

investigates socio-economic factors on cost efficiency, using the Fixed Effect (FE) 

model. The first stage result indicates a cost inefficiency level in the EU hydropower 

industry due to technical inefficiency. The fixed effects results reveal that capital, 
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research & development (R&D), and total renewable electricity output played a 

positive and significant role in improving cost-efficiency. Moreover, regulatory 

uncertainty plays a deleterious impact on the hydropower industry's cost efficiency 

in the EU region over the study period. 

 

 

The second objective investigates the hydropower industry's technical efficiency and 

the role of socio-economic factors on technical efficiency in the EU region. This is 

a two-stage analysis where the first stage calculates the technical efficiency (TE) and 

its decomposition, i.e., pure-technical efficiency (PTE) and scale efficiency (SE), 

using a multi-stage data envelopment analysis (DEA) techniques. On the other hand, 

the second stage investigates socio-economic factors on technical efficiency, using 

the panel data approach of the Random Effects (FE) model. Results showed that the 

technical efficiency level is weak due to weak pure-technical efficiency. The panel 

model outcomes unravel that economic growth, capital and research & development 

played a positive and significant role in the hydropower industry's technical 

efficiency. However, regulatory uncertainty and temperature change significantly 

reduced the hydropower industry's technical efficiency in the EU region. 

 

 

The third objective analysed the drivers and forecasted the hydropower industry 

market in the EU region, using the two-stage least square (2SLS) and autoregressive 

integrated moving average (ARIMA) models. The supply side's analytical results, 

input resource, and price are positive hydropower drivers, while high input cost 

significantly reduced them. As for the demand side, findings show that hydropower's 

price is negative and significantly reduced demand. Substitute price and income are 

positive drivers of hydropower demand in the EU region. The forecasted market 

results demonstrate that supply would variably be enough to cater to hydropower 

demand in the European Union region until 2030. 

 

 

There is indisputable evidence of slow technological progress for the hydropower 

industry in the EU region; thus, innovative initiatives focused on hydropower 

generating technology are needed. Regulators should make clear and be consistent 

with the requirements for investing in hydropower. The EU hydropower regulators 

should encourage the inefficient hydropower industry to use efficient ones to 

benchmark cost efficiency improvement. Besides, the industry is also faceted with a 

managerial challenge, pointing to more technical knowledge is needed. Therefore, 

an organisational strategy (PTE) that emphasises improvements in hydropower's 

installed capacity should be encouraged. It is also essential to define and prioritise 

extended-term investment plans for flexible hydropower facilities, especially in EU 

countries, where the technical feasibility of hydro is abundant. The climate change 

adaptation framework of COP21 should be preserved, so the negative impact of 

temperature change on hydropower's technical efficiency could be minimized. It 

would be beneficial if the EU could make the transmission grid of hydropower a 

national project, so hydropower can easily accessible for consumption, thus avoiding 

waste in electricity generations. 
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Industri hidrokuasa adalah pemangkin penting untuk memperbaiki Pelan Tindakan 

Tenaga Boleh Diperbaharui Nasional Kesatuan Eropah (NREAP), kecekapan 

tenaga, dan pengurangan pelepasan gas rumah hijau (GRK). Sementara itu, dengan 

kemerosotan status industri hidrokuasa, daripada konvensional kepada teknologi 

marjinal yang boleh diperbaharui,industri ini sedang bersaing dengan sumber tenaga 

lestari yang lain. Terdapat beberapa faktor yang menyebabkan Persaingan tersebut, 

antaranya ialah Kapasiti kos pemaasangan bagi industry hidrokuasa di negara EU 

adalah lebih tinggi berbanding negara atau wilayah yang lain, Kekurangan kapasiti 

pemasangan tambahan di kebanyakan negara EU, dasar serta sokongan dari 

masyarakat. 

 

 

Objektif umum kajian ini adalah untuk menganalisis kecekapan, faktor sosio-

ekonomi dan pasaran industri hidrokuasa di rantau EU. Walau bagaimanapun, 

objektif khusus penyelidikan ini adalah untuk mengkaji kecekapan kos industri 

hidrokuasa dan peranan faktor sosio-ekonomi terhadap kecekapan kos, mengkaji 

kecekapan teknikal industri hidrokuasa dan pemacu sosio-ekonomi, dan 

menganalisis pasaran domestik industri hidrokuasa. 

 

 

Oleh itu, tesis ini menggunakan data sekunder bagi 26 negara anggota Kesatuan 

Eropah (EU) dari Indikator Pembangunan Dunia (WDI), statistik dariPertubuhan 

Makanan dan Pertanian Pertubuhan Bangsa-Bangsa Bersatu (FAOSTAT), statistik 

dari Kesatuan Eropah (Eurostat), Organisasi Kerjasama dan Pembangunan Ekonomi 

(OECD), dan AQUASTAT. Set data penyelidikan ini meliputi tempoh dari 1990-

2018. Bagi bahagian empirikal, ahli kesatuan negara EU26 dibahagikan kepada 

negara EU15 (maju) & negara EU11 (membangun). 
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Objektif pertama bagi kajian ini adalah untuk menyiasat kecekapan kos bagi industri 

hidrokuasa dan peranan factor sosio-ekonomi terhadap kecekapan kos di rantau EU. 

Kajian ini menggunakan pendekatan analisis pengumpulan data (DEA) tahap-

berganda, dimana pada peringkat pertama, kecekapan kos (CE) dan penguaraiannya 

seperti kecekapan teknikal (TE) dan kecekapan peruntukan (AE) dikira 

menggunakan kaedah pelbagai peringkat. Manakala pada peringkat kedua, kajian ini 

menyiasat factor sosio-ekonomi pada kecekapan kos, dengan menggunakan model 

Kesan Tetap (FE). Hasil yang diperolehi pada peringkat pertama kajian ini 

mendapati bahawa tahap ketidakcekapan kos pada industry hidrokuasa di EU adalah 

disebabkan oleh ketidakcekapan teknikal. Hasil dari model Kesan Tetap 

menunjukkan bahawa modal, kajian dan pembangunan (R&D), serta jumlah output 

elektrik yang boleh diperbaharui memainkan peranan positif dan signifikan bagi 

memajukan kecekapan kos. Tambahan pula, ketidakpastian peraturan memainkan 

kesan buruk terhadap kecekapan kos bagi industri ini di rantau EU sepanjang tempoh 

kajian. 

 

 

Objektif kedua bagi kajian ini adalah untuk mengukur tahap kecekapan teknikal dan 

peranan factor sosio-ekonomi terhadap kecekapan teknikal di rantau EU. Denagn 

menggunakan analisis dua peringkat, dimana pada peringkat pertama, kecekapan 

teknikal (TE) dan penguraiannya iaitu kecekapan teknikal tulin (PTE) dan kecekapan 

skala (SE) dikira menggunakan teknik analisis pengumpulan data (DEA). Bagi 

peringkat kedua pula, kajian ini menyiasat factor sosio-ekonomi terhadap kecekapan 

teknikal, dengan menggunakan pendekatan data panel iaitu, model kesan rawak 

(RE). Hasil kajian menunjukkan bahawa kecekapan teknikal bagi industry ini adalah 

lemah dan sumber kelemahannya adalah disebabkan oleh kecekapan teknikal tulin. 

Hasil kajian panel menunjukkan bahawa pertumbuhan ekonomi, modal dan 

penyelidikan dan pembangunan memainkan peranan positif serta signifikan dalam 

kecekapan teknikal industri kuasa hidro. Walau bagaimanapun, ketidakpastian 

dalam pengawalseliaan dan perubahan suhu mengurangkan kecekapan teknikal 

industri kuasa hidro di rantau EU.  

 

 

Objektif ketiga tertumpu kepada Analisis pemacu dan meramalkan pasaran industri 

hidrokuasa EU dengan menggunakan model kuadrat terkecil dua peringkat (2SLS) 

dan model purata bergerak autoregresi bersepadu (ARIMA). Dari sisi penawaran, 

dapatan analisis menunjukkan bahawa sumber input dan harga merupakan pemacu 

yang positif bagi industri hidrokuasa di zon Kesatuan Eropah. bagi sisi permintaan 

pasaran pula, dapatan statistik menunjukkan bahawa bagi sisi permintaan pasaran 

pula, hasil kajian mendapati bahawa harga bagi kuasa hidro adalah negative dan 

signifikan untuk mengurangkan permintaan. Manakala harga pengganti dan 

pendapatan merupakan pemacu yang positif bagi permintaan kuasa hidro di rantau 

EU. Hasil dari ramalan pasaran menunjukkan bahawa bekalan akan berubah dan 

mencukupi untuk memenuhi permintaan di Kawasan EU sehingga tahun 2. Siri 

sejarah dari segi permintaan pasaran hidrokuasa menunjukkan bahawa tidak akan 

berlaku kekurangan dari 2019-2030. Ini menunjukkan bahawa bekalan adalah cukup 

untuk memenuhi permintaan hidrokuasa di wilayah Kesatuan Eropah sehingga 2030. 
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Terdapat bukti yang tidak dapat dipertikaikan mengenai kemajuan teknologi yang 

perlahan bagi industri hidro kuasa di rantau EU. Oleh itu, inisiatif inovatif yang 

tertumpu kepada teknologi penjanaan kuasa hidro amat diperlukan. Pengawal selia 

haruslah jelas dan konsisten mengenai syarat untuk melabur dalam industry kuasa 

hidro. Mereka harus mendorong industri kuasa hidro yang tidak efisyen untuk 

menjadikan industry yang efisyen sebagai penanda aras bagi kemajuan dalam 

kecekapan kos. Selain itu, industry ini juga berdepan dengan cabaran pengurusan, 

menunjukkan bahawa lebih banyak pengetahun teknikal diperlukan. Oleh itu, 

strategi pengurusan (PTE) yang menekankan tentang peningkatan pemasangan 

kapasiti kuasa hidro harus digalakkan. Perkara ini amat penting bagi menentukan, 

serta memberi keutamaan kepada rancangan pelaburan jangka panjang untuk 

kemudahan kuasa hidro yang fleksibel, terutamanya pada negara-negara EU, dimana 

kebanyakan kemudahan teknikal hidro di sana terabai. Kerangka adaptasi perubahan 

iklim COP21 harus dipelihara, sehingga dampak negatif perubahan suhu terhadap 

kecekapan teknikal tenaga hidro dapat diminimumkan. Ianya akan lebih bermanfaat 

sekiranya EU dapat menjadikan grid transmisi kuasa hidro sebagai projek nasional, 

justeru kuasa hidro boleh di akses dengan mudah untuk digunakan sekali gus mampu 

mengelakkan pembaziran dalam penjanaan elektrik. 
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CHAPTER 1 

1 INTRODUCTION 

1.1 Background of the study 

Hydropower is a renewable energy source derived from moving water at force 

through dams and reservoirs to generate large amounts of electricity (Gaudard and 

Romerio, 2014). The hydropower industry plays a crucial role in applying the 

Renewable Energy Directive (RED), contributing to the EU 2020-2030 objective for 

the National Renewable Energy Action Plans (NREAPs). In 2011, the EU registered 

around 23,000 hydropower projects, with 91% being small hydropower (<10 

megawatts) and just 9% large hydropower (European Commission, 2018). However, 

the small hydropower plants produced 13% of the total hydropower outputs, while 

the large hydropower plant generated about 87%. 

The use of renewable fuels in extensive, centralised electricity generation facilities 

has been regarded as clean and sustainable (see Rowlands, 2005). Several factors 

have driven these interests, including but not limited to oil price volatility and ever-

increasing environmental concerns, particularly those related to CO2 emissions (see 

Schut et al., 2010; Abila, 2012; Mintz-Habib, 2013; Suranovic, 2013). These were 

the key reasons behind the movement for sustainable energy sources, such as 

hydropower plants, wind turbines, solar panels, and biomass generators - the most 

commonly cited examples of ways of using renewable fuels (see Kaygusuz, 2001; 

Demirbaş, 2006). The European Commission released its Renewable Energy for All 

Europeans in November 2016 and recast this as the Renewable Energy Directive 

(RED) 2018/2001/European Union, which took effect in December 2018 (UPDATE, 

2018). The amended document requires that by 2030, 32% of total energy 

consumption must be green energy sources, in which the hydropower industry has a 

significant role in reaching such target. 

The hydropower industry was the cornerstone of the Industrial Revolution and the 

transition from an agricultural-based economy to an industrial one, most notably in 

England, where Richard Arkwright established the Cromford Mill in Derwent valley 

1771, mainly for coal-fired steam engines and further generated electricity (IHA, 

2016). Numerous countries such as the United States, France, China, Brazil, 

Germany, England, and Austria, to mention but a few - have used hydropower to 

transform and increasingly set economic development in motion. 

A French engineer, Benoit Fourneyron, developed a turbine capable of producing 

about six horsepower in 1827, while a British–American engineer, James 

Francis, came up with the first modern water turbine in 1849 (Energy Efficiency and 

Renewable Energy-EERE, 2018). The Francis turbine was recognised worldwide 

and is still in use today. Lester Allan Pelton, an American inventor, developed the 

Pelton wheel, an impulse water turbine, and patented it in 1880. Just over a decade 



© C
OPYRIG

HT U
PM

 

2 

later, in 1891, Germany produced the first three-phase hydroelectric system, and in 

1895, Australia launched the first publicly-owned plant in the Southern Hemisphere. 

The hydropower industry witnessed rapid development in the 20th century. Professor 

Viktor Kaplan, an Austrian, invented the Kaplan turbine in 1913, a propeller-type 

turbine with adjustable blades (EERE, 2018). 

As explained by Kaygusuz (2016), the hydropower industry uses plants to harness 

energy from moving water in a river (large hydro) or flood (small hydro) coupled 

with simple mechanics to turn it into electricity. Essentially, a hydropower plant uses 

water flowing through a dam and transforms a turbine into a generator.  

Industrialisation and the continuous increase in economic activities require energy 

for development, and electricity plays a pivotal role. The European Commission 

placed a high priority on accessing affordable, clean electricity from low-carbon 

sources to spur sustainable development and significantly lower the environmental 

risks posed by climate change (Goldemberg, 2006). 

1.1.1 Types of Hydropower  

(i)  Run-of-the-river (no storage facility) is a system that channels fluid water 

from a river through a channel to spin a turbine. Run-of-the-river provides 

a continuous supply of electricity (baseload), with some operation 

flexibility for daily fluctuations in demand through water flow that the 

facility regulates. 

(ii) A storage plant is an extensive system that uses a dam to store water in a 

reservoir. Electricity is produced by releasing water from the reservoir and 

passing it through a turbine, which activates a generator. Storage 

hydropower provides baseload and the ability to be shut down and started 

up at short notice according to the system's demands (peak load). It can 

offer enough storage capacity to operate independently of the hydrological 

inflow for many weeks or even months.  

(iii) Pumped storage allows for peak-load supply, connecting water between a 

lower and upper reservoir by pumps. It uses surplus energy from the system 

in low demand times and releases water back to the lower reservoir through 

turbines to produce electricity during high demand.  

(iv) Offshore plants are underdeveloped technology that uses waves to generate 

electricity from seawater. 
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1.1.2 European river basins: allocation and management 

Over the last two decades, the EU Water Framework Directive (WFD) has been 

affected by a gradual intellectual transition towards more holistic resource 

management, with stakeholder participation becoming a vital part of the 

implementation of river basin development (Molle, 2009). The EU WFD has 

achieved remarkable milestones since it was established in October 2000 (see 

Baranyai, 2019). It is generally recognized as the most ambitious and detailed EU 

legislation on water (Jager et al., 2016). The primary purpose of the WFD is to 

protect and reinstate the European water environment in the course of participatory 

and integrative river basin management (TAC, 2000). Reichert (2016) has said that 

the WFD is possibly the most complex supranational water protection instrument 

globally.  

Rainfall, river flow, and storage are important factors for water availability, and these 

vary significantly throughout Europe and the member countries of the European 

Union. In the EU, the volumes of river flow in southern Spain and the Atlantic coast 

have fluctuated significantly between 50 and 1500 mm/year. However, the average 

annual precipitation level is between 400 and 1000 mm/year in the Mediterranean, 

Central Europe, and the Atlantic coast (European Environmental Agency-EEA, 

2009). Also, the EU is home to the highest number of shared river basins in the 

world, whose voluntary joint management is increasingly under pressure given 

rapidly changing hydrological conditions (Wolf et al., 1999). Some EU member 

countries, such as Germany, Greece, Luxembourg, and Portugal, derive 40% of their 

surface waters from overseas, the Netherlands and Slovakia 80%, while Hungary 

receives 95% (Rieu-Clarke, 2006). 

1.1.3 Contributions and benefits of the hydropower industry 

The hydropower industry is a crucial catalyst for improving the EU National 

Renewable Energy Action Plans (NREAPs) and the mitigation of greenhouse gas 

(GHG) emissions, in line with the EU Renewable Energy Directive objectives 

(Kahraman et al., 2009; Ma et al., 2014). Hydropower has the second-lowest 

lifecycle of GHG emissions kilowatt-per hour (see Figure 1.1). Electricity generation 

from hydropower will save a million tonnes of particulates, a million tonnes of sulfur 

dioxide, and a million tonnes of nitrogen oxide (IHA, 2019).   
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Figure 1.1 : Chart of the Median Lifecycle Carbon Equivalent Intensity 

(Source : IHA 2019. International Hydropower Agency, Status Report 2019) 

 

 

A significant inter-annual fluctuation in natural rainfall and prolonged dry seasons 

due to climate change is a global problem that has disrupted water availability in 

several local populations (Turral et al., 2011). However, Zhang et al. (2015) 

indicated that droughts worsen water shortages and negatively affect human health 

and productivity. Once again, the hydropower industry has successfully utilised 

dams and reservoirs to collect, sustain and regulate clean water supply, food-

producing irrigation projects, rural development initiatives, leisure facilities and eco-

tourism (Kaygusuz, 2004; EIA, 2007; Mäkinen & Khan, 2010; Yüksel, 2010; Lehner 

et al., 2011; Berga, 2016). Between 2013 and 2017, the hydropower industry 

employed an estimated 1.8 million people where operation and management (O&M) 

was responsible for 63%. Construction and installation accounted for 30%, while 

manufacturing remained a distant third due to its lower labour intensity (IRENA, 

2019). 

In 2015, International Hydropower Agency (IHA) reported the European 

hydropower industry has saved about EUR 24 billion from fossil fuel use in the 

European Union region and more than 180 metric tons of comparable CO2 pollution 

in the energy market. Despite the relatively high competition from wind and solar 

industries, the EU hydropower industry can increase electricity production further, 

given favourable economic and regulatory policies and significant expenditure to 

boost growth for the next two decades. 
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1.1.4 General background of the EU region 

The European Union (EU), initially known as the European Economic Community 

(EEC), came into being in 1958 and now consists of 28 European countries as 

displayed in Figure 1.2. The primary purpose of the union was to bring to an end 

economic competition among neighbours. The Union started with six economies: 

Belgium, France, Germany, Italy, Luxembourg and the Netherlands. Acceleration of 

economic growth through investment, innovation, human capital, and significant 

trade policies made the EU the biggest economy globally with the gross domestic 

product (GDP) of 15.3 trillion Euro as of 2017 (Europa, 2017). The EU has the third-

largest population globally (after China and India), with 508 million, and covers 4 

million square kilometres of land. Most of the ‘developed’ countries in the EU had 

already experienced economic growth in the 19th century, while so-called 

‘developing’ countries, such as Poland, Hungary, and Malta, have benefitted from 

the economic integration of EU membership.  However, the EU, recognising the 

adverse effect that climate change might have on ecosystems and economic growth, 

has established a pollution-free campaign (with built-in reviews) to achieve 

sustainable development in the region by 2050. 

 

Figure 1.2 : Map of the EU28 Region 

 

 

1.1.5 Efficiency and market profile of the hydropower industry in the EU 

region 

The EU member countries are frequently compared with each other. Still, it is 

difficult to compare a small member country like Lithuania with Germany, the most 

populous EU member country. However, the EU15 developed countries were 

described by European statistics as to where GDP per population was more than 90 

% of the EU average and EU11 developing countries as to where GDP per population 

was less than 75 % of the EU average. 
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Merriam-Webster dictionary defines efficiency as the ratio of the useful energy 

delivered by a dynamic system to its power. Moreover, Farrell (1957) proposed that 

the efficiency of an industry or firm includes two components: technical 

efficiency, which reflects the ability of a firm to obtain maximal output from a 

given set of inputs, and allocative efficiency, which echoes the ability of a firm to 

use the input in optimal proportions, given their respective prices.  

Energy efficiency has gained increasing attention from policymakers, consumers, 

and researchers, and the EU has been one of the prime movers in this regard 

(Oberthür & Roche Kelly, 2008). Figure 1.3 shows a five-year interval for renewable 

electricity generation by technology in European Union member countries from 

1990-2016.  

 

Figure 1.3 : Chart of Renewable Electricity Generation by Technology in EU 

region 

(Sources : IEA 2018. Electricity Information 2018) 

 

 

It shows that the hydropower industry remains the largest renewable electricity 

source powering industrial development in the EU. In 2010, the sector generated 

408,006 GW/year of electricity; there was a slight decrease in 2015, and output 

decreased further to 380,180 GW in 2016. This deficiency can be linked to other 

European renewable industries' recent development, such as wind, bioenergy, and 

solar. In 2010, the bioenergy industry generated 143,119 GW of electricity, with a 

slight increase of 63,222 GW in 2016. Between 1990 and 2016, the growth of the 

European bioenergy industry points to diversification away from hydropower. The 

solar power industry experienced an increase of 82,715 GW of electricity generated 

between 2010 and 2016.  
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The wind power industry witnessed relatively higher growth in the period 2000-

2016. In 2000, 22,225 GW of electricity was generated and by the end of 2016, the 

industry produced 302,294 GW. This amounts to an increase of 289,069 GW of 

electricity generated. Other European renewable energy sectors' rapid growth may 

be due to policy support and several developmental packages. Besides, the 

production life-cycle of hydro technologies in the EU is mature compared with other 

renewable energy sources, possibly resulting in technical inefficiency. Storage 

capacity is as important as production capacity since storage can bridge the gap 

between demand and supply and support the integration of variable renewable 

energy sources (v-RES) such as hydropower plants. 

Some countries in the EU lack natural conditions and therefore have little or no 

hydropower production or capacity (Cyprus, Malta, Denmark, Belgium, and the 

Netherlands). This means that the hydropower position variation depends on 

geographical conditions, environment, rainfall patterns, institutional capacity, and 

technical skills within the various national system for electricity generation.  

The installed hydropower capacity by country can be shown in Figure 1.4. Countries 

such as Cyprus, Malta, Estonia, Denmark, the Netherlands, Lithuania, Luxembourg, 

and Hungary, do not have sufficient hydro-enhancing power and only provide 376 

MW of 2018. Therefore, the hydropower installed capacities of these countries are 

not displayed in Figure 1.4. 

Some Balkan countries are recently-joined members of the EU, and the enormous 

potential of hydropower is yet to be harnessed in these countries. For example, in 

Bulgaria, hydropower accounted for 56.4% of total renewable feasibility, Croatia 

64.8%, Latvia 87.1%, Romania 56.8%, Slovakia 62.7% and Slovenia 78.3% (IEA, 

2018). Moreover, many EU member countries, e.g. Cyprus, Malta, and Estonia, still 

depend heavily on fossil fuels for their electricity outputs (European Commission, 

2016). Increasing the capacity for hydropower plants in the EU region, particularly 

those with low installed capacity, would significantly impact the amount of hydro in 

the EU energy market. 
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Figure 1.4 : Installed Hydropower Capacities for the EU in 2018 

(Source : IEA statistics 2018) 

 

 

Figure 1.5 compares (by region/country) the Levelized cost of electricity (LCOE) 

generated from small and large hydropower plants from 2010-2013 and 2014-2018. 

IRENA (2019) describes an LCOE in electrical energy production as the present 

value of the price of electrical power generated (usually measured in cents per 

kilowatt-hour), taking into account the plant's economic existence and the costs of 

construction, service, repair and fuel.  
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Figure 1.5 : Chart of Levelised Cost of Installed Hydropower Capacity 

(Source : International Renewable Energy Agency 2019) 

 

 

Small hydropower is described as a plant with less than or equal to 10 megawatts 

capacity. Figure 1.5 compares the LCOE in Africa, the EU, China, Brazil, and India. 

From 2010-2013, Africa had the highest installed capacity cost (USD 3,268) for 

generating kilowatts of electricity. In the same period, the EU incurred (USD 2,938), 

China (USD 1,137), Brazil (USD 2,258), and India (USD 1,699). In the period 2014-

2018, the EU had the highest LCOE (USD 4,802), Africa (USD 3,088), Brazil (USD 

2,147), India (USD 1,718), and China (USD 1,149) per kilowatts.  

Figure 1.5 shows LCOE for large hydropower units, and here, particularly from 

2010-2013, the EU hydropower industry shows high LCOE compared with Africa, 

North America, China, Brazil, and India. However, the EU’s LCOE was lower than 

North America’s and Africa’s in 2014-2018. Assessing the cost efficiency level of 
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the European hydropower industry is of importance for efficiency and market 

development. These statistics imply that the European hydropower industry incurred 

more significant input cost than every other region to generate electricity from small 

hydro between 2014 and 2018 and large hydro from 2010-2013. Theoretically, 

higher input costs can harm supply and give other countries with relatively lower 

input cost a competitive advantage in the renewable energy market. 

As mentioned earlier, the EU region's geographical proximity (excluding Cyprus and 

Malta) lends itself to the intensive usage of untapped hydropower resources in the 

Balkan area. Therefore, expanding the technological, economic and environmental 

contribution of hydroelectric power could use a trade-off for high capital cost and 

also make a significant addition to the potential energy mix of the EU. This research 

seeks to promote a strategy that will increase hydroelectricity production in line with 

the EU RED and NREAP developed for 2030.  

1.1.6 Hydropower Profile in the World 

Based on World Energy Outlook 2012 (IEA, 2012) statistics, electricity demand will 

rise at a rate of 2.5% per year up to 2030, with approximately 16% of electricity 

currently generated by the hydropower industry. The growth of hydropower involves 

social and economic advantages such as trade between countries which can further 

contribute to jobs, expand global access to renewable and sustainable energy. It will 

also allow efficient use of fixed assets, enhance water resources productivity, and 

minimise climate effects on the environment. 

Many countries, including China, the USA, Norway, France, Switzerland, Sweden, 

Italy, Canada, Brazil, India, and a few other countries, are using hydropower to 

neutralise their electricity markets (IHA, 2015). The worldwide potential for 

conventional hydropower is around 9770 terawatts (TW), with 3700 TW of 

electricity generated as of 2012 from an installed capacity of 990 GW. These are 

expected to reach 7000 TW by 2050.  

As per Figure 1.6, the global hydropower industry makes some significant progress, 

with forty-eight countries adding new installed capacity in 2018. According to IHA 

2019, the countries with the highest individual increases in installed capacity of 

hydropower were China (8,500 GW), Brazil (3,700 GW), Pakistan (2,500 GW), 

Turkey (1,100 GW) and Angola (700 GW).  
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Figure 1.6 : Chart of Added Installed Hydropower Capacity 

(Source : International hydropower agency, the 2019 Hydropower Status Report) 

 

 

Pumped hydropower storage has proven to be a key component of current and 

potential clean energy systems. The significant improvement in intermittent 

renewable sources of electricity, such as wind and solar power, has replaced 

traditional generators, placing increased pressure on power grids and emphasising 

the need for pumped hydro efficiency. 

The Eastasia remained the engine of the world's hydropower sector, where China 

accounted for most of the capacity additions and pumped storage (IHA, 2019). 

China's hydropower industry has expanded 20-fold to a combined output of 352 GW, 

accounting for more than a quarter of the world's installed capacity (Appavou et al., 

2017). A variety of traditional hydropower schemes have been built with the world's 

largest hydropower project currently under development, the China Three Gorges 

(CTG), 16,000 MW Baihetan Project (Yan et al., 2006; Fu et al., 2010). The Chinese 

government has supported green finance to produce renewable energy while 

introducing standard green bonds to help large-scale hydropower. The CTG raised 

USD 2.25 billion to fund Jinsha River cascade projects, including the Baihetan and 

Wudongde hydroelectric projects, between 2017 and 2018. (IHA, 2019). Recently, 

the Chinese government released an Action Plan on Sustainable Energy Use 2018-

2020 to reduce renewables' depletion, including hydropower. The strategy stressed 

the value of changing China's electricity sector, enhancing regional interconnections, 

growing energy storage, and increasing the power grid's versatility. 
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after China. In Brazil, a coalition of hydropower companies and developers founded 

the Brazilian Platform for the Construction of Small Hydropower Plants to 

strengthen private sector investment in hydropower. This was triggered by the 

government's decision to stop concession auctions for new hydropower projects of 

more than 30 MW, which influences the increase in installed capacity. According to 

EIA (2013), Brazil's rising population required considerable improvements in 

electricity and transmission lines; therefore, the government invested in adding 

hydroelectric infrastructure to prevent power shortages and support its economic 

growth. For example, the 14,000-megawatt Belo Monte Dam, which is expected to 

be built in 2016, will become the second-largest dam in Brazil and the third largest 

dam in the world at an approximate cost of about S$13 billion. 

Pakistan is a country well equipped with significant water resources (IHA, 2017). 

According to the Water and Power Development Authority (WAPDA), there are 

approximately 60,000 MW of hydropower-installed capacity in Pakistan, of which 

only 7,320 MW has been utilized. Moreover, the Pakistan government remains under 

tremendous pressure to resolve the annual average power deficit of 4,000 MW due 

to over-reliance on imported thermal-generated fuels and price volatility. In order to 

resolve this power shortfall, the hydropower sector in Pakistan is expected to raise 

overall electricity production to 40% by 2030 (IHA, 2017). The Private Power & 

Infrastructure Commission is constructing several power plants such as Karot (720 

MW), Suki (870 MW) and Kohala (1,124 MW). These projects are part of the China-

Pakistan Economic Corridor (CPEC) – an initiative funded by the Chinese 

government to improve Pakistan's economic well-being (IHA, 2017). However, 

challenges of many emerging countries is raising capital to build and sustain 

hydropower projects while ensuring that national institutions have sufficient capacity 

and projects are delivered in line with acceptable environmental and social 

performance practices. 

1.1.7 Some potential socio-economic drivers for the efficiency of the 

hydropower industry in the EU region 

In May 1992, at the Earth Summit in Rio de Janeiro, Brazil, the United Nations 

Framework Convention on Climate Change (UNFCCC), developed a legal 

mechanism to regulate ambient greenhouse gas (GHG) concentrations to prevent 

harmful anthropogenic conflict with the climate system (Berga, 2016). The 

UNFCCC, including the EU, decided on 12 December 2015 in its 21st Conference 

of the Parties (COP21) that climate change impacts on biodiversity should be held 

below 2°C to ease global warming to improve natural resource efficiency and 

economic growth, especially in emerging economies (Năstase et al., 2017).  

Figure 1.7 shows the average temperature change in EU member countries from 

1990-2019. In large part, the EU countries maintained an average temperature 

change well below 1.5°C from 1990-2006, with a sharp rise in 2007. A dip below 

0.5°C occurred in 2010 but increased significantly in 2014, going above 2°C, 

indicating that the EU had, for the first time, breaking the Paris (COP21) agreement 
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on environmental sustainability. Meanwhile, according to Berga (2016), 

unprecedented temperature increases are likely to change the water-levels in rivers, 

affecting water availability, water regularity, and electricity generation in the EU 

region. 

 

Figure 1.7 : Chart of Temperature change in European Union Region 

(Source : Food and Agriculture Organization of the United Nations FAO) 

 

 

Research & Development (R&D) is a catalyst for continued growth in a knowledge-

based and innovative economy (Savova, 2012; Chung, 2015). The EU share of R&D 

expenditure as a percentage of GDP from 2009-2020 is shown in Figure 1.8. It shows 

that R&D remained between 1.9% and 2% over the period 2009 to 2012. Between 

2013 and 2018, it increased slightly from 2.01% to 2.12%, and the 3% EU 2020 

target is still a long way off. The European Union would have to increase R&D 

expenditure by at least 0.88% to meet the EU 2020 target. Ragwitz & Miola (2005) 

suggested that awareness and rationalisation of R&D expenditure is the starting point 

for a simplified approach to strengthening the industry in power generation. 
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Figure 1.8 : Research and development expenditure, percentage of GDP in the 

EU region 

(Source : Eurostat 2020) 

 

 

The EU drafted a development path in Lisbon strategy in 2000, and after several 

adjustments to the plan, the European Commission defined the objective of 3% of 

GDP allotted to R&D spending in 2005 (Albu, 2011). The follow-up is known as the 

European strategy for smart, sustainable and broad growth 2020 (Athina et al., 2018). 
However, Figures 1.9 and 1.10 describes the position of R&D percentage of GDP in 

both EU developed and developing countries from 2009-2018. 

 

Figure 1.9 : Research and development expenditure, percentage of GDP in EU 

developed countries 

(Source : World Development Indicators 2020) 
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Figure 1.10 shows the actual R&D spending of the EU developing countries is below 

1.5%, on average, thus requires improvement, as the proscribing 3% spending 2020 

strategy is far from reaching. The less than 1.5% of R&D spending in the EU 

developing countries indicates insufficient investment, alongside the uncertainty 

about the long-term prospect in research and development.  

Moreover, the difference between the EU15 and EU11 countries show an 

improvement of R&D efforts within the EU developed zone. Nonetheless, there was 

a decrease in R&D spending of the EU15 in 2018. The amount of R&D expenditure 

has a catalytic role in creating innovation in sectors, particularly the hydropower 

industry, which requires extensive research before constructing a Dam.  

 

Figure 1.10 : Research and development expenditure, percentage of GDP in EU 

developing countries 

(Source : World Development Indicators 2020) 
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relatively high renewable energy outputs. Other countries - such as Belgium, 

Bulgaria, Cyprus, and Czech - need to improve renewable power production, mainly 

by increasing installed capacity, research, development and investment. 

 

Figure 1.11: Renewable electricity output (% of total electricity output) 

(Source : World Development Indicators 2018) 
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out and be addressed in the project plan if there are negative impacts on local 

populations, ecosystems and biodiversity.  

In conceptual definition, socio-economic is described as a matter involving the total 

household, employment, income, education, health and assets in a given community. 

Domac et al. (2005) opine that socio-economic is a central component of a specific 

industry or sector's development plans in an economy. However, in recent years, 

regulatory uncertainty has significantly increased. It affects numerous economic 

activities that may also play a negative role in investment cost and advance materials 

for hydropower output. In some nations, regulatory policy is enforced under clean 

energy targets, leading to legislative conflicts over costs between industries. Market 

leaders, in particular, are often worried that new or inconsistent regulations could 

damage them by inflating prices and reducing efficiency. European regulatory 

authorities must find a balance between creating a coherent institutional framework 

that provides security for investor planning, sufficient market flexibility, and 

effective technology choices for hydropower electricity innovation to avoid negative 

spill-overs. 

It worth mentioning that dam construction requires research and development to 

guide the proper implementation of the hydropower project plan. However, in terms 

of R&D, the EU is some distance away from reaching the 2020 investment goal of 

3% of GDP. This might translate into a lack of improvement in the efficiency of the 

hydropower industry in the region.  The R&D spending in EU11 developing 

countries is below 1.5% on average, indicating that some member countries still need 

improvement in achieving the 3% spending target in 2020. 

Moreover, the percentage of renewable electricity as a proportion of total electricity 

generation is below 20% in many EU member countries. This implies that the fossil 

fuel industry is playing a dominant role in electricity generated in the EU region and 

may improve hydropower's cost efficiency. Investigating the cost efficiency is 

necessary because we do not know which hydropower industry in EU countries are 

cost-efficient and inefficient and what might cause their inefficiency. 

Another important reason for this research is the technical feasibility of the 

hydropower industry in European Union countries. The hydropower system relies on 

precipitation amounts, which can fluctuate from year to year and create an electricity 

output fluctuation. However, massive dams are easily susceptible to climate change, 

affecting rivers' flow and course. The key issues are the lack of robust 

implementation of water-usage optimisation, the use of advanced materials for 

electricity generation and the extent of management or policy support for 

hydropower could contribute to the technical inefficiency of hydropower in the EU 

region. Among many reasons, the most problematic one is that current hydropower 

technology has shown signs of stagnation compared with other renewable 

technologies, and the level of installed hydropower capacity is relatively lower in 

many EU countries.  
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It is worth to note that more than half of the hydro-potential has been utilized in the 

EU, and many facilities were constructed decades ago. However, using technologies 

that are deemed outdated to achieve hydropower's digitalisation may lead to low 

electricity output, resulting in scale inefficiency. Moreover, hydropower's lack of 

technological progress relies heavily on political support and management skills; 

therefore, it may be difficult for the industry to respond to markets' variability and 

climate change. More importantly, modern hydropower construction and the 

improvements and repairs of established installations must comply with stringent 

environmental requirements. Therefore, investigating the hydropower industry's 

technical efficiency is of particular interest in the EU context. 

In order to provide clarity to the problem associated with technical efficiency, it is 

important to highlight the purpose of its decomposition, i.e., pure-technical and scale 

efficiencies. On the one hand, the pure-technical efficiency would permit us to reveal 

the extent to which management or policy is advancing technical efficiency. On the 

other hand, scale efficiency would point out the level at which the size of facilities 

shapes the hydropower industry's technical efficiency in the EU.  

One of the main inputs of hydropower resources is the volume of precipitation in a 

calendar year. Meanwhile, the availability of water for hydropower largely depends 

on temperature change and the EU WFD regulations. The problem here is that, in 

multiple years, the temperature rises above 1.5°C and 2°C pre-industrial levels in the 

EU region. This would have a significant negative impact on the EU hydropower 

industry's technical efficiency, not only because of a lack of timely rainfall but also 

because of increased sediment yields and recurrent natural hazards. 

In recent years, a wide-ranging analysis has been carried out on impact-oriented 

water footprints that evaluate the volume of water usage and the relationship between 

water and energy generation. Most impact-oriented studies were on randomly 

selected countries or specific country.  Although few studies have considered 

analysing the hydropower market drivers, none have been done in the EU region, 

which is one of this research's focus. 

The EU is one of the leading producers of hydropower globally. Still, market 

integration capacities are becoming more challenging due to several economic 

factors such as investment cost, regulations, price volatility and water-energy nexus. 

Nonetheless, despite ensuring that hydropower production matches demand securely 

in the real-time market, uncertainty about investment cost and concession rights 

continue to impede the goal's achievement. Sedimentation disturbs the stability of 

dams and limits electricity generation, storage and discharge capacity. It raises load 

on dams and turbines, destroys mechanical infrastructure, and produces various 

environmental impacts. These problems affect the reliability of water availability for 

power generations and increase hydropower operators' investment cost. In addition, 

hydropower projects are subject to stringent licensing procedures, which could 

hinder investment decisions for the development of new or extension of established 

hydropower plants. To integrate the EU hydropower market, regulators require 
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policies that appropriately provide the certainty needed to attract investors and 

reduce various input cost and prices. 

Solar and hydropower are widely regarded as alternatives in the EU for green 

resources. The main distinction between hydropower and solar is that hydro can 

generate more electricity at peak hours. However, solar's erratic production and its 

specific peak generation periods pose threats to the hydropower market in the EU. 

IRENA estimated that hydropower's price at current dams is between $0.01 and 

$0.10 per kilowatt-hour (kWh) while modern small hydropower is between $0.06 

and $0.14 per kWh. However, the price of solar energy is estimated to be $0.20 per 

kWh. The primary problem here is that utilities face negative prices and 

hydroelectricity is exported when supply exceeds demand. Solar could be price 

competitive and use as a substitute for hydropower in the EU region, assuming 

further technological advances and holding constant current public policies. 

It is typically the case that the aggregated panel data will generate a low time 

frequency while the disaggregated panel data produces a higher frequency. 

Fundamentally, aggregation of micro or macro-economic data is about managing a 

purposeful group of countries (for example, the EU region) that are significantly 

similar in economic activities. However, in this research's empirical applications, we 

have disaggregated the EU into sub-regions, i.e. developed and developing. This is 

because the sub-regions could be distinct in the degree to which they participated in 

the hydropower market. The use of disaggregated panel models would allow this 

research to resolve policy issues related to efficiency, socio-economic factors, and 

market analyses of the EU region's hydropower industry. 

1.3 Research questions 

This study seeks to answer the following research questions: 

What is the cost efficiency level of the hydropower industry and the role of socio-

economic factors on cost efficiency in the EU region? 

What is the technical efficiency level of the hydropower industry and the role of 

socio-economic factors on technical efficiency in the EU region? 

What is the market performance of the hydropower industry in the EU region? 
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1.4 Objectives of the study 

This study's general objective is to analyse the efficiency, socio-economic factors, 

and market of the hydropower industry in the EU region. 

The specific objectives of the study are: 

I. To investigate the cost efficiency level of the hydropower industry and the 

role of socio-economic factors on cost efficiency in the EU region. 

II. To investigate the technical efficiency level of the hydropower industry and 

the role of socio-economic factors on technical efficiency in the EU region. 

III. To analyse the drivers and forecast the market of hydropower in the EU 

region. 

 

 

1.5 Significance of the study 

Efficiency is an essential element for an industry existence, and the market 

competence of European hydropower reputation has experienced low status over the 

last decade. This is because of the rapid development of other renewables and the 

high cost of hydro-installed capacity in the EU region. The investigation of the cost 

efficiency of hydropower and its decomposition, i.e., technical efficiency and 

allocative efficiency, would provide direction as to which aspect of the industry 

needs improvement. Also, the investigation of technical efficiency and its 

decomposition, i.e., pure-technical efficiency and scale efficiency, is essential for the 

EU hydropower industry to determine whether to improve managerial or facilities 

size. This research, therefore, identifies the best and poor practices in cost and 

technical efficiencies performances, respectively, in hydropower among EU member 

countries. The outcomes would be useful for benchmarking mechanism in which the 

inefficient hydropower members adopt the efficient member pathways to achieve 

higher cost and technical efficiencies. 

Hydropower is, among other functions, the primary source of renewable energy in 

the EU. However, in this modern technological advancement and regulatory 

uncertainty, the hydropower industry faces high resource costs, comparatively low 

installed capacity and slow growth in the market, which implies a need to calculate 

its cost and technological efficiencies. However, socio-economic considerations may 

serve an essential function in linking socio-economic priorities to the hydropower 

industry's cost and technical performances in the EU region. This will add a 

significant level of knowledge that could create new opportunities for the EU 

region's hydropower industry. Additionally, the panel of evidence on the EU 

disaggregation into sub-panels, i.e. EU15 (developed countries) and EU11 

(developing countries), on socio-economic factors in the cost and technical 

efficiencies of hydropower has not explicitly been discussed in existing studies. We 

estimated the aggregation of EU panel data in fixed and random effects models. In 
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particular, we show how the aggregation model may not sufficiently represent the 

EU sub-panels. 

The domestic hydropower market in the EU depends on many factors; the volume of 

precipitation, hydropower price, substitute price, cost of production, and level of 

income. One of the vital significance of this research is the possibility of using an 

econometric framework to estimate market models to establish relationships between 

quantity supply and demand and its drivers. However, the market drivers' response 

can be used to manage hydropower development and influence policy support. For 

instance, quantity supply and quantity demanded could vary between the EU15 

developed and EU11 developing countries due to differences in the availability of 

hydropower resources, own price, substitute price and income. However, economic 

models can support experienced judgment and stimulate a creative interaction 

between the regulators and operators, based on inferences drawn from the 

hydropower market drivers. On the other hand, the market forecast would identify 

the extent to which new supplies are expected to be non-incremental, i.e., demand 

exceeds supply, or incremental, i.e., no shortage. This distinction is vital for the 

optimization, planning and investment in hydropower. 

1.6 Scope of the study 

Decarbonisation of the energy market and prevention of anthropogenic climate 

change, which proposes a plan to support the aims of the Paris Agreement, is the 

extensive explanations of why the EU is the area chosen for this study. Hydropower 

has a tremendous ability to enhance the transition to a decarbonised environment in 

Europe. However, sluggish technical development, concession rights, widespread 

criticism, adverse business dynamics and environmental-related components are still 

concerns. While considerable progress has been made in resolving these problems, 

there is still a low degree of public understanding of these accomplishments. 

However, investments in research and development (R&D) are necessary to meet 

technical developments, reducing production cost and dealing with competition. 

Furthermore, to handle environmental and socio-economic dimensions at the 

regional level, there is a need to develop relations between industry, R&D and policy 

institutions. The scope of this research provides a comprehensive analysis of 

efficiency, socio-economic factors, and market performance of the hydropower 

industry in the EU region. 

The study analysed the hydropower industry's efficiency and market in the EU region 

from 1990-2018, excluding Cyprus and Malta. The study covers 26 EU member 

countries, where endogenous data such as production, consumption, and installed 

capacity for hydropower are available. For the empirical segment, we first analysed 

EU26 member countries, then separated these into EU15 (developed countries) and 

EU11 (developing countries) to compare results in the sub-regions. 

The first objective comprised a two-stage analysis. According to Coelli et al. (2005), 

the cost-efficiency calculation could be a multi-stage process, in which cost-
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efficiency decomposed into technical efficiency and allocative efficiency. To do this, 

we examine steps of cost efficiency calculation in Farrell (1957) and used data 

envelopment analysis (computer) program (DEAP) software, introduced by Coelli 

et al. (2005). In the second stage, the thesis investigates the socio-economic role in 

the cost efficiency of the hydropower industry in the EU region, using a fixed-effect 

model. 

Similarly, the second objective gauged the hydropower industry's technical 

efficiency and decomposition: pure-technical efficiency (PTE) and scale efficiency 

(SE). We have used the multi-stage technical efficiency of the DEA approach. In the 

second stage, we used the random-effects model to investigate the role of socio-

economic factors on the technical efficiency of the hydropower industry in the EU 

region. 

In the third objective, the study analysed the domestic market of the hydropower 

industry in the EU from economic theory for supply and demand functions. We also 

forecast the supply and demand of the hydropower industry from 2019-2030. To 

analyse the domestic market, we employed a two-stage least square (2SLS) method. 

Then, we used the autoregressive integration moving average (ARIMA) to select an 

appropriate model for the forecast. 

1.7 The organisation of the study 

The study comprises six chapters, and it is organised as follows:  

Chapter 1 presents an introduction that includes background to the study, a statement 

of the research problems, research questions and objectives of the study, and its 

scope. Chapter 2 provides theoretical and empirical literature. Chapter 3 reflects on 

the methodology, results and discussions of cost efficiency level and the role of 

socio-economic factors on cost efficiency. Chapter 4 is about methods, results and 

discussions of the technical efficiency level and the role of socio-economic factors 

on cost efficiency. Chapter 5 provides methodology, results and discussion for the 

domestic market and forecasting analysis. Finally, chapter 6 summarises, discusses 

policy and provides recommendations. 
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