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Terrestrial laser scanning (TLS) technology is an active remote sensing imaging 

method stated to be one of the latest advances and innovations for plant phenotyping 

and plant structure characterisation. It can provide accurate information via high-

resolution scans on tree’s dimensions and morphology, which are important indicators 

of the plant’s health and development. Basal Stem Rot (BSR) is the most destructive 

disease of oil palm in Malaysia caused by white-rot fungus Ganoderma boninense. The 

infected trees show foliar symptoms such as flattening and hanging-down of the 

canopy, the appearance of many unopened spears, shorter leaves and smaller size of 

the crown. Various remote sensing approaches have been used to detect BSR. 

However, none of them using TLS. Furthermore, even the tree dies less than 12 months 

after infection, current study only monitors the tree at 6 and 12 months after infection. 

Therefore, this study proposes the use of TLS data of crown properties to detect BSR. 

This includes the study of crown and frond parts of the oil palm trees to develop a 

model suitable for BSR detection and also analysis of the changes using multi-

temporal data of 2 and 4 months gap. A total of 40 samples of oil palm trees at the age 

of nine-years-old have been selected with 10 trees for each healthiness level were 

predetermined by the experts in the same plot. The trees were categorized into four 

healthiness levels - T0, T1, T2 and T3 represents the healthy, mildly infected, 

moderately infected and severely infected, respectively. Another 40 samples of oil 

palm tree taken from different plot were used for prediction. TLS was mounted at a 

height of 1 m and each palm was scanned at four scan positions at a distance of 1.5 m 

around the tree. The recorded laser scans were synched and merged to create a cluster 

of point clouds. Crown stratification was done to get a density of point cloud at 

specific strata (Cn). Meanwhile, the crown area, frond number and frond angle were 

gathered by processing the top-view of point cloud data. Analysis of Variance 

(ANOVA) at 5% significant level and four post-hoc tests - Student’s (Student-

Newman-Keuls, SNK), Tukey-Kramer HSD (Honest Significance Difference), Hsu’s 
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MCB (Multiple Comparison Best) and Dunnett’s were used to find significant features 

to be used as input parameter(s) of three different approaches of classification models, 

i.e., single parameter, combined parameters and machine learning. Results of the 

crown profile have shown that the upper parts of healthy tree are more densed 

compared to unhealthy. Five features were identified to be significant to classify BSR 

at four severity levels, namely C200 (strata at 200 cm from the top), C850 (strata at 

850 cm from the top), crown area, frond angle and frond number. For a single 

parameter approach, models developed using frond number and frond angle gave the 

best results with both gave 100% healthy level classification, 81.67% healthy-

unhealthy classification and 72.5% four severity levels of infection classification 

among all five parameters. Linear model using frond number, frond angle and C200 

produced the best result among 118 classification polynomial models with 100% 

healthy level classification, 86.67% healthy-unhealthy classification and 80% four 

severity levels of infection classification. For the machine learning approach, the 

Kernel Naïve Bayes that used PC1 and PC2 as inputs gave the best results with 100% 

healthy and T1 (mild infection) levels of classifications, 90% healthy-unhealthy 

classification and 85% four severity level of infection classification compared to other 

72 classification models. This model has also been identified as the best model to 

detect at an early stage and classify the severity level of BSR. Meanwhile, based on the 

results of multi-temporal analysis, compared to the unhealthy trees, the crown area and 

frond angle of healthy trees did not give significant changes during 2 and 4 months 

gap. It shows that even though there were changes in oil palm’s architecture due to a 

normal growth of the healthy trees, the changes were trivial and more stable. It can be 

concluded that the major contribution of this study is on the development of a model 

suitable for BSR disease detection in an oil palm tree due to Ganoderma boninense and 

also the capability of the model to classify its severity level of infection at very early 

stage (T1 – mild infection) using machine learning technique and TLS data of the 

crown properties. The proposed method hopefully can help better disease management 

at the oil palm plantation which thus can increase the oil palm yield. 
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Teknologi laser pengimbas daratan (LPD) adalah kaedah pengimejan penginderaan 

jauh aktif yang dinyatakan sebagai salah satu kemajuan dan inovasi terkini bagi fenotip 

tumbuhan dan pencirian struktur tumbuhan. Ia dapat memberikan maklumat yang tepat 

melalui imbasan beresolusi tinggi pada dimensi dan morfologi pokok, yang merupakan 

petunjuk penting bagi kesihatan dan pertumbuhan pokok. Reput Pangkal Batang (RPB) 

adalah penyakit yang paling banyak merosakkan pokok kelapa sawit di Malaysia yang 

disebabkan oleh kulat putih Ganoderma boninense. Pokok-pokok yang dijangkiti 

menunjukkan gejala foliar seperti kanopi yang mendatar dan tergantung ke bawah, 

penampilan banyak daun pucuk yang tidak terbuka, daun yang lebih pendek dan silara 

yang lebih kecil. Pelbagai pendekatan penderiaan jauh telah digunakan untuk 

mengesan RPB. Walau bagaimanapun, tiada satu pun daripadanya menggunakan LPD. 

Selain itu, walaupun pokok telah mati kurang dari 12 bulan selepas jangkitan, kajian 

semasa hanya memantau pokok pada 6 dan 12 bulan selepas jangkitan. Oleh itu, kajian 

ini mencadangkan penggunaan data LPD bagi ciri-ciri silara untuk mengesan RPB. Ini 

termasuk kajian bahagian silara dan pelepah pokok kelapa sawit untuk membangunkan 

model yang sesuai untuk pengesanan RPB dan juga analisis perubahan menggunakan 

data pelbagai tempoh dari jurang 2 dan 4 bulan. Sejumlah 40 sampel pokok kelapa 

sawit pada usia sembilan tahun telah dipilih dengan 10 pokok untuk setiap tahap 

kesihatan yang telah ditetapkan oleh pakar dalam plot yang sama. Pokok-pokok 

tersebut dikategorikan kepada empat tahap kesihatan - T0, T1, T2 dan T3 mewakili 

masing-masing yang sihat, jangkitan ringan, jangkitan sederhana dan jangkitan parah. 

Lagi 40 sampel pokok kelapa sawit yang diambil dari plot yang lain digunakan untuk 

ramalan. Pengimbas LPD dipasang pada ketinggian 1 m dan setiap pohon sawit 

diimbas pada empat kedudukan imbasan pada jarak 1.5 m di sekeliling pohon. Imbasan 

laser yang direkodkan telah diselaraskan dan digabungkan untuk menghasilkan 

kumpulan titik awan (point cloud). Stratifikasi silara telah dilakukan untuk 

mendapatkan ketumpatan titik awan pada strata tertentu (Cn). Sementara itu, luas 

silara, bilangan pelepah dan sudut pelepah didapatkan dengan memproses pandangan 
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atas imej data titik awan. Analisis Varians (ANOVA) pada tahap ketara 5% dan empat 

ujian pasca-hoc – Student (Newman-Keuls, SNK), Tukey-Kramer HSD (Honest 

Significance Difference), MCB Hsu (Multiple Comparison Best) dan Dunnett telah 

digunakan untuk mencari ciri-ciri yang ketara untuk digunakan sebagai input 

parameter bagi tiga pendekatan klasifikasi model yang berbeza, iaitu parameter 

tunggal, gabungan parameter dan pembelajaran mesin (machine learning). Keputusan 

dari profil silara telah menunjukkan bahawa bahagian atas pokok yang sihat lebih 

padat berbanding dengan tidak sihat. Lima ciri telah dikenalpasti penting untuk 

mengklasifikasikan RPB pada empat tahap keparahan, iaitu C200 (strata pada 200 sm 

dari puncak), C850 (strata pada 850 sm dari puncak), luas silara, sudut pelepah dan 

bilangan pelepah. Bagi pendekatan parameter tunggal, model yang dibangunkan 

menggunakan bilangan pelepah dan sudut pelepah memberikan keputusan yang terbaik 

dengan keduanya memberikan 100% klasifikasi tahap sihat, 81.67% klasifikasi sihat-

tidak sihat dan 72.5% klasifikasi empat tahap keparahan jangkitan di antara kesemua 

lima parameter. Model linear menggunakan nombor pelepah, sudut pelepah dan C200 

menghasilkan hasil terbaik di antara 118 model pengkelasan polinomial dengan 100% 

klasifikasi tahap sihat, 86.67% klasifikasi sihat-tidak sihat dan 80% klasifikasi empat 

tahap keparahan jangkitan. Bagi pendekatan pembelajaran mesin, Naïve Bayes Kernel 

yang menggunakan PC1 dan PC2 sebagai input memberikan hasil yang terbaik dengan 

klasifikasi 100% tahap yang sihat dan T1 (jangkitan ringan), 90% klasifikasi sihat-

tidak sihat dan 85% klasifikasi empat tahap keparahan berbanding dengan 72 model 

klasifikasi yang lain. Model ini juga telah dikenal pasti sebagai model terbaik untuk 

mengesan pada peringkat awal dan mengklasifikasikan tahap keparahan RPB. 

Sementara itu, berdasarkan analisis pelbagai tempoh, berbanding dengan pokok yang 

tidak sihat, luas silara dan sudut pelepah pokok yang sihat tidak memberikan 

perubahan ketara semasa jurang 2 dan 4 bulan. Ia menunjukkan bahawa walaupun ada 

perubahan dalam struktur kelapa sawit kerana pertumbuhan pokok yang sihat, 

perubahannya adalah remeh dan lebih stabil. Kesimpulannya, sumbangan utama kajian 

ini adalah untuk membangunkan model yang sesuai untuk pengesanan penyakit RPB 

dalam pokok kelapa sawit akibat Ganoderma boninense dan keupayaan model tersebut 

untuk mengkelaskan tahap keparahan jangkitan pada peringkat awal (T1 - jangkitan 

ringan) menggunakan teknik pembelajaran mesin dan data LPD ciri-ciri silara. Kaedah 

yang dicadangkan ini diharapkan dapat membantu pengurusan penyakit yang lebih 

baik di ladang kelapa sawit yang dapat meningkatkan hasil minyak sawit. 
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CHAPTER 1 

1INTRODUCTION 

1.1 Research Background 

The oil palm (Elaeis guineensis) is a species of palms planted extensively in Southeast 

Asia and presently is the dominant region of palm oil production. In Malaysia, oil palm 
is the most important commodity crop and it is the world’s second largest palm oil 

producer. The palm oil industry has been a key economic factor and revenue driver for 

Malaysia’s development and stability. Palm oil and palm-based products are among the 

top ten major exports for the nation, and its annual export has increased steadily going 

back more than 30 years (MPOB, 2017). Oil palm products are the second largest 

export good from Malaysia and production, and export levels continue to increase 

(Sulaiman et al., 2011). In 2106, exports of palm oil and palm-based agriculture 

products increased by 5.9% to RM48.27 billion.  

 

Malaysia has a humid tropical climate, ample sunshine coupled with an evenly 

distributed annual rainfall of around 2000 mm and temperature ranging from 24°C to 

32°C throughout the year is highly suitable for oil palm plantation. The land is 

biophysically highly suitable for oil palm cultivation (Shevade et al., 2019). In 2018, 

the total area of oil palm planted in Malaysia was more than 5.8 million hectares for 

mature and immature trees, an increase of almost 100% compared to 1997. These 

plantations produce 32% of the world’s palm oil, which represents 27% of global oil 

and fat exports (Rakib et al., 2014). Besides the climate and land suitability, 

government policies (e.g. Industrial Master Plan (IMP)), integrated co-operative from 

private sector, network cohesion between government and private sector, technology 
advancement and research and development (R & D) supports are among the key 

drivers of palm oil sector in Malaysia (Sime Darby, 2009).  

 

White-rot fungus identified as Ganoderma is the causal pathogen of BSR disease 

(Naher et al., 2013). Due to BSR, Malaysia has recorded yearly losses up to RM 1.5 

billion (around USD 400 million) (Chong et al., 2017). From the study, it was found 

that Ganoderma attack can lead to yield reduction of fresh fruit bunches (FFB) up to 

4.3 tonnes per hectare and was estimated a total of 400 000 hectares could be affected 
in the year 2020, which sum up to 1.72 million tonnes of FFB yield reduction (Kannan 

et al. 2017).  According to Naher et al. (2013) and Chong et al. (2017), Ganoderma 

boninense species is known as the most devastator species to cause a great economical 

effect in the palm oil industry especially in Southeast Asia. This disease can cause 

considerable damage in estates and is one of the main limitations of long term oil palm 

crop management. BSR could impact the world’s supply of palm oil for Malaysia and 

cause huge economic losses. 
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Ganoderma produces many enzymes that impair the woody tissue and damage lignin 

and cellulose of oil palm tree. As the fungus destroys the palm wood internally, it 

affected xylem (water and solutes transport tissue), thus causing severe problems in the 

distribution of water, macronutrients and micronutrients to the top of tree (Markom et 

al., 2009; Mazliham et al., 2008; Su’ud et al., 2007). The lack of nutrients results in the 
growth of new leaves being affected (Srinivasan, 2001) and in more dead leaves being 

found. In severe cases, there is no development of new leaves, and no new bunches are 

found (Srinivasulu et al., 2002). Nutrient requirements generally increase with the 

growth of plants, and nutrient deficiencies can damage the plants by inhibiting the 

growth and reducing the yield. 

  

 

Symptoms of infected oil palm trees are detected visually on the canopy or foliar, stem, 

or trunk. The foliar symptoms of infected trees are similar to a “skirt-like” shape of the 

crown, a high presence of unopened spear leaves, and excessive drying of the lower 

part of the leaves. The leaves also change to pale yellow, have necrotic and chlorotic 

tips, and become shorter with wilting green fronds (Cooper et al., 2011; Rees et al., 
2012). In general, it is hypothesised that healthy trees have larger crown sizes and 

well-developed canopies compared to infected trees (Barnes et al., 2017; Vossen, 

2007; Waring, 1987). BSR infection could cause changes to the physical appearance 

and growth of oil palm trees. The changes are due to the damage of the internal tissue 

of trees, which restrict the water and nutrient consumptions, consequently disrupting 

tree growth and degenerates the physical condition of oil palm trees (Horbach et al., 

2011). Infected trees also have less ability to perform normal photosynthesis compared 

to uninfected trees due to foliar symptoms and water deficiencies (Haniff et al., 2005). 

The disease at an advanced stage causes more dangled fronds and canopy hanging 

down than to a skirt structure (Turner and Gillbanks, 1974). Meanwhile, stunted leaf 

growth also leads to a smaller sized crown (Broschat, 2005; Corley and Tinker, 2008). 
The impact of the disease on the tree’s physical structure is more pronounced and 

detectable depending on the severity of the infection.  

 

LiDAR (Light detection and ranging) is an active imaging method that emits 

electromagnetic radiation towards the target using its energy source. LiDAR measures 

the distance or range to a target with pulsed laser light and measuring the reflected 

pulses with a sensor. It can directly represent external structures and do profiling for 

the objects or trees. Research and field site works have used the extensive biometric 
data in estimating tree properties while offering the possibility of reducing the 

inventory costs. Previous studies have demonstrated that Terrestrial LiDAR could be 

used to derive canopy vegetation profiles and other structural tree’s properties from an 

understorey perspective (Detto et al., 2015; Lefsky et al., 2005 and Means et al., 1999). 

The point cloud resulted from LiDAR can yield information on tree’s attributes such as 

tree height, canopy area, tree basal area, tree stem volume, and fronds properties. The 

systems can be deployed quickly in several locations and can gather information to 

measure unique attributes faster than those collected by field workers (Palace, 2016). 

Balduzzi (2014) stated that research in remote sensing proved that the micro 

differences visible in the point clouds analysis could be used to detect physical and 

external changes of the tree on the occurrence of possible disease.  
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Some of the applications using TLS for rapid, more complete, and more precise tree 

models were demonstrated by Trochta et al. (2017), Lin and Herold (2016), Palace et 

al. (2016), Srinivasan et al. (2014), Raumonen et al. (2013), Fernandez-Sarria et al. 

(2013), Fritz et al. (2013), Kankare et al. (2013), Moorthy et al. (2011) and Kiraly and 

Brolly (2008). These researchers used the point cloud data from a TLS and extracted 
the data for parameters such as tree height, diameter based height (DBH), crown 

height, width and area and plant area index. The results showed that point clouds data 

from TLS could be used for the extraction of various tree parameters with high 

correlation.  

1.2 Problem Statement 

Currently, there is no specific and standard visual symptoms can be used to classify 

various levels of BSR infection. Lack of a standard coupled with error-prone methods 

have led to contradictory assessments in the literature (Lelong et al., 2010; Nisfariza et 

al., 2010). Manual method based on individual or scouts monitoring is labour-

intensive, prone to fatigue and low accuracy due to human dependence. Laboratory-

based methods are reliable for early detection; however, they are costly, complex, time 

consuming and ill-suited for outdoor conditions (Naher et al., 2013). Multispectral 
imaging (Santoso et al., 2019; Bejo et al., 2018; Khairunniza-Bejo et al., 2015; Santoso 

et al., 2011) and hyperspectral imaging (Ahmadi et al., 2017; Izzuddin et al., 2015; 

Liaghat et al., 2014; Izzuddin et al., 2013; Shafri et al., 2011a; Lelong et al., 2010; 

Nisfariza et al., 2010) techniques can differentiate between healthy and unhealthy oil 

palm trees with varying levels of accuracy. However, these techniques insufficiently 

discriminate the different levels of severity. 

 

 

Based on the literature, it can be concluded that TLS is well-adapted for intensive 

study of tree geometry in-situ. Yet, there exist very few TLS studies focusing on a fine 

level of oil palm tree architecture, and none is aiming to extract the canopy properties 
of oil palm tree to study the diseases. The first study on the use of TLS for BSR 

detection was performed by Khairunniza-Bejo and Vong (2014). The results showed 

that there were correlations between the oil palm trunk’s perimeter, Diameter-Based 

Height (DBH) and canopy area with the BSR disease. This preliminary study 

supported the potential use of TLS for analysing the properties of oil palm trees to 

distinguish healthy and infected BSR at different levels of infection. Additionally, 

there is no previous study was conducted to examine the changes in oil palm 

architectures due to the BSR disease in less than 6 months period, which is the 

monitoring gap practice in the plantation. 
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1.3 Objectives  

General objective of this thesis is to study the capability of TLS to detect the changes 

in oil palm crown structure in different stages of Ganoderma boninense infection.   

 

The specific objectives of this thesis are: 

i. To study the crown and frond parts of healthy and unhealthy oil palm tree 

infected by BSR disease due to Ganoderma boninense using point cloud 

data. 

ii. To develop a model suitable for BSR detection and its severity level of 
infection at oil palm tree by using single parameters and polynomial 

models. 

iii. To develop a model for early detection of BSR disease using machine 

learning approach.  

1.4 Scope and Limitation 

The study area is located at one of the oil palm plantation block at Seberang Perak, 

Malaysia. A small block was used to avoid variations of the environment. The method 

was later predicted at another different oil palm plantation block. The age of the trees 

is 9 years old. The planted tree’s breeding is from DxP (Dura x Psifera) and the soil 

type is peat, equivalent to soil order of Histosols and soil series of Tropohemist (soil 

code: SC-10) (Ramli et al., 2019). Different healthiness level of BSR infection of the 
oil palm trees was determined by the expert team members from Malaysian Palm Oil 

Board (MPOB) and was confirmed through lab analysis using GSM (Ganoderma 

Selective Medium) method.  

1.5 Structure of the thesis 

Chapter 2 presents a review of the growth of oil palm tree, BSR effects and the visual 

symptoms, and the available methods used for BSR detection. The principles of laser 

scanning are also described, as well as the review of TLS and LiDAR applications in 

agriculture, in tree’s architecture and canopy. Next, is a review on the temporal 

monitoring applied in oil palm plantation and other plants. After that is applications of 

machine learning techniques employed for BSR disease and for various disease in 

agriculture. The chapter concludes with the advantages of TLS method, literature on 

temporal data and summary of the literature review chapter. 

 

Chapter 3 presents a proposed method used for BSR detection at the oil palm tree due 

to Ganoderma boninense infection and its severity level classification. First, a brief 

overview of the study area is given. Then, the standard lab-based method used for 

Ganoderma boninense detection was presented. It was used in this study to confirm the 
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occurrence of Ganoderma boninense. It is then followed by a detail explanation on the 

equipment used in this study – a FARO laser scanner. The experimental setup for data 

collections was presented later. It involved all consideration taken into account to 

avoid any occlusion effect and a trial and error setup to get a high density of point 

cloud which is applicable to be used in this study. After that, a step by step data pre-
processing method used is presented. It is then followed by feature extraction for the 

crown and frond properties. The crown properties section is presenting a method used 

for crown stratification and crown area calculation. For frond parts, it involves the 

proposed method to count the frond and method to measure the frond angle. As a 

reference, manual counting was also presented and used to compare the results of the 

proposed frond counting. Statistical analysis used in this study was also presented in 

this chapter. It is then followed by the three types of classification approaches used in 

this study i.e., single parameters, polynomial model using combined parameters and 

machine learning techniques. Finally, a method used to study the multi-temporal 

analysis is also presented in this chapter.  

 

Chapter 4 presents the results and discuss the findings of this research. This chapter 

first presenting results of the crown and frond analysis in order to find suitable 

parameters to be used in developing the model suitable for Ganoderma boninense 

detection. This chapter reveals the capability of point cloud data to demonstrate the 

difference of crown profile for healthy and un-healthy trees due to Ganoderma 

boninense infection. It also presents a list of strata that give a significant difference 

between healthy and unhealthy trees; and also strata that give significantly different at 

four severity levels of infections based on the results of statistical analysis. It was then 
followed by a crown area analysis. After that, this chapter will present how the frond 

number and frond angle are significant to be used as parameters for BSR detection. 

The significant parameters at the crown and frond parts were later used as input 

parameter(s) for classifications. At the classification sections, the results of models 

developed at all three classification approaches were presented. The best model for 

each approach was then selected and compared. After that, the analysis about the 

condition of crown and frond at different healthiness condition of oil palm tree over 

time are presented. It involved a short duration (2 months gap) and long duration (4 

months gap).  

 

Finally, Chapter 5 presents the conclusions of this research. The main contributions of 

this thesis are clearly outlined. In addition, some suggestions on future work are also 

presented. 
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