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Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfilment 
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The process of extracting minerals from mining operation emits high carbon dioxide

emission in the atmosphere. However, large quantities of waste materials produced

from the mining operation can be utilized for carbon sequestration by mineral 

carbonation process. Therefore, this study was conducted to; (1) evaluate the 

potential characteristics of mining wastes such as gold, limestone and iron ore mine

wastes for carbon sequestration; (2) enhance mineral carbonation process at varying

particle size, temperature and pH in sequestering more carbon dioxide in carbonate

form and; (3) develop potential application of mining wastes for long term carbon

storage in brick production. Rock, soil, sludge and sediment samples were collected

and analyzed for their characteristics including pH, particle-size distribution,

mineralogical composition, morphological structure and chemical composition by

integrating X-ray diffraction, scanning electron miscroscopy and energy dispersive 

X-ray analyses. The mineral carbonation experiment was conducted using mining

waste at different particle size, temperature and pH. Brick production incorporating

mining waste was produced at different mix design ratio and the effects of

carbonation time and curing periods on carbon dioxide uptake were measured.

Findings suggest that gold mine was identified as the source of MgO and Fe2O3 due

to the presence of magnesium-iron silicate minerals; limestone mine as the source

of CaO due to high availability of calcium-bearing mineral; and iron mine contains

iron-calcium-magnesium silicate minerals as the source of Fe2O3, CaO and MgO 

that can be used as feedstock for mineral carbonation process. Iron mining waste

was further evaluated for mineral carbonation due to variety of potential minerals

and has the highest average divalent cation content. The effect of mineral 

carbonation using iron mining waste shows that smaller size particles (<38 µm)

have achieved a higher calcium, iron and magnesium carbonation efficiency of

3.81%, 6.66% and 6.43%, respectively. As the temperature increased at 200°C, the

maximum calcium, iron and magnesium carbonation efficiency of 4%, 5.82% and

5.62%, respectively were obtained. Increasing the pH at pH 12 resulted in greater 

calcium, iron and magnesium carbonation efficiency of 5.56%, 5.85% and 5.83%,

respectively. Acceptable carbonation efficiency was achieved under the favorable
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conditions of ambient pressure. The incorporation of different types of mine waste 

indicates good durability of bricks, where limestone mine waste bricks have reduced 

water absorption and improved compressive strength of up to 0.52% and 40.23 

N/mm2, respectively. Iron mine waste bricks show higher carbon dioxide uptake 

averaging 0.63%. Various mix design ratio and curing period are the most 

significant factors that affect the water absorption of carbonated brick specimens, 

while carbonation time had increased the compressive strength of brick specimens. 

Low carbon dioxide uptake can be improved by increasing the percentage of mining 

waste used up to 60% and lengthening the carbonation time up to 3 hours. 

Therefore, utilization of mining wastes as feedstock for mineral carbonation process 

can be regarded as a solution for waste minimization issue and seems to be an 

environmentally beneficial approach in reducing carbon dioxide emissions. This 

would be useful in promoting sustainable use of natural resources and for future 

mitigation strategies of mining-related issues. 
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Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai 

memenuhi keperluan untuk ijazah Doktor Falsafah 
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Proses penggalian mineral dari aktiviti perlombongan membebaskan gas karbon 

dioksida yang tinggi di atmosfera. Walaubagaimana pun, sejumlah besar bahan 

buangan yang dihasilkan dari operasi perlombongan dapat digunakan untuk 

penyerapan karbon melalui proses pengkarbonan mineral. Oleh itu, kajian 

dilakukan untuk; (1) menilai potensi ciri-ciri sisa perlombongan seperti emas, batu 

kapur dan bijih besi untuk penyerapan karbon; (2) meningkatkan proses 

pengkarbonan mineral pada ukuran saiz zarah, suhu dan pH yang berbeza untuk 

penyerapan lebih banyak karbon dioksida dalam bentuk karbonat dan; (3) 

mengembangkan potensi penggunaan sisa perlombongan untuk penyimpanan 

karbon dalam jangka panjang dalam pembuatan batu bata. Sampel batu, tanah, 

enapcemar dan sisa mendapan dikumpulkan dan ciri-cirinya seperti pH, taburan saiz 

zarah, komposisi mineral, struktur morfologi dan komposisi kimia dianalisis 

menggunakan sinar-X difraksi, pengimbasan mikroskop electron dan analisis sinar-

X penyebaran tenaga. Eksperimen pengkarbonan mineral telah dilakukan 

menggunakan sisa perlombongan pada saiz zarah, suhu dan pH yang berbeza. 

Pembuatan batu bata menggunakan sisa perlombongan telah dihasilkan pada nisbah 

campuran yang berbeza serta sifat fizikal dan mekanikal ditentukan. Kesan masa 

pengkarbonan dan tempoh pengeringan terhadap pengambilan karbon dioksida 

telah diukur. Penemuan menunjukkan lombong emas merupakan sumber MgO dan 

Fe2O3 kerana kehadiran mineral magnesium-besi silikat; lombong batu kapur 

sebagai sumber CaO kerana mengandungi mineral kalsium yang tinggi; dan 

lombong bijih besi mengandungi mineral besi-kalsium-magnesium silikat sebagai 

sumber Fe2O3, CaO dan MgO yang berpotensi sebagai bahan mentah untuk proses 

pengkarbonan mineral. Sisa perlombongan besi dinilai lebih lanjut untuk 

pengkarbonan mineral kerana pelbagai potensi mineral dan mempunyai kandungan 

kation divalen tertinggi. Kesan pengkarbonan mineral menggunakan sisa 

perlombongan menunjukkan bahawa saiz zarah yang lebih kecil (<38 µm) telah 

mencapai 3.81% kecekapan pengkarbonatan kalsium, 6.66% kecekapan 
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pengkarbonatan besi dan 6.43% kecekapan pengkarbonatan magnesium yang lebih 

tinggi. Apabila suhu meningkat pada 200°C, kecekapan pengkarbonatan kalsium, 

besi dan magnesium diperoleh pada tahap maksimum masing-masing sebanyak 4%, 

5.82% dan 5.62%. Peningkatan pH kepada pH 12 menghasilkan kecekapan 

pengkarbonatan kalsium, besi dan magnesium yang lebih tinggi masing-masing 

sebanyak 5.56%, 5.85% dan 5.83%. Kecekapan pengkarbonatan yang diterima 

dicapai dalam keadaan tekanan persekitaran yang baik. Penggunaan pelbagai jenis 

sisa lombong di dalam batu bata menunjukkan daya tahan yang baik dari segi sifat 

fizikal dan mekanikal, di mana bata sisa lombong batu kapur berupaya 

mengurangkan penyerapan air menjadi 0.52% serta meningkatkan kekuatan 

mampatan pada 40.23 N/mm2. Batu bata sisa lombong bijih besi menunjukkan 

pengambilan karbon dioksida yang mengandungi purata lebih tinggi sebanyak 

0.63%. Nisbah campuran yang berbeza dan tempoh pengeringan adalah faktor 

penting yang mempengaruhi penyerapan air spesimen bata berkarbonat, sementara 

waktu pengkarbonan dapat meningkatkan kekuatan mampatan spesimen bata. 

Pengambilan karbon dioksida yang rendah dapat ditingkatkan dengan 

meningkatkan peratusan penggunaan sisa perlombongan sebanyak 60% dan masa 

pengkarbonatan yang lebih lama iaitu selama 3 jam. Oleh itu, penggunaan sisa 

perlombongan sebagai bahan mentah untuk proses pengkarbonan mineral 

merupakan penyelesaian untuk masalah pengurangan sisa dan merupakan 

pendekatan yang bermanfaat untuk alam sekitar dalam mengurangkan pelepasan 

karbon dioksida. Inisiatif ini juga dapat mempromosikan penggunaan sumber asli 

secara lestari serta digunakan untuk strategi mitigasi yang berkaitan dengan 

perlombongan. 
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analysis were dropped on a microscope glass slide 

of 2 cm x 2 cm. 

(a) Clay samples on glass slide were air dried at 

room temperature for 24 hours and (b) Dried clay 

samples after 24 hours. 

The glass slide were placed in a 2.5 cm diameter 

circular specimen holder of 

polymethylmethacrylate (PMMA). 

Each samples in circular specimen holder of 

polymethylmethacrylate (PMMA) were placed in 

the XRD rack holder for the mineralogical 

analysis. 

About 1 g of each sample is attached to a copper 

stub using silver colloid. 

A sample is coated with gold and heated at 2500°C 

for 15 minutes. 
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CHAPTER 1 

INTRODUCTION 

1.1 Background of the Research 

1.1.1 Global Issue on Carbon Dioxide Emissions 

Emissions of carbon dioxide (CO2) are likely to increase due to global energy 

demand and economic growth throughout the year. High concentration of 

anthropogenic CO2 emission is becoming a global issue because of CO2 is the major 

gas which causes high greenhouse gases (GHGs) accumulation in the atmosphere 

and lead to climate change (Sipilä et al., 2008). Furthermore, global atmospheric 

CO2 concentration has risen every year in the last 10 years, where the highest 

increment is 3.4 ppm from 399.41 ppm in 2015 to 402.81 ppm in 2016 (NOAA, 

2018) (Figure 1.1).  

Figure 1.1 : Trend line shows global average CO2 levels. The line symbolize the 

U.S. State: South Pole, Antartica (yellow), American Samoa (green), Mauna 

Loa, Hawaii (red) and Barrow, Alaska (blue). The average of the smoothed 

curves for each year is shown in black line. [Adopted from National Oceanic and 

Atmospheric Administration (2018)] 
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GHG emission and climate change has become one of the environmental issues that 

is caused by the increase in CO2 emission from human activities such as fossil fuel 

burning, transportation and industrial activities. The release of anthropogenic GHG 

into the atmosphere consists of carbon dioxide, nitrous oxide, methane, water 

vapour and ozone. The GHG emission especially CO2 is the main driver of the 

current global warming issue that contributes about 6,511 million metric tons of 

total CO2 equivalent emission in 2016 (EPA, 2016; Muhd-Nor et al., 2016). 

Southeast Asian countries such as Malaysia, Thailand, Indonesia, Brunei, 

Singapore, Philippines, Vietnam, Myanmar, Laos, and Cambodia are also affected 

by global warming, where combustion of fossil fuel is the major activity which 

contributes in increasing CO2 discharge into the atmosphere (Muhd-Nor et al., 2016; 

Wilson et al., 2009). Besides, GHG emissions also come from deforestation activity, 

where the trees are cut down and burned for development and agriculture purposes. 

Other than that, transportation, industrial activities and land-use changes are also 

leading to the increase of CO2 emissions. Thus, the human activities have a 

significant effect on the climate on the earth. 

 

 

To inhibit global climate change by 2050 as recommended by the International 

Energy Agency (IEA), a decrease of approximately 13% of the accumulated CO2 

emission per year is required. In Malaysia, release of CO2 is at a current level of 

257.69 million tons (Mt) in 2014 and is expected to increase to 12.1 tons of CO2 

emission per capita by 2020 (Zaid et al., 2015). Malaysia has targeted a 45% decline 

in GHG emissions by the year 2030, as reported in the policy commitment (Ministry 

of Energy and Natural Resources, 2019), whereas Indonesia and Singapore are 

expected to decrease GHG emissions by 29% and 36% respectively by 2030 (Muhd-

Nor et al., 2016). Therefore, an effective approach is needed to achieve the goal of 

reducing CO2 emission in the future. 

 

 

The mining industry contributes for about 21% of global anthropogenic CO2 

emissions (IPCC, 2014), hence proper mitigation strategies are required in the 

mining sector to reduce CO2 emissions for long term. Metallic minerals (e.g., iron 

ore, gold, and bauxite) and non-metallic mineral including limestone, are the main 

minerals production in Malaysia which provide high economic value to mining 

industry (Figure 1.2) (Department of Mineral and Geoscience Malaysia, 2018). As 

a result, the increase in minerals demand lead to subsequent increase in air 

pollutants such as CO2 in the environment. For instance, metal ore extraction from 

an open pit mine will normally release large quantities of CO2 into the atmosphere 

(Pandey et al., 2017). Mining industry faces major challenge for reducing the air 

pollutants emissions in the atmosphere and thus, requires an effective mitigation in 

controlling global warming. 
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Figure 1.2 : The production of minerals in Malaysia of metallic minerals (e.g., 

gold, bauxite, iron ore) and non-metallic mineral (e.g., limestone) from 2014 to 

2016. [Source from Department of Mineral and Geoscience Malaysia (2018)] 

 

 

1.1.2 Carbon Dioxide Emission from Mining Activities 

 

 

Mining industry is among the main sources of environmental pollution such as 

through the release of anthropogenic CO2 emissions into the atmosphere and 

alteration of land that leads to soil contamination. This is because mining activities 

releases various toxic contaminants into the soil and environment at different stages 

of its commissioning from mining to metal cleaning, transportation, and finally to 

its disposal as end product. In general processes, mining activities such as the 

extraction and materials processing that remove rocks and soils from open pit mine 

to obtain metal ore will normally release excessive amounts of CO2 that affects 

anthropogenic GHG accumulation in the atmosphere (Pandey et al., 2017). During 

surface mining activities, the land would suffer several alterations that will lead to 

environmental contamination. Mining operations such as collection of valuable 

topsoil using scrapers and bulldozers and land cleaning for vegetation clearance, 

potentially destroying flora and fauna and causing plant and soil quality destruction, 

and also more dust release in the surrounding area (Tabatabaei and Mohammadi, 

2013). 

 

 

Removal of top soils is the basic operation involved in mining processes resulting 

in the removal of seed bank and root stocks, reduction of organic matter and nutrient 

contents, modification of soil texture and structure, and severe deterioration in 

quality of soil (Mensah, 2014). Minerals extraction is achieved through drilling and 

blastings activities after clearance of the topsoil and vegetation. The drilling process 

produces dust that comes from rock crushing and grinding activities (Pandey et al., 

2017). The effect of drilling process contributes to the conveyance and spread of 

pollutants into the environment, and as well as the source of dust (Mandal et al., 

2012). The explosion emitted CO2, nitrogen, and water that are considered a major 
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gaseous material in the ultimate environment. The topsoil is transported via the haul 

road for dumping involving excavator, scraper, loader, and dumper after drilling 

and blasting process, which lead to large emission of small particulates from the 

overburden substances (Tabatabaei and Mohammadi, 2013). The most plentiful 

sources of dust in open-cast mines are strongly released from vehicle traffic during 

mining operations. Therefore, various stages of mining operations such as land 

cleaning, drilling and blasting, crushing and grinding of rocks, filling, dropping, and 

road transport produce a lot of gaseous pollutants that may lead to accumulation of 

anthropogenic GHG and soil contamination in surrounding areas.  

 
 
1.1.3  Carbon Sequestration Technique in Reducing Carbon Dioxide 

Emission 

 

 

Several techniques for reducing CO2 emissions have been utilized particularly from 

the mining sector. Among them, CO2 sequestration or carbon capture and storage 

(CCS) by mineral carbonation is the most effective method that can help in 

decreasing 20% of CO2 emission (Benson and Cole, 2008) by permanently storing 

CO2 in solid carbonates (Arce et al., 2017; Jorat et al., 2015a; Jorat et al., 2015b; 

Jorat et al., 2017; Lackner et al., 1995; Li and Hitch, 2017; Manning, 2008; Manning 

et al., 2013; Moosdorf et al., 2011; Renforth et al., 2009; Renforth, 2011; Renforth 

et al., 2011; Sipilä et al., 2008; Washbourne et al., 2015). This process occurs when 

the CO2 from the gas flows is stored in rock and soil (Assima et al., 2013a; Harrison 

et al., 2013a; Wilson et al., 2009). For instance, natural processes that consist CO2 

chemical reaction to form carbonic acid and bicarbonate and the mixing of 

atmospheric gases into the oceans through physical exchange (Power et al., 2013) 

are highly preferred because it somehow can lower the environmental impact. 

Sequestering CO2 in soils or other materials containing calcium content and the 

availability of CO2 in the substrate are important factors in the carbonates formation, 

where this process is considered as passive CO2 sequestration (Manning et al., 2013; 

Jorat et al., 2018). In this study, passive CO2 sequestration is applied which involves 

the uptake of CO2 uptake by mineral carbonation reaction from carbonates minerals 

formed in the rocks and soils to mitigate CO2 in the atmosphere.  

 

 

Waste materials or residues are produced by extraction and materials process in a 

form of gases, solids, and water from mining operations. This process increases the 

GHG emission as the CO2 is released into the atmosphere (Assima et al., 2014b; 

Harrison et al., 2013b), and generates greater amount of waste that has small or no 

economic benefit. Nevertheless, mining wastes in a constructive way can help 

reduce GHG emission to the atmosphere because of its ability to store CO2. In order 

to reduce CO2 in the atmosphere, passive CO2 sequestration process by mineral 

carbonation is needed which can trap CO2 in stable carbonates (Assima et al., 2013a; 

Assima et al., 2014c; Wilson et al., 2009). Reaction between CO2 with ions such as 

calcium (Ca2+), magnesium (Mg2+), and hydrogen (H+) forming carbonate or 

bicarbonate that captured carbon by weathering of primary minerals (Assima et al., 

2014b; Assima et al., 2014c; Lechat et al., 2016; Power et al., 2013; Renforth, 2011; 

Wilson et al., 2009). This natural carbonation process offers huge potential as CO2 

storage to reduce GHG emission for mining waste. Moreover, mining residues from 

various types of mining processes could potentially sequester CO2 and provides 
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economic values with the least technology costs (Assima et al., 2012; Assima et al., 

2013a; Lechat et al., 2016).  Large amount of mining wastes which contains plenty 

of Ca-Fe-Mg have a potential be used as a feedstock for passive CO2 sequestration. 

Thus, mining waste materials can be used as a feedstock for carbon sequestration 

for long-term reduction of CO2 emissions. 

 

 

From another point of view, CO2 storage in construction industry has also been 

explored in a more recent year. Industrial activities such as cement production, steel 

making and other construction material production also emit high CO2 into the 

atmosphere. Approximately 5% of global CO2 emissions come from the production 

of cement (Khan et al., 2018). Nevertheless, recovered CO2 can be recycled as a 

curing agent in the production of carbonated concrete products to minimize CO2 

emissions for long term (El-Hassan and Shao, 2014). The concept of carbonation 

curing process is almost similar to the mineral carbonation process, where CO2 is 

stored in the form of thermodynamically stable CaCO3 in the concrete product. 

Application of CO2 storage in construction industry has been discovered in cement-

bonded cellulose fiberboards (He et al., 2019), concrete block (El-Hassan and Shao, 

2014) and mortar mixes incorporating cement kiln dust (CKD) (Sharma and Goyal, 

2018) in sequestering CO2 in concrete product. Furthermore, the use of waste 

materials will serve as additional binder in carbonation process that can increase 

CO2 uptake and improve the properties of the carbonation byproduct. Since mining 

waste materials have potential for carbon sequestration, further utilization of it for 

the manufacture of bricks can act as a permanent CO2 storage technique and at the 

same time enhance the durability properties of carbonated products that can be used 

for construction purposes. 

 

 

1. 2  Problem Statements 

 

 

The population growth, high income and rapid growth of urban cities in developing 

countries have causes several environmental issues such as global warming. Human 

activities have contributed to the increase in atmospheric anthropogenic CO2 

emissions and can lead to climate change. Global warming and climate change have 

potential effects on the environment such as severe climate (e.g., storm, floods, and 

droughts), sea level rise and altered crop growth. Malaysian economy is evolving 

rapidly in that most of the CO2 emissions continue to increase as the Malaysian 

economy develops. The increasing population and environmental deterioration are 

becoming major obstacles in achieving 40% CO2 reduction target by the year 2020 

(Shahid et al., 2014), where mining industry is among the significant contributor to 

climate change. Thus, an effective mitigation is needed in monitoring CO2 emission 

from mining industry for long term. 

 

 

Mining activities yield large quantities of waste materials which are typically stored 

in tailings and waste dump at the mining site. Furthermore, the large quantities of 

waste at mining site if are not well-managed, can be harmful to the environment and 

human health. However, mineral wastes from mining have a potential to sequester 

CO2 permanently because these minerals are able to trap CO2 from the atmosphere, 

when they are exposed to the atmosphere and rain water. Thus, the potential 
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utilization of mining waste for carbon sequestration is required in reducing CO2 in 

the atmosphere. 

 

 

Carbon sequestration or CCS is the technology used to reduce CO2 emission, which 

is an environmentally sound approach of storing CO2 permanently in carbonates 

form. This technology is widely applied to alkaline wastes from industry such as 

cement kiln dust, steel slags, fines from aggregate production and construction 

waste (Renforth et al., 2011). Carbon sequestration is also important for mining 

industry because they must reduce CO2 emission and at the same time explore the 

potential of carbon sequestration through utilization of mining waste. However, less 

research on CCS through mineral carbonation is applied in Malaysia, especially in 

mining industry. Thus, the current research is emphasized on the discovery of the 

mining waste potential for carbon sequestration in mitigating GHG emission for 

long term. 

 

 

1.3  Objectives of the Study  

 

 

The aim of this research is to evaluate the potential of carbon sequestration from 

mining waste to reduce CO2 emissions in the atmosphere through mineral 

carbonation. The underlying objectives are expanded below. 

 

1. To evaluate the characteristics of different types of mining wastes for 

carbon sequestration. 

(i) To characterize the mineral phases and chemical composition of the 

mining wastes for carbon sequestration. 

(ii) To identify the presence of natural silicate and/or carbonate minerals in 

mining wastes as the feedstock for the mineral carbonation process. 

 

2. To enhance mineral carbonation process in sequestering more CO2 in 

carbonate form. 

(i) To determine the effect of particle size fraction, temperature and pH on 

mineral carbonation process from mining wastes. 

(ii) To measure the carbonation efficiency from the mineral carbonation 

process using mining wastes. 

 

3. To develop potential application of mining wastes in contruction industry 

for long term carbon storage. 

(i) To evaluate the physical and mechanical properties of mining waste bricks 

in carbon storage application. 

(ii) To assess the potential carbon capture and storage of mining waste bricks. 

(iii) To determine the effect of carbonation curing on brick properties. 
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1.4  Research Questions 

 

 

Waste materials from mining operations may have potential for carbon 

sequestration in reducing CO2 emissions by enhancing the carbonation reaction and 

utilizing it for long term carbon storage. The underlying research questions are as 

follows: 

1. What are the characteristics of mining waste suitable for carbon 

sequestered to reduce CO2 emission? 

2. What are the mineral and chemical composition of the mining wastes that 

can be influencial for carbon sequestration? 

3. What are the natural silicate and carbonate minerals present in mining 

wastes that can be utilized as feedstock for the mineral carbonation 

process? 

4. What are the factors that influence mineral carbonation process from 

mining waste to sequester more CO2? 

5. Does the particle size fraction, temperature and pH affect the mineral 

carbonation process from mining wastes? 

6. How much is the carbonation efficiency from the mineral carbonation 

process using mining wastes? 

7. How can carbonate minerals from mineral carbonation process of mining 

waste be utilized for permanent carbon storage? 

8. What are the physical and mechanical properties of mining waste bricks? 

Does the bricks meet the standard specification for construction purposes? 

9. How much is the CO2 uptake of bricks containing mining waste? 

10. Does the carbonation curing of mining waste bricks affect the properties 

of the brick product? 

 

 

1.5  Significance of the Study 

 

 

Passive carbon sequestration from mining waste provides potential solution in 

storing CO2 permanently for long term. Carbon mineralization is an approach for 

determining the potential of carbon capture of mining waste in sequester CO2 in 

stable carbonates. Potential use of silicate minerals for carbon uptake through 

mineral carbonation can enhance carbon sequestration from mining waste. 

Furthermore, passive CO2 sequestration of mineral carbonation provides the 

potential for carbon footprint evaluation in mining industry in Malaysia. The 

process of trapping and storing CO2 can help stabilize concentrations of atmospheric 

CO2 that would otherwise be released into the atmosphere. CCS is an attractive 

solution that is capable of meeting demand for CO2 reduction (Li and Hitch, 2017). 

The use of this technology may provide long term benefits to the environment 

through the adoption of carbon sequestration technique. 

 

 

Mine wastes, instead of being regarded as waste materials have a potential for 

atmospheric carbon sink in reducing CO2 emission to the atmosphere. Current 

research has explored the mining waste potential from metal mining industry such 

as iron ore, gold; and non-metal industry including limestone because they produce 
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large amount of waste which may be used as a feedstock for carbon sequestration 

process. Besides, they are the main contributor to country’s mineral sector and the 

availability of Mg-Ca-Fe-silicate minerals in mining waste makes it favorable for 

carbonates reactions. Mine waste samples from tailings, stockpiles, and waste dump 

are investigated in this study because these wastes may provide long term 

atmospheric CO2 storage in order to reduce GHG emission to the atmosphere. 

Utilization of mining waste as carbonates and value added by-product from 

carbonation process, have the potential to be used as green building product for 

permanent CO2 storage. In this research, waste materials from gold, limestone and 

iron ore mining are utilized as raw materials in brick production, where CO2 is being 

captured and stored from escaping into the atmosphere. 

 

 

1.6  Scope of the Study 

 

 

This study focuses on the potential of mining waste such as the waste materials from 

gold, limestone and iron ore mining for carbon sequestration in mitigating climate 

change. Samples of mine wastes consisting of rock, soil, sludge and sediment were 

obtained from active mine sites, which are discovered in Pahang and Perak states. 

Data from mining waste will help describe its mineralogy and chemical composition 

in association with its potential as feedstock for mineral carbonation. Direct aqueous 

mineral carbonation experiment of mining waste is performed using different 

particle size fraction, pH and temperature to sequester more CO2 in carbonate form. 

The carbonation efficiency of various types of mining waste are evaluated. In order 

to capture CO2 permanently, mining waste is further utilized to develop bricks 

product. The effect of brick properties such as density, water absorption and 

compressive strength using various proportion of mining waste, which is 40%, 50% 

and 60% are evaluated to produce good quality bricks for construction purposes that 

satisfy the standard engineering requirements. The CO2 uptake of mining waste 

bricks is identified and the influence of carbonation time and curing periods on the 

brick properties are explored. 

 

 

1.7  Organization of the Thesis 

 

 

Chapter one focuses on the general issues on CO2 emissions and application of 

carbon sequestration technology in reducing CO2. This chapter also provides the 

statement of the problems, the objectives of the study, significance of the study, 

scope of the study and the outlines of the thesis. Chapter two provides a review of 

the literature on carbon sequestration and mineral carbonation. This includes the 

advantages and disadvantages of carbon sequestration, classification of mining 

wastes and its potential as a feedstock for carbon sequestration, and potential by-

product from mineral carbonation using mining waste for industrial use. Chapter 

three explains the details of the study area including geological history of mining 

site, field sampling, sample collection and sample preparation for different types of 

waste. Sample analysis was further describes using X-ray diffractogram (XRD), 

scanning electron microscopy (SEM), energy dispersive X-ray (EDX) and 

thermogravimetric analysis (TGA). Mineral carbonation experiments using the 

mining waste were further described. The methodology for the production of bricks 
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using different mixture proportion of mining waste for long-term carbon storage 

was also explained in detail, including its physical and mechanical properties and 

the carbonation curing procedure. Chapter four discusses the results of the 

characterization of mining waste such as pH, particle-size distribution, mineral and 

chemical composition as feedstock for mineral carbonation, where the first 

objective was achieved. The mineral carbonation process using silicate minerals 

from mining wastes were also discussed. Findings from mineral carbonation 

experiment were discussed on the effects of particle size, temperature and pH on 

carbonation efficiency, achieving the second objectives. The physical and 

mechanical properties of bricks containing mining wastes in terms of density, water 

absorption and compressive strength were described and was compared with the 

standard specification of bricks for construction purposes. The potential of carbon 

capture and storage of mining waste bricks was also explained. The effect of CO2 

uptake and carbonation of bricks properties were discussed in detail, achieving the 

third objectives. Last but not least, Chapter five summarizes the conclusions and 

implications from the study and provides recommendations for the future studies.  
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