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Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfillment 

of the requirements for the degree of Doctor of Philosophy 

ROBUST DETECTION MEASURES AND ROBUST PARAMETER 

ESTIMATION METHODS IN CIRCULAR UNIVARIATE AND SIMPLE 

CIRCULAR REGRESSION MODEL 

By 

EHAB ABDULSALAM MAHMOOD 

December 2017 

Chairman 

Faculty 

:   Professor Habshah Midi, PhD
:   Science 

The univariate and the simple circular regression model can be used in many scientific 

fields. There is evidence that the classical methods to estimate the parameters are 

adversely affected by outliers. Hence, it is very crucial to detect outliers in circular 

data. Some existing methods such as Mardia, M, A, and Chord are developed in this 

regard. Unfortunately, these methods are formulated to identify only a single outlier. 

Hence, we propose robust circular distance (RCDu) statistic to identify a single and 

multiple outliers in the univariate circular data. The results of the study indicate that 

the RCDu statistic is successful in detecting outliers with smaller masking and 

swamping rates. 

Not much research is focused on the robust estimation of univariate circular 

distribution when the circular data have outliers. Thus, robust methods are proposed 

to estimate the circular location parameter, circular variance and mean resultant length 

of von Mises distribution. The findings signify that the two proposed methods have 

done a credible job compared to other methods in this study. 

This thesis also addresses the issue of existing outliers in the simple circular regression 

model. Not much consideration is given to investigate the identification methods of 

outliers in such model. Hence, we propose robust circular distance (RCDy) statistic to 

detect outliers in the response variable of the simple circular regression model. The 

results of the study indicate that the RCDy has the highest proportion of detection 

outliers with the lowest rate of masking.  

To the best for our knowledge, no research is focused on the detection of outliers in 

the response and the explanatory variables of a simple circular regression model. 

© C
OPYRIG

HT U
PM



ii 

Hence, robust circular distance (RCDxy) statistic is formulated to detect outliers in the 

response and the explanatory variables. The results show that the RCDxy statistic is 

very successful to detect outliers with low rates of masking and swamping. 

The maximum likelihood estimator (MLE) is the commonly used method to estimate 

model parameters of the simple circular regression model. However, the MLE is 

inefficient if the circular data have outliers. To the best of our knowledge, no work has 

been done to propose robust method to estimate parameters of the simple circular 

regression model when the response variable has outliers. Therefore, the robust 

MWLE 1 and MWLE 2 are developed. The findings indicate that the MWLE2 and the 

MWLE1 are more efficient than the MLE.  

To date, there is no robust parameters estimation method of a simple circular 

regression model is developed when outliers are present in the response and the 

explanatory variables. Therefore, two robust estimators namely MWLE1 and MWLE2 

are established. The results show that the performance of the MWLE2 and the 

MWLE1 are more efficient than the MLE when outliers are present in both X and Y 

directions.  
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Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai 

memenuhi keperluan untuk ijazah Doktor Falsafah 

SUKATAN PENGESANAN TEGUH DAN KAEDAH PENGANGGARAN 

PARAMETER TEGUH DALAM UNIVARIAT SIRKULER DAN MODEL 

REGRESI SIRKULAR MUDAH 

Oleh 

EHAB ABDULSALAM MAHMOOD 

Disember 2017 

Pengerusi 

Fakulti 

:   Profesor Habshah Midi, PhD 

:   Sains 

Univariat dan model regresi sirkuler mudah boleh digunakan dalam pelbagai bidang 

saintifik. Terdapat bukti bahawa kaedah klasik untuk menganggar parameter model 

sirkuler terjejas teruk oleh pencilan. Oleh itu, adalah sangat penting untuk mengesan 

pencilan dalam data sirkuler. Beberapa kaedah sedia ada seperti Mardia, M, A, dan 

Chord telah dibangunkan dalam hal ini. Malangnya, semua kaedah ini dirumuskan 

hanya untuk mengesan pencilan tunggal. Oleh itu, kami mencadangkan statistik 

sirkuler jarak teguh (RCDu) untuk mengesan pencilan tunggal dan berganda dalam 

data sirkuler univariat. Hasil kajian menunjukkan bahawa statistik RCDu berhasil 

dalam mengesan pencilan dengan kadar litupan dan limpahan yang lebih kecil.  

Tidak banyak kajian difokuskan ke atas penganggaran teguh taburan sirkuler univariat 

bila data sirkuler mempunyai pencilan. Oleh yang demikian, kaedah teguh 

dicadangkan untuk menganggar parameter lokasi sirkuler, varians sirkuler dan purata 

hasil panjang taburan von Mises. Penemuan menunjukkan bahawa kedua kaedah yang 

dicadangkan telah menghasilkan keputusan yang dipercayai berbanding kaedah lain. 

Tesis ini juga mengetengahkan isu kewujudan pencilan dalam model regresi sirkuler 

mudah. Tidak banyak pertimbangan yang diberikan untuk menyelidik kaedah 

pengesanan pencilan dalam model tersebut. Oleh yang demikian, kami mencadangkan 

statistik jarak sirkuler teguh (RCDy) untuk mengesan pencilan dalam pembolehubah 

sambutan model regresi sirkuler mudah. Keputusan kajian menunjukkan bahawa 

RCDy mempunyai kadar pengesanan pencilan paling tinggi dengan kadar litupan 

paling rendah. 
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Sepanjang pengetahuan kami, belum ada kajian difokuskan ke atas pengesanan 

pencilan dalam pembolehubah sambutan dan penerang bagi model regresi sirkuler 

mudah. Oleh yang demikian, statistik sirkuler jarak teguh (RCDxy) diformulasi  untuk 

mengesan pencilan dalam pembolehubah sambutan dan penerang. Keputusan 

menunjukkan bahawa statistik RCDxy sangat berhasil mengesan pencilan dengan 

kadar litupan dan limpahan yang rendah. 

Penganggar kebolehjadian maksimum (MLE) merupakan kaedah umum digunapakai 

untuk menganggar parameter model regresi sirkuler mudah. Namun begitu, 

penganggar MLE tidak cekap sekiranya data sirkuler mempunyai pencilan. Sepanjang 

pengetahuan kami, belum ada kajian dibuat bagi mencadangkan kaedah teguh untuk 

menganggar parameter bagi model regresi sirkuler mudah bila pembolehubah 

sambutan mempunyai pencilan. Oleh yang demikian, penganggar teguh MWLE 1 dan 

MWLE 2 dibangunkan. Penemuan menunjukkan bahawa MWLE 1 dan MWLE 2 

lebih cekap berbanding MLE. 

Sehingga kini, belum ada kaedah pengganggaran parameter teguh bagi model regresi 

sirkuler mudah dibangunkan bila pencilan wujud dalam pembolehubah sambutan dan 

penerang. Oleh yang demikian, dua penganggar teguh iaitu MWLE 1 dan MWLE 2 

diwujudkan.   Keputusan menunjukkan bahawa prestasi MWLE 1 dan MWLE 2 lebih 

cekap berbanding MLE bila pencilan wujud dalam kedua arah X dan Y. 
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CHAPTER 1 

1 INTRODUCTION 

1.1 Introduction and Background of the Study 

Statistical data are classified according to their distributional topologies into two sets  

: Linear data, which they can be represented on the straight line. Second, Circular data, 

which they can be represented on the circumference of unit circle. 

Circular data can be measured by degree and distributed within [0o - 360o). However, 

it is sometimes useful to measure by radians within [0 - 2π). There are two main ways 

to represent typical circular observations: (i) The Compass, which is used to measure 

typical circular observations such as wind directions and the directions of migrating 

birds; and (ii) The Clock, which is used to measure typical circular observations such 

as arrival times (on a 24-hour clock) (Mardia and Jupp, 2000).  

Circular data are used in contrastive scientific fields such as : 

i. Meteorology

The circular data are used in the meteorological studies such as the  wind 

directions (Gatto and Jammalamadaka, 2007; Johnson and Wehrly, 1977). The 

circular data also include the times of day at which thunderstorms occur and the 

frequencies of heavy rain in a year (Mardia and Jupp, 2000).  

ii. Biology

The circular data are applied for animal navigation. For example, the direction of 

birds migpercentagen (Batschelet, 1981; Schmidt-Koenig, 1963, 1965). The 

circular data may measure the spawning times of a particular fish (Lund, 1999). 

iii. Physics

In physics, the circular motion is defined as a movement of an object along 

the circumference of a circle, it is measured by angles (Knudsen and Hjorth, 

2002). Another example is the source of signals in the case of airplane crashes 

(Lenth, 1981). © C
OPYRIG
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iv. Psychology 

The circular data may be used in the studies of mental maps to represent the 

surroundings (Gordon et al. 1989; Rustler, 2012).  

v. Medicine 

The medical professionals are shown that many fields of medicine may be used 

the circular data such as chronobiology, chronotherapy and the study of biological 

clock (Mahesh, 2011). The angle of knee flexion is used as a measure of recovery 

of orthopaedic patients (Jammalamadaka et al. 1986). 

vi. Geology 

The circular data may be used in several fields of geology. For example, 

Geologists interest is to find out the direction of flow of rivers in the past 

(Sengupta and Rao, 1966) and to find out the direction of earthquake 

displacement in terms of the direction steepest decent (Rivest, 1997).  

vii. Political Science 

Gill and Hangartner (2010) used circular regression model in the study of 

domestic terrorism analysis.  

viii. Demography  

The circular data are used in the demography studies such as geographic marital 

patterns (Coleman and Haskey, 1986). 

In general, circular data can be found whenever periodic phenomena occur. However, 

one of vital problems which may occur in the statistical data is the existence of outliers. 

In real-life applications, samples from any field might include noise, or outliers. The 

outliers cause a huge interpretative problem, misleading of statistical analysis and 

incorrect of parameters estimation. This problem is common and there are methods to 

detect them in the linear data. Researchers are interested in improving the methods of 

detecting outliers in statistical data. Many researchers have proposed methods to 

identify the outliers and proposed robust methods to estimate model parameters of 

linear data. As well as, statistical software packages, such as SPSS and Minitab and R 

program also provide a variety of methods for identifying outliers and robust methods 

for univariate and linear regression model. However, there are few methods in the 

literature that can detect the outliers in univariate circular data. These methods are 

proposed to identify a single outlier ( Abuzaid et al. 2009;  Abuzaid, 2010; Collett, 

1980; Mardia, 1975).  

© C
OPYRIG

HT U
PM



 

 

3 

 

In the literature, there is lack of researches that are interested to propose robust 

methods to estimate circular parameters of circular univariate (Ackermann, 1997; 

Ducharme and Milasevic, 1987; He and Simpson, 1992; Ko and Guttorp, 1988; Kutil, 

2012; Laha et al. 2013; Laha and Mahesh, 2011; Lenth, 1981; Otieno and Anderson-

Cook, 2006; Wehrly and Shine, 1981). The word "robust" is loaded with many-

sometimes inconsistent-connotations. In statistic science, it is used for the purposes of 

robustness signifying insensitivity to small deviations from the assumptions, where 

the robust methods are more resistance than classical methods. The robust methods 

are used if the assumptions of estimation are not satisfied or the statistical have outliers 

(Huber and Ronchetti, 2009) . 

 The problem of the existing outliers in the response variable of the simple circular 

regression model has not been remedied adequately (Abuzaid et al. 2013; Abuzaid, et 

al., 2011; Abuzaid, 2010) . Furthermore, no work has been done to propose methods 

to identify outliers in the response and the explanatory variables of the simple circular 

regression model. 

Another serious problem, there is no robust method that has been proposed to estimate 

parameters of simple circular regression model when the response variable has 

outliers. Moreover, no work has been done to propose robust method to estimate 

model parameters of the simple circular regression model when the response and the 

explanatory variables have outliers. 

1.2 Importance and Motivation of the Study 

Circular data are used in many scientific fields. They might be represented by 

univariate or bivariate. The simple circular regression model is one of the important 

models  to represent the relationship between two circular variables. Efficiency and 

accuracy of estimation of the model parameters depend on the suitability of data that 

is fitted to the circular regression model. However, circular data may have some 

inconsistent observations with the majority of the circular data, which are called 

outliers. The classical methods that applied to estimate model parameters are 

successful under some conditions. One of these conditions is that the circular data is 

free of outliers. Researchers have suggested either to identify outliers and then remedy 

them or apply some robust methods to estimate model parameters. In the literature, 

there are many  methods to  detect outliers in univariate and bivariate linear data , as 

well as robust methods to estimate model parameters. However, the methods that are 

suggested for linear data cannot be used for circular data because of the circular 

geometry theory. To overcome the problem of existing outlier in the univariate circular 

data,  Abuzaid et al. (2009), Abuzaid (2010), Collett (1980) and Mardia (1975) 

proposed methods to identify outliers. However, these methods can detect a single 

outlier point but they are not successful to identify multiple outliers. The problem of 

existing outliers in the univariate circular data has not received enough consideration. 

This motivated us to propose a statistical method to identify outliers in the univariate 

circular data in the presence of multiple outliers. The proposed statistic RCDu is 
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expected to show higher proportion of detection of outliers with smaller masking and 

swamping rates.   

The mean direction is used to estimate circular location parameter of univariate 

circular data. However, this estimation gives incorrect estimation if the circular data  

have outliers. To overcome this problem, Lenth (1981) proposed M estimator to 

estimate circular location parameter when the circular data have outliers. Ackermann 

(1997), Ducharme and Milasevic (1987), He and Simpson (1992), Ko, and Guttorp 

(1988) and Wehrly and Shine (1981) proposed to use the median direction if the 

circular data have outliers. Otieno and Anderson-Cook (2006) extended Hodges-

Lehmann method to estimate circular location parameter when the circular data have 

outliers. Kutil (2012) explained that the mean resultant length is bias. Laha et al. 

(2013) and Laha and Mahesh (2011) explained that the mean direction is not SB-

robust but the trimmed mean direction (TMD) is SB-robust whereby SB-robust is 

called standardized bias robust (Ko and Guttorp, 1988).  However, Laha et al. (2013) 

and Laha and Mahesh (2011) did not propose method for trimming in their algorithm 

of circular location parameter estimation even though it is now evident that TMD is 

SB-robust. This inspired us to extend two methods for trimming to estimate circular 

location parameter, circular variance and the mean resultant length. 

This thesis is also concerned in the detection of outliers in the response variable of the 

simple circular regression model. This issue has been addressed by Abuzaid et al. 

(2013), Abuzaid et al. (2011) and Abuzaid (2010). However, these methods have a 

low proportion of detection of outliers and high rate of masking especially if the 

response variable has a high percentage of contamination. The weakness of these 

methods has motivated us to propose a new statistic that can identify outliers with 

higher proportion of detection and lower rate of masking. 

Many methods have been proposed to detect outliers in the response and the 

explanatory variables of linear regression model. To the best of our knowledge, no 

work has been done to propose method to detect outliers in the response and the 

explanatory variables of the simple circular regression model. This inspired us to 

propose a statistic to identify outliers in the response and the explanatory variables.  

This thesis also addresses the issue of robust estimation of the parameters of the simple 

circular regression model. For the linear regression model, this fact is pointed out by 

many standard books, articles and researchers. However, to date, no robust estimation 

approach has been proposed to estimate the model parameters of the simple circular 

regression model. This motivate us to propose two methods by extending maximum 

weighted likelihood estimator MWLE. First, to estimate parameters when the response 

variable has outliers. Second, when the response and the explanatory variables have 

outliers. 
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1.3 Research Objectives 

The main goal is to investigate the existing of outliers problem in the univariate and 

bivariate circular data. The simple circular regression model is an important model to 

represent the relationship of bivariate circular data. The classical methods are used to 

estimate parameters of circular univariate and the simple circular regression model.  

There is evidence that the classical methods of estimation are affected by the outliers. 

Therefore, The foremost objectives of our research can be outlined systematically as 

follows: 

i. To formulate a new robust statistic to detect a single and multi-outliers in the 

univariate circular data.  

ii. To extend robust method to estimate circular location parameter, circular 

variance and mean resultant length when the circular data have outliers. 

iii. To formulate a new robust statistic to detect outliers in the response variable of 

a simple circular regression model.  

iv. To formulate a new robust statistic to detect outliers in the response and the 

explanatory variables of the simple circular regression model. 

v. To extend a robust method to estimate the parameters of the simple circular 

regression model when the response variable has outliers. 

vi. To extend a robust method to estimate the parameters of the simple circular 

regression model when the response and the explanatory variables have outliers. 

 

 

1.4 Scope and Limitation of Study 

Circular data are widely used in many scientific fields such as meteorology, biology, 

physics, psychology, medicine, geology, political science and demography.  

In linear data, the Normal distribution has many desirable properties so all the classical 

statistical analysis methods have been applied under Normal distribution. Similarly, 

in circular data, the von Mises distribution has many desirable properties so it is 

considered in this study.  

The classical methods are used to estimate parameters of the circular univariate such 

as the mean direction, the circular variance and the mean resultant length. Nonetheless, 

these methods are affected by the existence of outliers in the dataset. Hence, 

researchers proposed methods to identify outlier. Nevertheless, these methods are not 

enough to resolve the problem of presence outliers in the circular data  and it still 

exists. Very few researchers have focused to propose robust methods to estimate the 

parameters. 
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The linear relationship between bivariate circular data can be represented by the 

simple circular regression model. The maximum likelihood estimator is used to 

estimate the model parameters. However, it has some assumption to apply, one of 

them that the circular variables are free of outliers. Abuzaid et al. (2013), Abuzaid et 

al. (2011) and Abuzaid (2010) proposed methods to identify outliers in the response 

variable of a simple circular regression model. Nonetheless, they have not proposed 

method to detect outliers in the explanatory variable. In addition, no work has been 

done to propose method to detect outliers in the response and the explanatory variables 

of the simple circular regression model. Furthermore, to date, no robust method has 

been proposed to estimate parameters of the simple circular regression model when 

outliers are present in a data set. 

Since the robust statistic is relatively new technique in the circular data, there is no 

algorithm and statistical software and less references and data related to this area. 

Hence, it is so difficult to extend the robust methods that apply in the linear regression 

model such as least median of squares, least trimmed squares, S-estimator, M-

estimator, MM-estimator and GM-estimator. 

 In the literatures, not many outlying data sets are available. Hence, the same data sets 

were used repeatedly for different objectives of this study.  

1.5 Overview of the Thesis 

In accordance with the objectives and the scope of the study, the contents of this thesis 

are structured in the nine chapters. The thesis chapters are organized so that the study 

objectives are apparent and are conducted in the sequence outline. 

Chapter Two: This chapter briefly presents the literature review of the univariate  

circular data and circular regression model. The definition of the circular data, circular 

distance and graphical representation are illustrated. The definition of outliers, 

masking and swamping are given. Finally, bootstrapping methods are also briefly 

discussed.   

Chapter Three: This chapter discusses the existing of outliers in univariate circular 

data. The proposed robust statistic to detect a single and multi-outliers is presented. It 

depends on the circular distance between the observations and the median direction as 

a measure for detection. Finally, numerical examples and a Monte Carlo simulation 

study are presented.  

Chapter Four: In this chapter, a robust method to estimate the mean direction, 

circular variance and mean resultant length is proposed. The proposed robust method 

is based on extending the trimmed procedure. Two methods of trimming are proposed. 

First, it depends on the circular distance between observations and the median 
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direction as a measure for trimming. Five circular distances away from the median 

direction are tested. Second, it depends on the method that is proposed in Chapter 3 as 

a measure for trimming. A real data analysis and a Monte Carlo simulation study are 

carried out to assess the performance of our proposed method.   

Chapter Five: This chapter deals with the existing of outliers in the response variable 

of the simple circular regression model. A robust statistic is proposed to identify 

outliers. The proposed statistic depends on the circular distance between circular 

residuals and the median of the circular residuals as a measure for detection. A Monte 

Carlo simulation study and a numerical example are carried out to assess the 

performance of the proposed method.   

Chapter Six: In this chapter, a proposed robust statistic to detect outliers in the 

response and the explanatory variables of the simple circular regression model is 

presented. The proposed method depends on the circular distance between 

observations of the response and the explanatory variables as a measure for detection. 

A Monte Carlo simulation study and a numerical example are presented to assess the 

performance of the proposed method.   

Chapter Seven: In this chapter, we propose a robust method to estimate the 

parameters of the simple circular regression model when the response variable has 

outliers. The proposed method extends the maximum weighted likelihood estimator. 

Two weight functions are proposed to apply the maximum weighted likelihood 

estimator. A numerical example and a Monte Carlo simulation study are applied to 

evaluate the performance of the proposed method. 

Chapter Eight: This chapter deals with the existing of outliers in the response and 

the explanatory variables of the simple circular regression model. A robust method to 

estimate the model parameters is proposed. The maximum weighted likelihood 

estimator is extended to estimate the parameters. For this method, two weight 

functions are proposed. A numerical example and a Monte Carlo simulation study are 

applied to assess the performance of the proposed method. 

Chapter Nine: This chapter provides summary and detailed discussions of the thesis 

conclusions. Areas for future research are also recommended. 

The flow of the thesis is summarised by the following chart. 
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Chart to show the flow of the thesis 

 

  

A new robust statistic for the detection of a single and multiple 
outliers in the univariate circular data  is formulated.

Robust method to estimate the mean direction, circular 
variance and mean resultant length when circular data have 

outliers, is develped.

A new robust statistic to detect outliers in  the response 
variable of a simple circular regression model, is developed.

A new robust statistic to detect outliers in the response and 
explanatory variables of the simple circular regression model

is formulated.

Robust method to estimate the parameters of the simple 
circular regression model when the response variable has 

outliers, is developed.

Robust method to estimate the parameters of the simple 
circular regression model when the response and the 

explanatory variable have outliers, is developed.

Summary of the thesis, conclusions and areas for future 
research.
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