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Abstract of thesis presented to the Senate of Universiti Putra Malaysia in 
fulfilment of the requirement for the degree of Doctor of Philosophy 

FINITE ELEMENT MODELLING OF BILAYER IRON POWDER 
COMPACTION AND EVALUATION ON ITS RELATIVE DENSITY 

DISTRIBUTION USING IMAGING TECHNIQUE 

By 

SYAMIMI BINTI MOHD YUSOFF 

June 2022 

Chair : Suraya binti Mohd Tahir, PhD 
Faculty  : Engineering 

Multilayer compaction allows the manufacturing of advanced metal-based 
components ranging from long thin-walled sleeves to cutting tools. Combination 
of compressed powder layers has been proven to upgrade its mechanical 
properties in terms of its strength, durability and toughness compared to an 
individual layer. Following this, modern apparatus has applied layering principles 
to sustain the usage in daily life. Nevertheless, at the scale of research and 
development, inspection on unify powder layers are scant in the aspect of its 
internal density, particularly on its interconnected boundary layers or interface. 
This invites untimely defects of delamination and capping that would require 
unnecessary investment of time and effort during the secondary PM operation. 
All the while, the scope of density measurement has resorted to geometrical 
definition and hardness; thus, less modelling efforts had been undertaken to 
examine the sectioned powder layers. This study has developed an imaging 
technique and modelling procedures to assess the local relative density (or local 
RD) distribution on green single and bilayer iron ASC 100.29 powder compact. 
The modelling strategy was developed based on Finite Element Method (FEM) 
using Abaqus 6.20. The results of experimental distributed local RD values 
showed close agreement with values mentioned in the literature for green single 
layer powder compact and the current work was further improved with higher 
pixels. As expected, the modelled local RD values were validated for 
experimental local RD values green bilayer iron powder compact. Further, it was 
revealed that the highest local RD distribution on the interface of bilayer iron 
powder compact was obtained with H/D ratio of 1.6 under lubricated die 
condition. Besides, under all H/D ratios and low friction coefficient (µ of 0.08), 
smaller gradient of local RD distribution has been achieved by green bilayer iron 
powder compact compared to single layer iron powder compact with the same 
applied conditions.  
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PERMODELAN UNSUR TERHINGGA BAGI PEMADATAN 
SERBUK BESI DWILAPISAN DAN PENILAIAN TERHADAP 

TABURAN KETUMPATAN RELATIFNYA DENGAN 
MENGGUNAKAN TEKNIK PENGIMEJAN 

 

Oleh 
 

SYAMIMI BINTI MOHD YUSOFF 
 

Jun 2022 
 
 

Pengerusi : Suraya binti Mohd Tahir, PhD 
Fakulti  : Kejuruteraan 
 
 
Pemadatan beberapa lapisan serbuk memberi laluan kepada kecanggihan 
teknologi pembuatan komponen berlogam yang bersifat pelbagai daripada 
pembinaan dinding nipis sehingga alat mesin pemotongan. Gabungan beberapa 
lapisan serbuk yang dipadatkan memberi impak kepada penambahbaikan sifat-
sifat mekanikal bahan dari segi kekuatan, ketahanan dan keliatan berbanding 
pemadatan satu lapisan serbuk. Berikutan ini, alat-alat kelengkapan dibina 
berasaskan prinsip lapisan bertala untuk mengekalkan keseimbangan 
ketahanan dalam penggunaan harian. Walau bagaimanapun, pada skala 
penyelidikan dan pemodenan, pemeriksaan terperinci pada ketumpatan 
dalaman hasil dari gabungan beberapa serbuk lapisan yang dipadatkan amat 
jarang dilaksanakan terutama pada garisan sempadan atau permukaan antara 
lapisan-lapisan yang dipadatkan. Ini membawa kepada kerosakan yang 
mungkin hadir pada bila-bila masa yang memerlukan lebihan masa dan langkah-
langkah yang perlu dirangka untuk peringkat pembuatan yang seterusnya. Buat 
masa ini, bidang pengukuran ketumpatan serbuk hanya merangkumi definisi 
geometri dan kadar kekerasan permukaan padatan; oleh itu, strategi 
pelaksanaan simulasi pemadatan serbuk jarang dilaksanakan bagi memeriksa 
bahagian keratan rentas padatan serbuk secara berlapis. Kajian ini merangkumi 
teknik pengimejan dan langkah-langkah simulasi untuk memperoleh taburan 
ketumpatan relatif bagi pemadatan satu dan dwilapisan serbuk besi gred ASC 
100.29. Strategi simulasi telah dipertingkatkan berasaskan kaedah unsur 
terhingga dengan menggunakan Abaqus 6.20. Keputusan telah membuktikan 
bahawa nilai-nilai taburan ketumpatan relatif yang diperoleh melalui eksperimen 
adalah hampir kepada nilai-nilai taburan ketumpatan relatif yang direkodkan 
daripada artikel yang telah diterbitkan untuk satu lapisan padatan serbuk besi 
dan keputusan nilai semasa adalah jauh lebih baik dengan penambahan jumlah  
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piksel. Seperti yang dijangkakan, simulasi taburan ketumpatan relatif bagi 
dwilapisan serbuk besi yang dipadatkan dapat dipadankan bersama hasil nilai 
daripada eksperimen. Selain itu, kajian ini juga mendedahkan bahawa taburan 
ketumpatan relatif tertinggi yang direkodkan pada sempadan dwilapisan serbuk 
besi yang dipadatkan adalah pada nisbah H/D 1.6 yang dijana melalui bekas 
mampatan yang disapukan dengan serbuk pelincir. Di samping itu, bagi semua 
nisbah H/D yang telah diuji bersama nilai pemalar geseran yang rendah (µ = 
0.08), perbezaan nilai taburan ketumpatan relatif yang rendah diperoleh 
daripada dwilapisan serbuk besi yang dipadatkan.   
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1 
 

CHAPTER 1 
 

INTRODUCTION 
 
 
1.1  Background of study 
 

From ceramic-based electronic equipment to automobile components, powder 
metallurgy (known as PM) is a dominantly implement over other types of 
machining processes in manufacturing area due to its general capability to 
produce parts with dimensional efficient and robust (Ashrafi et al., 2022; Edosa 
et al., 2022; Frandsen et al., 2013; Nazihah Mas et al., 2018; Olevsky et al., 
2013; Pascal et al., 2010; Povstianoi et al., 2021; Torralba et al., 2019). 
Fundamentally, PM covers powder filling, compaction, ejection and sintering. 
Powder compaction and its sequent ejection produced a sample of green metal 
powder. The term green refers to the powder compact sample that released in 
ejection container, shortly after ejected through employed die mold (Jonsén, 
2005.). Its results of non-uniform distribution of porosities with variation in radial 
pores size are conventionally redeem by its subsequent process of heat 
sintering. For decades, PM researches were dedicated on single layer of powder 
compact mainly for metal powder whereby density is a comprehensible variable 
to describe the green strength (Coube & Brewin, 2002). A layer or single layer of 
metal powder compact encompassing a simple cylindrical as well as in multi-
level forms. With the aim to reduce density gradient without hinder the elevation 
of powder height, the need to study the interface between compressed layers is 
essential. 
 
 
Through compaction process, the strength of green powder compact can be 
directly control via densification that drive the loose powder compact into a 
coherent mass under specified load. Minimization on density gradient on green 
metal powder compact are significance in order to inhibit potential defects such 
as crack and delamination in incoming sintering process. Double sided 
compaction method (Rajab et al., 1985), die lubrication (Lemieux et al., 2001.) 
and high velocity compaction (HVC) (Gustafsson et al., 2014a; J. Z. Wang, Qu, 
et al., 2009a, 2009b; J. Z. Wang, Yin, et al., 2009) are among ways to minimize 
density gradient. Numerous investigations had implemented these for one or 
single layer of green metal powder compact (Selig and Doman, 2014). 
Hypothetically, additional layers onto a single compressed green metal powder 
may possibly impose further minimization on density gradient (Sopchak & 
Misiolek, 2000) based on their investigations. Intervene between layers known 
as interface become a point of PM investigation since it was essentially 
determining the strength of green bilayer metal powder compact (Castrati et al., 
2017; Marathe et al., 2017.; Meng et al., 2020; Saberi et al., 2018).   
 
 
To examine the quality of green powder compact after ejection stage, huge 
amount of experimental works had been done on single powder compact by the 
variation in use of local RD measurement technique, nevertheless, there are few 
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experimental works of green bilayer powder compact that can be related. The 
use of geometrical definition, Archimedes, hardness and mechanical tests had 
been frequently be utilized as same for single powder compact to examine, 
however, the capability of an assessment to detect the densification area and its 
local RD distribution between two compressed layers of metal-based powder 
must be conducted. This quantitative approach is necessary to study, thus 
enable to analyse the gradient of local RD distribution throughout the sample. 
 
 
1.2  Problem statement 
 
 
Density, ρ of a sample of metal powder compact can be measured either in 
average or void ratio (known as its local relative density, RD). Most PM 
investigations had used average density by obtaining through simple geometrical 
definition. Whereas, the use of hardness and Archimedes methods must be 
taken to compute the local RD. Aforementioned type of density measurements 
is applicable conveniently for sintered metal powder compact, however, the 
evaluation of local RD for soft, scattered porous green metal powder compact 
had delimit this method causing inaccuracies in this measurement. A quantitative 
image analysis needs to be invented, thus, not to come in contact with the 
surface of a green sample. Furthermore, it is claimed that an increase in height 
of single layer powder for compaction had caused increase in its resulted local 
RD gradient (Wang et al.,2019). This limited the capability of PM compaction in 
handling a larger size of loose powder in axial direction to manufacture 
component of cutting tools as well as other tooling for machining processes up 
to its accepted final local RD gradient. Experimentally, layering method has been 
known to reduce the local RD gradient for increasing height of single layer 
powder compact, however, the relationship between the interface of compressed 
powder layers and die wall condition is remain uncovered. 
 
 
1.3  Research objectives 
 
 
i. To develop and validate the finite element model of bilayer iron powder 

compact  
ii. To determine the effect of height to diameter (H/D) ratio of bilayer iron 

powder compact on the local RD and von Mises’s stress distributions 
iii. To analyse the die wall frictional effect on the local RD and von Mises’s 

stress distributions of bilayer iron powder compact 
 
 
1.4  Significance of study 
 
 
PM compaction is a type of metal-forming technique to fabricate a single layer of 
metal-based powder compact from loose powder. PM compaction is well-known 
for its effectiveness in delivering near-net shape of green single powder compact, 
thus, any additional machining works are not necessary. In order to enhance the 
improvement on the strength of green single powder compact, notable 
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investigations are established and implemented by industries such as green 
machining technique (Dehestani et al.,2016) and high-velocity compaction 
(HVC) (Wang et al.,2009). Instantly, the use of PM compaction route is widely 
contributing in various circles of industries, for instance, automobile (Jang et 
al.,2000), aerospace (Jiang et al.,2016), military products (Nezafati et al.,2015) 
and healthcare (Abebe et al.,2004) industries. Nevertheless, friction condition of 
a die wall is highly deteriorating the density quality of produced green single 
powder compact under PM compaction according to Edosa et al. (2022). They 
overviewed past discoveries on the influence of friction on pressed green single 
powder compact and any attempts to minimize the friction is briefly elaborated. 
Dubbing or spraying lubricants onto die wall is the most practice in modern PM 
in order to lower the effect of friction onto green single powder compact 
(Taniguchi et al.,2005). Following that, other notable works to preserve the 
density against friction are the designed are the designed compaction technique 
(Canta & Frunze,2003; Wang et al.,2009; Grigoriev et al.,2019), the initial 
determination of powder relative bulk density (RBD) (Radchenko, 2004), critical 
consideration of determined H/D ratio and geometrical powder compact shape 
(Cristofolini et al.,2018), the mixing method (Chen et al.,2020) and the layering 
strategy for green single powder compact (Sopchak & Misiolek, 2000). Alongside 
from its successful in overcome the frictional problem, researchers had profound 
its usefulness in producing versatile properties of tools in cutting and machining 
processes. To acknowledge, among from these introduced techniques to 
preserve the density of green single powder compact from friction, the layering 
strategy is infrequently reported and validate with FEM modelling in previous 
literatures (Rowe & Nikfar, 2017). The formation of interface or enclosed 
interactions between layers become an uncertainty, especially for modelling 
discussion. Therefore, it is useful for each researcher to perform their 
experimental part in order to recognize the structural type of interface and its 
mechanism framework along with doubled compaction steps. 
 
 
The focus had been placed on the formation of green bilayer powder compact 
using ASC 100.29 iron powder since it is the best iron grade for consumption in 
metal forming industries due to its high ductility. Experimentally, addition of layer 
on green single powder compact to make green bilayer powder compact is 
known to reduce the local RD gradient, however, quantitative -based approach 
in terms of local RD distribution and modelling evaluations on interface of green 
bilayer powder compact of iron is not brought into consideration for 
documentation. Plus, manipulating the changes in die wall condition onto the 
green bilayer powder compact of iron is important to be highlight to study the 
effect of die wall friction on local RD distribution and how the die condition can 
assist in strengthen the interface in order to deliver a robust green bilayer powder 
compact of iron.  
 
 
Thus, in order to elevate an accuracy in quantitively computation of local RD 
distribution, an imaging technique is proposed. Also, prediction through FEM-
based technique is necessary to release the interlocking effect on the interface 
of green bilayer powder compact. Via modelling, the evolution of interfacial local 
RD distribution under different height-to-diameter (H/D) ratios of green bilayer 
powder compact with constantly applied load compaction of 30 kN and 95 kN for 
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lower, L and upper, U layers respectively can be analysed. To validate, 
alternatives had been made by using the standard metallography technique with 
the image processing analysis. This can potentially be a beneficial contribution 
to produce defect -free green layered iron powder compacts. 

1.5 Scope of study 

i. Iron powder grade of ASC 100.29 (Brand Hoganas) is employed.
ii. The use of constant load compaction of 30 kN and 95 kN on lower and

upper layers is used, thus, the resulted interface can be observed clearly
under one-sided compaction method.

iii. Modelling on green single and bilayer iron powder compact based on
finite element model in Abaqus 2020 (Abaqus 6.20).

iv. Tested height-to-diameter (H/D ratio) is 1.0, 1.3, 1.6 and 1.9.
v. Tested die wall friction is 0.08 and 0.18 for lubricated and unlubricated

die conditions.

1.6  Thesis overview 

Chapter 1 introduced the powder metallurgy (PM) in general regarding of its 
important processes for powder production, its advantages and shortfalls. The 
problem statements, objectives and scope of the research were highlighted. 

Chapter 2 highlights several experimental works that deliver profound 
knowledges involving the measurement and improvement on density in general 
powder compaction. The underlying motivations of using multi-layered technique 
via powder metallurgy (PM) compaction are highlighted. In addition, the 
backgrounds and existing works of renowned computational tools compaction 
process in powder metallurgy (PM) for bilayer powder compact are reviewed as 
well.  

Chapter 3 presents a systematic procedure on producing samples of single and 
bilayer green iron powder compact. Also, well established experimental works 
on retrieve quantitative image analysis were elaborated in details. For modelling 
part, the development of finite element model is extensively reported.  

Chapter 4 reports both experimental and modelling results of all sectioned of 
bilayer samples were reported. The convergence study is firstly performed, 
followed by the comparison between the contour images of experimental and 
modelling density distribution for validation purpose. At this stage, the validity of 
using analytical equation of Brewin on two layers of green iron powder via finite 
element analysis (or FEA) can be determined. The effect of H/D ratios and 
friction coefficient on interfacial densification are presented for further analyses. 
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Chapter 5 summarizes the conclusions and offers some suggestions for future 
work. 
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