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Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfilment  
of the requirement for the degree of Doctor of Philosophy

BEHAVIOUR OF SOLUTE TRANSPORT PHENOMENON FROM 
RAINFED SWEET CORN FIELD IN TROPICAL CLIMATE

By

MAZHAR IQBAL 

July 2020 

Chairman : Md Rowshon Kamal, PhD 
Faculty : Engineering 

Solute transport from agricultural fields is the main cause of non-point contamination, 
resulting in degradation of surface and groundwater due to runoff and deep 
percolation. It varies significantly among agricultural fields of different climates. The 
amount and duration of rainfall occurrence in the tropical climate is of great 
importance in controlling solute movement from agricultural fields. The heavy rainfall 
in tropical climate results in the solute loss to increase manifold as compared to arid 
and semi-arid climate. Therefore, assessment of water and solute balance in rainfed 
conditions is essential for the efficient use of water and fertiliser in increasing 
productivity. The study intended to assess the water and solute dynamics from a sweet 
corn field under tropical rainfed conditions using the HYDRUS-1D numerical model. 
The intensive field investigations were carried out to explore the water and solute 
losses in a sweet corn field for two growing seasons (Feb.-May and Sep.-Nov. 2018) 
under the rainfed conditions at the Malaysian Agricultural Research and Development 
Institute (MARDI), Malaysia. The water and solute balance components were 
observed using modern devices integrated with data loggers in real field conditions 
and the empirical relationships between solute concentrations and EC were developed. 
Then HYDRUS-1D numerical analysis was performed to simulate soil water balance 
in the sweet corn field. The HYDRUS-1D numerical model was also used to simulate 
solute transport dynamics in the field. The observed soil water content and solute 
concentrations were used for calibration and validation of the model. Finally, the 
AquaCrop simulations of crop growth were performed to predict crop yield using the 
data obtained from the intensive field experiments. 

The empirical relationships between the observed NPK concentrations and EC were 
developed during the first season using polynomial regression analysis. Based on the 
developed empirical equations, the NPK concentrations were determined and 
compared with observed concentrations during the second season. The average R2
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values for NPK were 0.91, 0.97, and 0.98 (first season) and 0.97, 0.95 and 0.98 (second 
season). The empirical relationship is an important and easier way to know the NPK 
status in the soil at any given time during the crop growing seasons and could be 
helpful in the efficient use of fertiliser. The total water inputs during the first and 
second seasons were 75.8 cm and 79.7 cm, respectively. HYDRUS-1D simulation 
results of evapotranspiration (ET) accounted for 40.7% and 33.1% of total water input 
during the first and second seasons, respectively. Surface runoff accounted for 41.0% 
(first season) and 28.6% (second season). Water leaching accounted for 10.6% and 
26.8% of total water input during both seasons, respectively.  
 
 
The total NPK input to sweet corn was 120:60:60 kg/ha for both seasons. The nitrogen 
(N) surface runoff loss accounted for 35.3% and 22.2% of total nitrogen input during 
the first and second seasons, respectively. The N leaching loss at 60 cm depth 
accounted for 4.0% (first season) and 18.5% (second season). The crop N uptake was 
37.5% (first season) and 24.9% (second season). The phosphorus (TP) losses were 
negligible. The simulated amounts of K lost through runoff and leaching were 43.1% 
and 17.0% (first season), 34.1% and 38.6% (second season). The K uptake accounted 
for 32.1% and 21.4% of total K input during the first and second seasons, respectively. 
NPK losses through surface runoff and leaching were dominating pathways. Overall, 
the HYDRUS-1D simulation results of soil water fluxes and NPK concentrations were 
found in good agreement with observed data. The simulated total biomass of 11.2 
ton/ha and 8.8 ton/ha were obtained using the AquaCrop model during the first and 
second seasons, respectively. The total yields were 5.4 ton/ha (first season) and 4.2 
ton/ha (second season). The simulated results show higher water productivity (WPET) 
1.69 kg/m3 during the first season as compared to 1.58 kg/m3 during the second season. 
The AquaCrrop simulation results matched the observed results well. The overall 
simulation results validate the HYDRUS-1D as an effective tool for improved water 
and fertiliser use and AquaCrop to simulate the crop growth in the tropical climate. 
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PERILAKU FENOMENON PERGERAKAN LARUTAN DARI LADANG 
JAGUNG MANIS YANG BERGANTUNG KEPADA PENGAIRAN AIR 

HUJAN DI KAWASAN IKLIM TROPIKA 
 
 

Oleh 
 
 

MAZHAR IQBAL 
 
 

Julai  2020 
 
 

Chairman :   Md Rowshon Kamal, PhD 
Faculty :   Kejuruteraan 
 
 
Kehilangan zat larutan dari ladang pertanian adalah punca utama pencemaran tidak-
bertitik yang mengakibatkan kemerosotan sumber air tanah dan permukaan yang 
berlaku disebabkan oleh penyusupan dan larian masing-masing. Ianya sangat berbeza 
antara ladang-ladang pertanian dan iklim-iklim yang berbeza. Jumlah dan jangka masa 
berlakunya hujan sangat penting dalam mengawal pergerakan larutan dari ladang 
pertanian di iklim tropika. Hujan lebat di iklim tropika mengakibatkan kehilangan 
larutan meningkat berkali ganda berbanding dengan iklim gersang dan separa-
gersang. Oleh itu, penilaian air dan keseimbangan larutan dalam keadaan hujan adalah 
penting dalam penggunaan air dan baja yang efektif bagi meningkatkan produktiviti. 
Kajian ini bertujuan untuk menilai air dan dinamik larutan dari ladang jagung manis 
di bawah keadaan hujan tropika dengan menggunakan model numerikal HYDRUS-
1D. Kajian ladang intensif dijalankan untuk meneroka air dan kehilangan larutan 
dalam ladang jagung manis bagi dua musim (Feb.-Mei dan Sep.-Nov. 2018) di bawah 
keadaan hujan di Institut Penyelidikan dan Kemajuan Pertanian Malaysia (MARDI), 
Malaysia. Komponen-komponen air dan imbangan larutan diperhatikan dengan 
menggunakan alat moden yang disepadukan dengan logger data dalam keadaan ladang 
sebenar dan hubungan empirikal antara kepekatan larutan dan EC yang dihasilkan. 
Kemudian analisis numerikal HYDRUS-1D dilakukan untuk mensimulasikan 
keseimbangan air tanah di ladang jagung manis. Model numerikal HYDRUS-1D 
kemudian digunakan untuk mensimulasikan pergerakan dinamik larutan di ladang. 
Kemudian, kandungan air tanah dan kepekatan larutan diperhatikan untuk digunakan 
sebagai penentukuran dan pengesahan model. Akhirnya, simulasi AquaCrop bagi 
pertumbuhan tanaman dilaksanakan bertujuan meramalkan hasil tanaman 
menggunakan data yang diperolehi daripada eksperimen ladang intensif. 
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Hubungan empirikal antara kepekatan NPK yang diperhatikan dan EC dibangunkan 
semasa musim pertama menggunakan analisis regresi polinomial. Berdasarkan 
persamaan empirikal yang dibangunkan, kepekatan NPK ditentukan dan dibandingkan 
dengan kepekatan semasa musim kedua. Nilai purata R2 untuk NPK adalah 0.91, 0.97, 
dan 0.98 (musim pertama) dan 0.97, 0.95 dan 0.98 (musim kedua). Hubungan 
empirikal adalah penting dan cara paling mudah untuk mengetahui status NPK di 
dalam tanah pada bila-bila masa semasa musim tanaman dan dapat membantu dalam 
penggunaan baja yang cekap. Jumlah input air pada musim pertama dan kedua adalah 
75.8 cm dan 79.7 cm masing-masing. Hasil simulasi HYDRUS-1D menunjukkan 
evapotranspirasi (ET) menyumbang sebanyak 40.7% dan 33.1% daripada jumlah 
input air pada musim pertama dan kedua masing-masing. Larian permukaan 
menyumbang sebanyak 41.0% (musim pertama) dan 28.6% (musim kedua). 
Penyusupan air menyumbang sebanyak 10.6% dan 26.8% daripada jumlah input air 
pada kedua-dua musim masing-masing.  
 
 
Jumlah input NPK untuk jagung manis adalah 120:60:60 kg/ha untuk kedua-dua 
musim. Nitrogen (N) larian permukaan menyumbang sebanyak 35.3% dan 22.2% 
daripada jumlah input nitrogen semasa musim pertama dan kedua masing-masing. 
Kehilangan penyusupan N pada kedalaman 60 cm menyumbang sebanyak 4.0% 
(musim pertama) dan 18.5% (musim kedua). Pengambilan tanaman N adalah 37.5% 
(musim pertama) dan 24.9% (musim kedua). Kehilangan fosforus (TP) diabaikan. 
Jumlah simulasi K yang hilang melalui larian dan penyusupan adalah 43.1% dan 
17.0% (musim pertama), 34.1% dan 38.6% (musim kedua). Pengambilan K 
menyumbang sebanyak 32.1% dan 21.4% daripada jumlah input K pada musim 
pertama dan kedua masing-masing. Kehilangan NPK melalui larian permukaan dan 
penyusupan adalah laluan dominasi. Secara keseluruhan, keputusan simulasi 
HYDRUS-1D menunjukkan fluks air tanah dan kepekatan NPK sepadan dengan data 
yang diperhatikan. Jumlah simulasi biomass sebanyak 11.2 tan/ha dan 8.8 tan/ha 
diperolehi menggunakan model AquaCrop semasa musim pertama dan kedua masing-
masing. Jumlah hasil tanaman adalah 5.4 tan/ha (musim pertama) dan 4.2 tan/ha 
(musim kedua). Hasil simulasi menunjukkan produktiviti air yang lebih tinggi 
(WPET) 1.69 kg/m3 semasa musim pertama berbanding 1.58 kg/m3 semasa musim 
kedua. Keputusan simulasi AquaCrop adalah sepadan dengan keputusan hasil 
pemerhatian. Hasil simulasi keseluruhan mengesahkan bahawa HYDRUS-1D adalah 
satu alat yang sangat efektif dalam menambahbaikan penggunaan air dan baja dan 
AquaCrop untuk mensimulasikan pertumbuhan tanaman di iklim tropika. 
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CHAPTER 1 

1 INTRODUCTION 

1.1 Background of the study 

According to DOA (2017), about 10477 ha of the cultivated area produced 72,560 tons 
of sweet corn in Malaysia. Sweet corn is used for both human and animal 
consumption, along with its use in industry as raw material (Saeed et al., 2001). The 
country is self-sufficient in sweet corn production (Wahab, 2018). In Malaysia, sweet 
corn grows on acidic, weathered soils with low pH and soil fertility, which results in 
low yield (Shamshuddin et al., 2010). Imbalance of fertiliser is also one of the reasons 
for low corn production in tropical regions (Oad et al., 2004). 

Solute losses from agricultural fields cause the fertiliser imbalance, which affects the 
sweet corn production. The solutes are dynamic in nature, especially nitrogen. 
Nitrogen (N) pollution has become a global environmental problem with serious 
implications on surface and ground waters (Chandna et al., 2011). The groundwater 
contamination due to agricultural activity depends on the amount of N applied and its 
effective use by crops (Becker et al., 2007). As Nitrogen (N) highly affects the crop 
yield (Wienhold et al., 1995), the farmers apply N-fertiliser to high-yield crops in large 
quantity. Corn also demands a large amount of N to achieve optimal yield. Due to a 
lack of management guidelines, most farmers apply fertiliser based on their experience 
and do not consider their environmental consequences (Wei et al., 2009). N leaching 
out of the root zone due to excessive application of N-fertilisers is a potential cause of 
water resource pollution, which has been observed in many parts of the world 
(Karandish et al., 2017; Zhu et al., 2005). In soil, N is present in different forms such 
as organic N, ammonia (NH4

+-N) and nitrate (NO3 -N). Due to its mobility, NO3 -N 
contributes to groundwater pollution more than other forms (Wang et al., 2010). 

In addition, the low recovery of fertiliser by crop increases the leaching of residual N 
to groundwater during off-season rainfall in the humid regions (Tamini & Mermoud, 
2002). Rainfall triggers flow processes such as surface runoff, preferential flow, and 
nitrate leaching (McGrath et al., 2010; Wang et al., 2010). Water percolation below 
the root zone is a major factor controlling the N leaching (Tamini & Mermoud, 2002). 
Thus, the optimum use of water along with fertiliser is also important. The change in 
water balance components such as evapotranspiration, runoff, leaching, and rainfall 
might also affect the fertiliser imbalance.  

Therefore, the accurate estimation of water balance in agricultural fields is key to 
water resources management. Evapotranspiration and leaching are the leading sinks 
of water that affect soil water status in a soil-plant-atmosphere environment (Shelia et 
al., 2018). Furthermore, devising water management strategies depends on 
information relating to evapotranspiration. Measuring other water balance 
components such as runoff, and capillary movement in field conditions is also a big 
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challenge (Igbadun, 2012). Whereas, rainfall is the most important component of 
water balance. The response of the water balance components varies with climate 
geographically. The significant differences between regions necessitate a need to 
evaluate the response of water balance components in various geo-climatic regions 
(Wang et al., 2011). Climate change also has a significant effect in altering rainfall 
patterns in Malaysia (NAHRIM, 2014). The change in rainfall patterns is more crucial 
than the change in temperature in Malaysia. 

The simulation models have been very effective in describing the water and solute 
transport processes and the extent to which management practices affect crop yield 
and the environment. However, the validation of simulation models for local 
conditions is crucial (Watts & Martin, 1981). The significance of their use is 
multiplied when the prediction of distribution is done based on local soil and climate 
conditions (Santos et al., 1997). Among different available models, a software package 
HYDRUS-1D (Šimůnek et al., 2008) has been widely used for simulating water flow 
and solute transport in soils, to analyse flow and transport processes in agricultural 
fields. Several researchers have applied the HYDRUS-1D model to evaluate water and 
solute balance. As compared to other models, HYDRUS-1D has the flexibility of 
accommodating different boundary conditions. The model can take into account the 
root uptake of water and nutrients simultaneously. The model is capable of simulating 
soil water and solute dynamics under different management practices (Gabiri et al., 
2018; He et al., 2017a; Hou et al., 2017; Karandish & Šimůnek, 2017; Li et al., 2014; 
Li et al., 2015; Martello et al., 2015; Negm et al., 2017; Ramos et al., 2011; Ramos et 
al., 2019; Ren et al., 2016; Ursulino et al., 2019). All these researchers validated 
HYDRUS-1D as a reliable tool for such investigations.  

Many researchers in the past have studied the effect of lower fertiliser rates on crop 
productivity. The reduction in fertiliser use, however, can also reduce the yield. 
Therefore the farmers are not keen to adopt this technique. Reducing the application 
of water could be an option, particularly in tropical regions to reduce fertiliser 
leaching. Also, validation of the model in quantifying water losses through field 
experiments is worthwhile. This study, therefore, considered rainfed conditions to 
evaluate the rainfall effect on nutrients distribution in the tropical region, based on 
intensive fieldwork avoiding scheduled irrigation.  

1.2 Problem statement 

Solute losses from agricultural fields result in the degradation of ground and surface 
water resource due to deep percolation and runoff, respectively. The heavy rainfall 
results in the solute loss to increase manifold in the tropical region. Indeed, heavy 
rainfall in Malaysia can potentially meet crop water requirements. However, the 
fluctuation in rainfall duration and frequency can affect the water and nutrients 
balance. It reduces nutrients availability and limits crop growth. Quantifying the water 
and nutrients balance components under rainfed conditions can be useful to improve 
water management and to assess the scale of fertiliser loss for sweet corn production. 
Based on a literature review, no research has yet been reported to assess rainfall impact 
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on nutrients dynamics in the region. Therefore, it is essential to evaluate the rainfall 
potential to meet the water requirement of sweet corn and its impact on nutrients 
dynamics in the tropics.  

1.3 Objectives of the research 

The study aims to simulate water and solute dynamics for improved fertiliser use that 
will be helpful in increasing the productivity of rainfed sweet corn production in the 
tropical climate through intensive field investigations. The specific objectives include: 

1. To monitor water and nutrients (NPK) balance components from rainfed sweet 
corn and the development of empirical equations.  

2. To evaluate the temporal soil water dynamics using the HYDRUS-1D 
simulation. 

3. To evaluate the temporal nutrients (NPK) dynamics using the HYDRUS-1D 
simulation. 

4. To assess the water productivity of rainfed sweet corn due to nutrients 
transport using the AquaCrop model. 

1.4 Scope of the study 

This study used the modelling approach for better fertiliser use in sweet corn 
production in the field located at the Malaysian Agricultural Research and 
Development Institute (MARDI), Serdang, Malaysia. The intensive field 
investigations were carried out to monitor the water and solute balance and their losses 
for two growing seasons (Feb.-May and Sep.-Nov. 2018). The HYDRUS-1D and 
AquaCrop models were validated for the local climatic conditions. Various empirical 
equations were developed using polynomial regression analyses for NPK estimates to 
predict NPK concentrations in the soil profile at any time during the crop growing 
seasons. The study outcomes could be helpful in optimising the water and fertiliser 
use to improve sweet corn productivity. Further, the reduction in fertilisers cost and 
contamination of the surface and groundwater are within the research scope. 

1.5 Outlines of the thesis 

The thesis introduces the research work and its objectives in chapter 1. In chapter 2, 
previous studies related to current research have been discussed while chapter 3 
explains the materials and methods involved in this study. Chapter 4 of the thesis 
illustrates the results and discussion on those results. Finally, chapter 5 concludes the 
research work and gives recommendations for future study in this field. Further, 
chapter-wise outlines of the thesis are given below. 
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Chapter 1 refers to the basic information of sweet corn, its production, factors 
affecting production, management of resources, water and fertiliser use, modelling 
approach to improve fertiliser efficiency. At the end of the chapter, the problem 
statement, research objectives along with the scope of the study have been described. 

Chapter 2 consists of the literature review. It summarises the earlier studies on solute 
transport mechanism and important parameters involved in the transport process. The 
chapter also describes the use of models under different irrigation and fertiliser 
management practices in various climate regions to predict N P K losses. In the last 
part, the crop growth model AquaCrop and summary of the literature review have been 
presented. 

Chapter 3 describes the study design and its implementation. The chapter gives an 
introduction to the study area and discusses the installation of equipment and sensors 
including soil water samplers, rain gage, 5TE sensors, RBC flume, subsurface water 
collection system. The chapter describes the monitoring process and computations 
involved to determine different components of water and nutrients balance along with 
the development of empirical equations. Sampling and testing of soil, water and plant 
have also been discussed. In the last part, the use of HYDRUS-1D and AquaCrop 
simulation models have been described. 

Chapter 4 presents the field observations and simulation results of the study. The first 
part includes the graphical presentation of observed water balance components and 
NPK concentrations and development of NPK empirical equations. Later, the 
HYDRUS-1D simulation results were presented and analysed. In the last part of the 
chapter, the AquaCrop simulation results of crop growth parameters were discussed. 

Chapter 5 presents the general conclusion and gives recommendations for future 
research in this field.
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