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The consideration of the stagnation point flow over a stretching/shrinking sheet
in carbon nanotubes (CNTs) is investigated. Mathematical models are derived
for three boundary layer flow problems over a linearly, nonlinearly and exponen-
tially stretching/shrinking sheet in CNTs with the presence of slip at the surface.
Both single- and multi-wall CNTs are used along with two base fluids which are
water and kerosene. Similarity transformation are used to transform the par-
tial differential equations into a nonlinear ordinary differential equations. The
stability analysis is derived for linear case by introducing the partial differential
equations in unsteady case. These equations are then solved by using bvp4c solver
in Matlab.

Numerical results of skin friction coefficient and local Nusselt number are exhib-
ited in forms of table and graph and also for profiles of velocity and temperature
for a range of numerous parameters such as Prandtl number Pr, CNTs volume
fraction ¢, velocity slip parameter o, thermal slip parameter o, heat generation
parameter (), suction/injection parameter S, stretching/shrinking parameter e
and nonlinear parameter 5. These parameters are observed to have a major
influence on coefficient of skin friction and the local Nusselt number which illus-
trates the rate of heat transfer at the surface. The results show that solutions
for shrinking sheet are dual solutions while unique solutions for stretching sheet.
It is noticed that slip parameter, suction/injection parameter and nonlinear pa-
rameter widens the range in which the dual solutions exist. Furthermore, the
first solution is found stable meanwhile the second solution is unstable and it is
obtained by performing a stability analysis.
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Pertimbangan aliran titik gengangan pada permukaan meregang atau menge-
cut dalam karbon nanotiub (KNT) disiasat. Model matematik diterbitkan bagi
tiga masalah dalam aliran putaran lapisan sempadan terhadap permukaan mere-
gang atau mengecut dalam KNT secara linear, tak linear dan eksponen dengan
kehadiran kesan slip pada permukaan. Kedua-dua satu- dan pelbagai-dinding
KNT digunakan bersama dua bendalir asas iaitu air dan minyak tanah. Pen-
jelmaan keserupaan digunakan untuk menjelmakan persamaan perbezaan separa
kepada persamaan perbezaan biasa tak linear. Analisis kestabilan diperoleh den-
gan memperkenalkan persamaan pembezaan separa dalam kes aliran tak mantap.
Persamaan ini seterusnya diselesaikan dengan menggunakan kaedah bvp4c dalam
perisian Matlab.

Keputusan berangka bagi pekali geseran kulit dan nombor Nusselt setempat di-
pamerkan dalam bentul jadual dan graf dan juga untuk profil halaju dan suhu un-
tuk julat tertentu pelbagai parameter seperti nombor Prandtl Pr, pecahan isipadu
KNT ¢, parameter halaju gelinciran o, parameter termal gelinciran oy, parameter
penjanaan haba @), parameter sedutan/suntikan S, parameter regangan/kecutan
€ dan parameter tak linear 5. Didapati bahawa parameter tersebut mempen-
garuhi pekali geseran kulit dan nombor Nusselt setempat yang mewakili kadar
pemindahan haba pada permukaan. Keputusan menunjukkan bahawa penyelesa-
ian untuk permukaan mengecut adalah dual penyelesaian manakala penyelesaian
tak unik untuk permukaan menegang. Diperhatikan bahawa parameter gelinci-
ran, parameter sedutan/suntikan dan parameter tak linear menambah julat bagi
penyeselaian dual wujud. Tambahan pula, penyelesaian pertama didapati stabil
manakala penyelesaian kedua tidak stabil dan diperhatikan dengan mempersem-
bahkan analisis kestabilan.

ii



ACKNOWLEDGEMENTS

First of all, all thanks to Allah S.W.T for granting me with His blessing and giv-
ing me a functioning mind as finally I was able to complete my Master’s studies.
I also would like to enunciate my sincere thanks to my supervisor Assoc. Prof.
Dr. Norfifah binti Bachok @ Lati for her full support, expert guidance, excellent
encouragement and endless support throughout my research and thesis writing.
Not to forget, my co-supervisor, Dr. Fadzilah binti Md Ali for her guidance too.
Without their time, guidance, and assistance, my whole project will not be com-
plete as it is now.

I really thank my friends who have helped me in these tough years. They helped
me to complete my project with their encouragement and treatment. I have
deeply enjoyed their friendship and I sincerely admire their trust in me. Most
notably, none of this would have been possible without my family’s love and pa-
tience. I would like to share my appreciation as well to my father, Norzawary
bin Isa and my mother Azimah binti Roslan who never stop to give me support,
advice and continuous encouragement throughout my study and completing this
project. Without them, this achievement would not have been feasible. Thank
you.

iii



This thesis was submitted to the Senate of Universiti Putra Malaysia and has been
accepted as fulfilment of the requirement for the degree of Master of Science. The
members of the Supervisory Committee were as follows:

Norfifah Bachok, PhD
Associate Professor
Faculty of Science
Universiti Putra Malaysia
(Chairman)

Fadzilah Md Ali, PhD
Senior Lecturer

Faculty of Science
Universiti Putra Malaysia
(Member)

ZALILAH MOHD SHARIFF, PhD
Professor and Dean

School of Graduate Studies

Universiti Putra Malaysia

Date: 11 February 2021



Declaration of graduate student

I hereby confirm that

Signature: Date:

this thesis is my original work;

quotations, illustrations and citations have been duly referenced;

this thesis has not been submitted previously or concurrently for any other
degree at any other institutions;

intellectual property from the thesis and copyright of thesis are fully-owned
by Universiti Putra Malaysia, as according to the Universiti Putra Malaysia
(Research) Rules 2012;

written permission must be obtained from supervisor and the office of Deputy
Vice-Chancellor (Research and Innovation) before thesis is published (in the
form of written, printed or in electronic form) including books, journals, mod-
ules, proceedings, popular writings, seminar papers, manuscripts, posters, re-
ports, lecture notes, learning modules or any other materials as stated in the
Universiti Putra Malaysia (Research) Rules 2012;

there is no plagiarism or data falsification/fabrication in the thesis, and schol-
arly integrity is upheld as according to the Universiti Putra Malaysia (Graduate
Studies) Rules 2003 (Revision 2012-2013) and the Universiti Putra Malaysia
(Research) Rules 2012. The thesis has undergone plagiarism detection software.

Name and Matric No.: Nur Hazirah Adilla Norzawary (GS53440)

vi



Declaration by Members of Supervisory Committee

This is to confirm that:
e the research conducted and the writing of this thesis was under our supervision;

e supervision responsibilities as stated in the Universiti Putra Malaysia (Gradu-
ate Studies) Rules 200 (Revision 2012-2013) are adhered to

Signature:
Name of Chairman of
Supervisory Committee:

Norfifah Bachok

Signature:
Name of Member of
Supervisory Committee

Fadzilah Md Ali

vii



TABLE OF CONTENTS

Page
ABSTRACT i
ABSTRAK il
ACKNOWLEDGEMENTS iii
APPROVAL iv
DECLARATION vi
LIST OF TABLES X
LIST OF FIGURES xi
LIST OF ABBREVIATIONS Xiii
CHAPTER
1 INTRODUCTION 1
1.1 Introduction 1
1.2 Research Background 2
1.2.1 Stagnation Point Flow 2
1.2.2 Stretching/shrinking Sheet 3
2.2 Carbon Nanotubes (CNTSs) 3
1.2.4 Slip Effects 4
1.2.5  Heat Generation Effects 5
1.2.6 Suction/injection Effects 5
1.3 Problem Statement 5
1.4  Objective and Scope 6
1.5 Significant of Study 7
1.6 Outline of Thesis 7
2 LITERATURE REVIEW 9
2.1  Introduction 9
2.2 Stagnation Point Flow via Linearly 9
Stretching/Shrinking Sheet
2.3 Stagnation Point Flow via Nonlinearly 12
Stretching/Shrinking Sheet
2.4 Stagnation Point Flow via Exponentially 13
Stretching/Shrinking Sheet
2.5 Boundary Layer Stagnation Point Flow with Slip 16
Effects
2.6 Boundary Layer Stagnation Point Flow with Heat 19
Generation Effects
2.7 Boundary Layer Stagnation Point Flow with 21
Suction/Injection Effects
2.8 Boundary Layer Stagnation Point Flow in Carbon 22
Nanotubes
3 METHODOLOGY 25
3.1 Introduction 25
3.2 The Governing Equation 25

viii



3.3  Similarity Transformation
3.3.1 Derivation of Continuity Equation
3.3.2  Derivation of Momentum Equation
3.3.3  Derivation of Energy Equation
3.3.4  Derivation of Boundary Conditions
3.3.5 Derivation of Physical Quantities
3.4 Numerical Computation: bvp4c Solver in MATLAB

4 STAGNATION POINT FLOW OVER A
STRETCHING/SHRINKING SHEET IN A CARBON
NANOTUBES WITH SLIP EFFECTS AND
STABILITY ANALYSIS
4.1 Introduction
4.2 Mathematical Formulation
4.3 Stability Analysis
4.4 Results and Discussions
4.5 Conclusions

5 STAGNATION POINT FLOW OVER A
NONLINEARLY STRETCHING/SHRINKING
SHEET IN A CARBON NANOTUBES WITH SLIP
AND SUCTION/INJECTION EFFECTS
5.1 Introduction
5.2 Mathematical Formulation
5.3 Results and Discussions
5.4 Conclusions

6 STAGNATION POINT FLOW OVER A
EXPONENTIALLY STRETCHING/SHRINKING
SHEET IN A CARBON NANOTUBES WITH
EFFECTS OF SLIP AND HEAT GENERATION
6.1 Introduction
6.2 Mathematical Formulation
6.3 Results and Discussions
6.4 Conclusions

7 CONCLUSION
4.1 Research Summary
4.2 Future Works

REFERENCES
APPENDICES

BIODATA OF STUDENT
LIST OF PUBLICATIONS

28
29
30
32
34
36
38

40

40
40
40
42
44

55

55
55
56
59

75

75
75
76
78

89
89
90

91

102
153
154



LIST OF TABLES

Table

3.1 Thermophysical properties of different base fluids and CNTs (see
Khan et al. (2014))

4.1 C fRexl/ 2 for certain values of € and ¢

4.2 NuxRex_l/2 for certain values of € and ¢

4.3 Smallest eigenvalues v at selected values of ¢ for different o when
¢ = 0.1 for water-SWCNT's

51 C fRexl/ 2 for certain values of € and ¢

5.2 Nu;cRex_l/z for certain values of € and ¢

6.1 C fReg;l/ 2 for certain values of € and ¢

6.2 NuxRex_l/z for certain values of € and ¢

6.3 Nu;cRex_l/z for certain values of () and ¢

Page

25

45
45

46

60
60

79

79
80



LIST OF FIGURES

Figure

1.1

1.2
1.3

1.4
1.5

3.1

4.1
4.2
4.3
4.4

4.5

4.6
4.7

4.8

4.9

4.10
4.11
4.12
4.13
4.14
4.15
4.16

4.17

5.1
5.2
5.3
5.4
2.5
5.6
2.7
2.8
2.9

5.10
5.11

Physical model of stagnation point (https://www.transtutors.com/
questions/potential-flow-near-a-stagnation-point-fig-4b-6-a-show-
375083.htm)

Physical model of stretching or shrinking (see Awaludin et al. (2016))

Page

2
3

Physical model of carbon nanotubes (https://steemit.com/technology/

@eng.ramy /carbon-nanotubes-what-is-it)

Physical model of SWCNT and MWCNT (see Ribeiro et al. (2017))

Physical model of slip (see Lauga et al. (2005))
Physical model and coordinate system (see Bachok et al. (2011))

1"(0) with € and ¢ for water-SWCNTs
—0'(0) with e and ¢ for water-SWCNTs
f"(0) with ¢ and o for water-SWCNTs
—0'(0) with € and o for water-SWCNTSs

Variation of C't(Re) 313/ ? with ¢ and o for water base fluid

Variation of Nux(Re);1/2 with ¢ and o for water base fluid
Variation of C't(Re) glc/ ? with  for various base fluids

Variation of Nugz(Re), 12 gith  for various base fluids

Velocity profiles for ¢ and water-SWCNT's

Temperature profiles for ¢ and water-SWCNT's

Velocity profiles for o and water-MWCNT's

Temperature profiles for ¢ and water-MWCNT's

Velocity profiles for various base fluids for SWCNTs
Temperature profiles for various base fluids for SWCNT's
Velocity profiles for various carbon nanotubes for water base fluid
Temperature profiles for various carbon nanotubes for water base
fluid

v at selected € for ¢ = 0.2 and ¢ = 0.1 for water-SWCNT's

1"(0) with e and ¢ for water-SWCNTs
—0'(0) with & and ¢ for water-SWCNTs
f"(0) with ¢ and o for water-SWCNTs
—0'(0) with & and o for water-SWCNTs
—0'(0) with e and oy for water-SWCNTs
1"(0) with & and 3 for water-SWCNTs
—0'(0) with & and 3 for water-SWCNTs
1"(0) with € and S for water-SWCNTs
—0'(0) with £ and S for water-SWCNTs

Variation of C't(Re) 515/ ? with ¢ and o for water base fluid
Variation of Nugz(Re), 12 yith ¢ and o for water base fluid

X1

[GARENES

26

46
47
47
48

48

49
49

50
50
o1
o1
52
52
53
53

o4
o4

61
61
62
62
63
63
64
64
65

65
66



5.12

0.13
5.14

5.15
0.16
5.17
5.18
5.19
5.20
0.21
5.22
5.23
5.24
5.25
5.26
5.27
0.28

6.1
6.2
6.3
6.4
6.5

6.6

6.7
6.8

6.9

6.10
6.11
6.12
6.13
6.14
6.15
6.16
6.17
6.18

Variation of C f(Re)i/ 2 with ¢ and [ for water base fluid

Variation of N ux(Re)gl/ ? with ¢ and f for water base fluid
Variation of C' f(Re)flf/ ? with ¢ for various base fluids

Variation of N ux(Re)J?l/ ? with ¢ for various base fluids

Velocity profiles for ¢ and water-SWCN'T's

Temperature profiles for ¢ and water-SWCNT's

Velocity profiles for o and water-MWCNTs

Temperature profiles for o and water-MWCNTs

Temperature profiles for o; and water-MWCNTs

Velocity profiles for § and water-SWCNT's

Temperature profiles for 5 and water-SWCN'T's

Velocity profiles for S and water-SWCNTs

Temperature profiles for S and water-SWCNT's

Velocity profiles for various base fluids for MWCNTs
Temperature profiles for various base fluids for MWCNT's
Velocity profiles for various carbon nanotubes for water base fluid
Temperature profiles for various carbon nanotubes for water base

fluid

1"(0) with € and ¢ for water-SWCNTs
—0'(0) with e and ¢ for water-SWCNTs
1"(0) with € and o for water-SWCNTs
—0'(0) with e and o for water-SWCNTSs
—0'(0) with e and @ for water-SWCNTSs

Variation of C' f(Re)flv/ ? with ¢ and o for water base fluid

Variation of N ux(Re)gl/ ? with ¢ and o for water base fluid
Variation of C' f(Re)glc/ ? with ¢ for various base fluids

Variation of Nug(Re), 12 yith ¢ for various base fluids

Velocity profiles for ¢ and water-SWCNT's

Temperature profiles for ¢ and water-SWCNT's

Velocity profiles for o and water-MWCNT's

Temperature profiles for o and water-MWCNTs

Temperature profiles for ) and water-SWCNT's

Velocity profiles for various base fluids and SWCNT's

Temperature profiles for various base fluids and SWCN'Ts
Velocity profiles for various carbon nanotubes and water base fluid
Temperature profiles for various carbon nanotubes and water base

fluid

xii

66

67
67

68
68
69
69
70
70
71
71
72
72
73
73
4

74

80
80
81
81
82

82

83
83

84
84
85
85
86
86
87
87
38

88



LIST OF ABBREVIATIONS

a, b constants

Cr skin-friction coefficient

Cp specific heat at constant pressure

f dimensionless stream function

k thermal conductivity

Nug local Nusselt number

Pr Prandtl number

qu surface heat flux

Re, local Reynolds number

T fluid temperature

Thw plate temperature

To ambient temperature

U, v velocity components along the x— and y— direction

Uw stretching /shrinking velocity

Uso ambient fluid velocity

T,y Cartesian coordinates measured along the plate and
normal to it

S suction/injection parameter

Q heat generation parameter

Greek symbols

« thermal diffusivity

% carbon nanotube volume fraction
n similarity variable

v kinematic viscosity

1 dynamic viscosity

0 dimensionless temperature

€ stretching /shrinking parameter
o velocity slip parameter

ot thermal slip parameter

Py fluid density

PONT carbon nanotube density

(pCp) heat capacity of the fluid
(0Cp)oNT heat capacity of the carbon nanotube
Tw shear stress

(0 stream function

xiil



Subscripts

nf

CNT

critical value

condition at the surface of the plate
ambient condition

nanofluid

fluid

carbon nanotube

X1v



CHAPTER 1

INTRODUCTION

1.1 Introduction

Throughout physics and engineering, fluid dynamics is a subdiscipline of fluid
mechanics that explains the flow of fluids liquids and gases. They have several
subdisciplines, including aerodynamics (moving air and other gases) and hydro-
dynamics (moving liquids). Fluid dynamics has a broad variety of applications,
including measuring aircraft forces and moments, assessing petroleum mass flow
rate across pipelines, predicting patterns of weather, understanding nebulae in
outer space and modeling detonation of fission bombs.

Boundary layer refers to the fluid layer in the surrounding neighborhoods of
a bounding surface where the viscosity effects are important. In 1908, it was
Blasius who solved the boundary layer problem for a free stream past a fixed flat
plate using a similarity transformation technique, while the boundary layer on a
continuous moving surface was first examined by Sakiadis (1961).

Heat transfer is a method of transferring heat from an object of higher tem-
perature to a subject of lower temperature. Following the First Law of Thermo-
dynamics, heat transfer affects the internal energy of all systems involved. There
are four basic heat transfer models, where the first is that advection is a method
of transportation of a fluid from one position to another, which relies on the
movement which momentum of that fluid. Second is conduction/diffusion. Con-
duction is a transfer of energy between objects which in physical contact. Third,
convection is a transfer of energy between an object, due to fluid motion, and its
environment. And lastly, radiation which a transfer of energy by electromagnetic
radiation emission. This research, however, only took into consideration convec-
tion heat transfer.

Prandtl number, Pr can be referred to as a dimensionless parameter used to
measure the transfer of heat between a moving fluid and a solid object. The
Prandtl number is also used in heat transfer and the measurement of free and
forced convection. These values depend on the fluid properties. This Prandtl



number was proposed by the German physicist, Ludwig Prandtl in 1904 and it
can be stated as

viscous diffusion rate

v
r= = — ,
thermal diffusion rate  « k
where p is the dynamic viscosity, C' is the specific heat, p is the density of fluid,

k is the thermal conductivity, v is the kinematic viscosity and « is thermal diffu-
sivity.

1.2 Research Background

Fluid dynamics apply to many science and engineering fields and have taken into
consideration many aspects of our daily lives. Some important keywords in the
thesis will be introduced in this subsection.

1.2.1 Stagnation Point Flow

A stagnation point is a point in a flow region where the fluid’s local velocity is
zero. Stagnation points occur in the flow field at the object’s surface, where the
object brings the fluid to rest. At the point of stagnation, fluid does not accu-
mulate; it flows away one way or the other. It runs very slowly at the stagnation
point and the nearer you go the slower it runs. Streamlines can terminate at a
stagnation point. Due to their significance in many engineering disciplines, e.g.
cooling of electronic devices or nuclear reactors, and other hydrodynamics pro-
cesses, the analysis of stagnation point flows has received considerable attention.

l
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Stagnation point

Figure 1.1: Physical model of stagnation point
(https:/ /www.transtutors.com/questions/potential-flow-near-a-stagnation-
point-fig-4b-6-a-show-375083.htm)



1.2.2 Stretching/shrinking Sheet

Stretching surface is a surface that is extended in its own plane, or that happens
when the boundary velocity moves away from a fixed point. Several examples
of this flow in industrial processes and engineering are plastic and rubber sheet
aerodynamic extrusion, hot rolling, wire drawing, and development of glass-fibre.
While, shrinking surface is a surface that shrunk where the boundary velocity is
going towards a fixed point. Some common applications regarding the shrinking
surface, including the shrinking film for packing of bulk products and effects of
capillary in small pores.

-~ o 1 ’ uf N Eum

(a) Stretching sheet (b) Shrinking sheet

Figure 1.2: Physical model of stretching or shrinking (see Awaludin et al.
(2016))

1.2.3 Carbon Nanotubes (CNTSs)

lijima (1991) was credited because he is the first person who did the first obser-
vation about the multi-walled CNTs. He discovered multi-walled CN'Ts by the
arc-discharge method. Many scientists in the area have credited him with the
first visual experience of the tubes of atoms rolling up and being covered with
fullerene molecules. Ilijima and Ichihashi (1993) and Bethune et al. (1993) dis-
covered buckytubes known as single-walled nanotubes and they were produced
using metal catalyst in the arc-discharge method. Continuing work has shown
that three specific forms of nanotubes exist (zigzag, armchair, and chiral), as well
as single-walled and multi-walled CNTs. CNTs is an carbon allotrope, a tube-
shaped form made of carbon with a nanometer-scale measurement of diameter.
Nanotubes are part of the structured family of fullerenes. Their name derives
from their long, hollow structure, with carbon sheets of one atom thick, called
graphene, forming the walls.



CNTs are peculiar due to the very strong bonding between the atoms, and the
tubes may have extreme aspect ratios. CNTs have many different structures,
varying in length, thickness and number of layers. The characteristics of nan-
otubes depend upon how the graphene sheet has rolled up to form the tube.
There are several different types of CNTs but usually, they are known as either
single-walled carbon nanotubes (SWCNTs) or multi-walled carbon nanotubes
(MWCNTSs). A SWCNTSs is like a normal straw, where they only have one layer
or wall. In the meantime, MWCNTSs are a series of continuously growing diame-
ters of nested tubes.

Graphene sheet

‘Carbon Nanotube model

"J\\-‘/\‘-/’)\ )\* /k\/l\\
|

o
¥
A

Figure 1.3: Physical model of carbon nanotubes
(https://steemit.com/technology/@eng.ramy /carbon-nanotubes-what-is-it)

ik
L o

0.5 to 1.5nm >100nm

Figure 1.4: Physical model of SWCNT and MWCNT (see Ribeiro et al.
(2017))

1.2.4 Slip Effects

Slip occurs when the fluid and the plate cannot stick together due to slippery
surface of the plate. Some of the researchers investigated the boundary layer flow
with no-slip condition. Sometimes, in certain cases, the no-slip condition can be
changed to the partial slip condition, which is given by

ou



where u is the velocity of the fluid, L (A as in Figure 1.5) is the length of the slip.

No slip Partial slip Perfect slip

7

A=0 0 <A< A= o0
Figure 1.5: Physical model of slip (see Lauga et al. (2005))

1.2.5 Heat generation Effects

Research into the generation/absorption of heat in moving fluids is crucial for
problems concerned with reactions of chemical and dissociating fluids. Heat gen-
eration is known as the convection of some sort of energy in the medium into
sensible heat energy. Examples of energy are electrical, chemical and nuclear
energy. Heat generation occurs throughout the medium and exhibits itself as a
rise in temperature. Temperature distribution may be modified by possible heat
generation effects, which may influence particle deposition and distribution rate.

1.2.6 Suction/injection Effects

The fluid suction/injection through the bounding surface will ultimately affect
the flow field and as a result, change the rate of heat transfer from the plate.
Generally, suction appears to increase skin friction coefficients and heat transfer ,
while the injection acts in the opposite manner (see Al-Sanea (2004)). For prac-
tical problems such as film cooling, boundary layer control, etc the injection or
removal of fluid through a heated or cooled porous bounding wall is of general
interest. It can help to boost the system of heating or cooling which can help
slow the transition of the laminar flow. (see Chaudhary and Merkin (1993)).

1.3 Problem Statement

The problems regarding the stagnation point flow due to a stretching/shrinking
sheet in CNTs have been given attention by many authors. For the present
study, the term stagnation point flow over three different problems which are

5



linear, nonlinear and exponential stretching/shrinking sheet with slip effects at
the surface are studied. Some of the issues about the stagnation point flow are:

1. What are the differences in the range of the dual solutions exist for stagna-
tion point flow due to linear, nonlinear and exponential stretching/shrinking
sheet problems?

2. What happens to the nature of skin friction coefficient and local Nusselt
number when considering velocity slip parameter, thermal slip parameter,
heat generation parameter, suction/injection parameter, nonlinear param-
eter and different types of CNTs?

3. How does the presence of CNTs give impact on the flow and heat transfer
characteristics over a stretching/shrinking sheet?

4. What will happen to flow characteristics when we used stretching and
shrinking surface?

1.4 Objective and Scope

The objectives of the present study are to

1. construct and derive the mathematical model,

2. solve the mathematical model numerically via bvp4c solver in Matlab soft-
ware,

3. analyze the influence of the considered parameters on the characteristics of
the fluid flow and heat transfer,
for the following problems of:

1. stagnation point flow in a carbon nanotubes with slip effects over:

e a linearly stretching/shrinking sheet,

e a nonlinearly stretching/shrinking sheet together with suction/injec-
tion effects,

e an exponentially stretching/shrinking sheet together with heat gen-
eration effects,

and also

2. conduct stability analysis for dual solutions exist in first problem (linear)
by finding the smallest unknown eigenvalues.

The scope is limited to the two-dimensional boundary layer flow, steady, laminar
and incompressible in the region y > 0 driven by a stretching/shrinking surface
located at y = 0 with a fixed stagnation point x = 0. Both single-walled and
multi-walled CNTs are used together with two base fluids which are water and
kerosene.



1.5 Significant of Study

CNTs have been an important new class of technical materials since the discovery
of CNTs in 1991 which have various useful properties. These impressive struc-
tures have a variety of interesting electrical , magnetic and chemical properties.
They are at least 100 times stronger than steel but one-sixth heavier than steel.
There are numerous properties and applications of CNTs.

Jorio et al. (2007) stated that CNTs occupy important properties and qualities as
structural materials. In textiles, CN'T's can produce waterproof and tear-resistant
fabrics. Besides, they presented that from sheets of parallel CNTs, loudspeakers
can be created which use to generate sound. CNTs fibres are also being used
as combat jackets which used to provide protection from bullets in body armor.
Next, CNTs can be manufactured as electrical conductors, semiconductors and
insulators. Jornet and Akyildiz (2010) declared that by using multi-walled CNTs,
a strong magnetic field can be produced. They also declared that CNTs can act
as an antenna for radio due to its durability and light in weight.

As in air pollution filters, CNTs are one of the best materials because they occupy
high absorption capacity and dominate large specific area. And for water filters,
CNTs membranes can benefit in filtration because their tubes are so thin that
small particles can move through them, thus blocking larger particles such as
chloride ions in salt. In mechanical field, CNTs oscillators have achieved higher
speeds than other technologies due to low friction and low wear bearing proper-
ties of multi-walled CNTs. In addition, in the biomedical sector, since a large
part of the human body is made up of carbon, it is usually a very biocompatible
material, though. Cells on CNTs have been shown to expand, so they do not
appear to have any toxic effect. Even the cells do not follow the CNTs, possibly
giving rise to applications like prosthetic coatings. The ability to functionalize
(chemically modify) the sidewalls of CNTs also contributes to biomedical appli-
cations including vascular stents, and growth and regeneration of neurons.

1.6 Outline of Thesis

Chapter 1 represents an introduction, research background where the definitions
of the terms are discussed, problem statements, objective and scopes, study’s sig-
nificance and also the thesis’s outline. Chapter 2 addresses the literature review
of previous studies applicable to our thesis in detail.



In addition, the mathematical formulas in which partial differential equations
(PDEs) are reduced using similarity transformation into ordinary differential
equations (ODEs) are described in Chapter 3. Often discussed in detail through
this section was the numerical method used to solve the current problems.

Chapter 4, 5 and 6, respectively, present the mathematical formulations for stag-
nation point flow due to a linear, nonlinear and exponential stretching/shrinking
sheet in CN'T's with slip effects. The influence of the nanoparticle volume fraction,
velocity slip, thermal slip, heat generation, suction/injection, nonlinear as well as
stretching and shrinking parameters on the flow are found and have discussed in
detail here.

Next, the stability analysis is carried out to identify which solutions are sta-
ble that is included in Chapter 4. Last but not least, Chapter 7 discusses the
results of study and some recommendations for further analysis.
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