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Diophantine equation is a polynomial equation with two or more unknowns for
which only integral solutions are sought. Exponential Diophantine equation is a
Diophantine equation that has additional variable or variable occuring as exponen-
tents polynomial.

Let α1 and α2 be algebraic numbers with |α1|> 1 and |α2|> 1, we will consider the
Diophantine equation x2 +2a · zb = y3n for z = 7 in the form of

Λ = b2 log α2−b1 log α1

where α1, α2,b1 and b2 are positive integers. In order to find upper bound for value
of n in Diophantine equation x2 +2a · zb = y3n for for z = 7, we will use:

h(α) =
1
d

(
log|a0|+

d

∑
i=1

log [1, |α(i)|]
)

where α ∈ Z.

This research concentrates on finding an integral solution to the exponential Dio-
phantine equation on x2 +2a · zb = y3n for a,b,x,y,n and z = 7 are positive integers.
By focused n = 1,2, n = 3, and 26 a6 8 with any values of b, the integral solution
of x and y are determined. Limitation of the value of x,y 6 50,000, an integral
solution to the Diophantine equation for x and y will be obtained. By considering
the parity of x and y and also by using substitution method, simple parametrization,
quadratic residue modulo, cubic residue modulo, Baker’s method and local method,
integral solution of x and y will be determined. In order to derive effective bounds of
the Diophantine equation, Baker’s method are used in proving Diophantine equation
in this research.
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This research found that there is no pattern of solution obtained. Therefore, the upper
bound technique method is used to get the integral solution of Diophantine equation
which is more precise and effective. By combining Baker and local methods, an
upper bound for the values of n > 3 is obtained. By considering two cases that is
either y > 2 or y = 2, then the upper bound for y = 2 is n < 15,000 and for y > 2, is
n < 11,000.
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Persamaan Diophantus adalah persamaan polinomial dengan dua atau lebih pem-
boleh ubah dengan penyelesaian integer sahaja yang dicari. Persamaan Diophantus
eksponen ialah persamaan yang mempunyai penambahan pemboleh ubah yang
bertindak sebagai polinomial eksponen.

Misalkan α1 dan α2 nombor algebra dengan |α1|> 1 dan |α2|> 1, dipertimbangkan
persamaan Diophantus x2 +2a · zb = y3n untuk z = 7 dalam bentuk

Λ = b2 log α2−b1 log α1

di mana α1, α2,b1 dan b2 adalah integer positif. Untuk mencari batas atas nilai n
dalam persamaan Diophantus x2 +2a · zb = y3n untuk z = 7, akan digunakan:

h(α) =
1
d

(
log|a0|+

d

∑
i=1

log [1, |α(i)|]
)

dengan α ∈ Z.

Kajian ini tertumpu kepada mencari penyelesaian integer kepada persamaan
eksponen Diophantus x2 + 2a · 7b = y3n dengan a,b,x,y,n dan z = 7 adalah integer
positif. Dengan menumpukan n = 1,2,3, dan 2 6 a 6 8 dengan sebarang nilai b,
penyelesaian integer x dan y akan diperoleh. Penyelesaian x dan y untuk persamaan
Diophantus ini diperoleh dengan nilai had x,y 6 50,000. Dengan mempertim-
bangkan pariti x and y dan juga kaedah penggantian, kaedah parameterasasi,
modulo residu kuadratik, modulo residu kubik, kaedah Baker dan kaedah tempatan,
penyelesaian integer x dan y akan ditentukan. Untuk mendapatkan batas persamaan
Diophantus yang berkesan, kaedah Baker digunakan dalam membuktikan persamaan
Diophantus dalam kajian ini.
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Penyelidikan ini mendapati bahawa tidak ada pola penyelesaian yang diperoleh.
Oleh itu, kaedah teknik batas atas digunakan untuk mendapatkan penyelesaian in-
tegral bagi persamaan Diophantus yang lebih tepat dan berkesan. Dengan meng-
gabungkan kaedah Baker dan kaedah tempatan, nilai batas atas untuk nilai n > 3
diperoleh. Dengan mempertimbangkan dua kes iaitu y > 2 atau y = 2, kemudian
batas atas untuk y = 2 ialah n < 15,000 dan untuk y > 2, adalah n < 11,000.
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CHAPTER 1

INTRODUCTION

1.1 Preliminary

This research will be focused on finding an integral solution to the Diophantine equa-
tion x2+2a ·zb = yn for z= 7. In this chapter, we will brief some background of Dio-
phantine equation. Then, we state the problem statement, objectives and methodol-
ogy of this research followed by the literature reviews from the previous researchers.
Lastly, the organization of the thesis according to each chapter will be given.

1.2 Mathematical Background

In this section, we will give some background of Number Theory and Diophantine
equation. James and Erica (2010) stated that Number theory is the study of
natural numbers and called “the queen of mathematics” by Carl Friedrich Gauss.
The beautiful patterns and theorems that emerge have fascinated many of the
greatest mathematical minds throughout the centuries. Yet, give challenges to the
mathematicians to solve the problems.

An equation with the restriction that only integer solutions are sought is called
Diophantine equation. The main focus of this research is to solve exponential
Diophantine equation. Exponential Diophantine equation is an equation that has
additional variable or variables occuring as exponents. The simple expression of
exponential Diophantine equation is xa + yb = zc where all the unknowns must be
natural numbers.

There is no general method for solving Diophantine equation. We also obtain a
general theorem about bounds for solutions of diophantine equations with a finite
numbers of solutions. Laurent (2008) stated the following lemma:

Lemma 1.1 For an algebraic number α of degree d over Q, we define that absolute
logarithmic height of α by the following formula:

h(α) =
1
d

(
log|a0|+

d

∑
i=1

log [1, |α(i)|]
)

where a0 is the leading coefficient of polynomial of α over Z.

Lemma 1.2 Let α1 and α2 be multiplicatively algebraic numbers with |α1|> 1 and

1
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|α2|> 1. We will consider the diophantine equation of the form

Λ = b2 log α2−b1 log α1

where log α1, log α2, α2 and b1 and b2 are positive integers.

First, by using above lemma to get upper bound for n in equation x2 + 2a · zb = yn

for z = 7. Put t = 2a ·7b. Then, we have

x2 + t = yn.

Since a 6 8 and b < 8, then we have t 6 28 · 77 = 210827008. Then, we will have
the following theorem.

Theorem 1.1 Let x, t be positive integers with x,y 6 50,000 and t 6 28 · 77. Then
y and n be a solution of the Diophantine equation with n > 3. There exist integral
solution of Diophantine equation for n < 11,000 if y > 2 and n < 15,000 if y = 2.

Besides the above theorems, we also consider the following definitions, propositions
and theorems to find the integral solution to the Diophantine equation. From
Kumanduri and Romero (1998) we have:

Definition 1.1 : (Divisibility). If a and b are integers, we say that a divides b (de-
noted as a | b) if there exists an integer c such that b = ac. If no such c exists, then a
does not divide b (denoted by a - b). If a divides b, we say that a is a divisor of b and
b is divisible by a.

Theorem 1.2 There are infinitely many prime numbers.

Proposition 1.1 : (Primality Test). A number p is prime if and only if it is not
divisible by any prime q.

Proposition 1.2 : Let a and b be integers. If p is a prime number such that p | ab,
then p | a or p | b.

Definition 1.2 : (Greatest Common Divisor). The greatest common divisor (gcd) of
two numbers a and b, not both zero, is the largest integer dividing both a and b. It
will be denoted by gcd(a,b) or (a,b).

2
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Definition 1.3 : Let a,b,m be integers, we say that a is congruent to b modulo m
denoted by a≡ b (mod m) if m | a−b. If m - a−b, we write a 6≡ b (mod m) and say
that a is not congruent or incongruent to b modulo m.

Definition 1.4 : (Quadratic Residue Modulo). Let a,m be integers such that (p,q)=
1. Then, congruence x2 ≡ a (mod m) has an integer solution, then a is a quadratic
residue modulo m. Otherwise, it is a quadratic nonresidue modulo m.

Definition 1.5 : (Cubic Residue Modulo). Let p,q be integers such that (a,m) = 1.
Then, congruence x3 ≡ p (mod q) is solvable if and only if x3 ≡ p (mod q).

Definition 1.6 : (Euler’s criterion). Let p be an odd prime and a an integer such
that (a, p) = 1, then

a
p−1

2 ≡
(

a
p

)
(mod p).

Proposition 1.3 : Let p be an odd prime, then(
−1
p

)
=

{
1 if p≡ 1 (mod 4),
−1 if p≡ 3 (mod 4).

From Cook (2014) we have:

Theorem 1.3 : (Quadratic Congruence Powers of 2). Let a be an odd integer. Lets
x2 ≡ a (mod 2), it has a solution if x≡ 1 (mod 2) only.

Theorem 1.4 : (Quadratic Congruence Powers of 2). Let a be an odd integer. Lets
x2 ≡ a (mod 4), it has a solution if x≡ 1 (mod 4) only.

Theorem 1.5 : (Quadratic Congruence Powers of 2). Let a be an odd integer. Lets
n> 3, x2≡ a (mod 2n) has four solutions if a≡ 1 (mod 8) and no solutions otherwise.

1.3 Problem Statement

This research is extended from Yow and Atan (2013), where he considered the Dio-
phantine equation of the form x2 + 2a · 7b = yr where r is even. It has difficulties
higher degree of r. Thus, to extend this problem, we consider the Diophantine equa-
tion x2 + 2a · zb = y3n for z = 7, where 1 6 a 6 8 for n 6 3. By finding the higher
degree of exponential Diophantine equation in more general, we can obtain in gen-
eral forms by using upper bound as more precise and effective.

3
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1.4 Objective and Methodology

In this section, we will state the objective and methodology of this research. The
main objectives of this research are:

(i) to find integral solutions a,b,x,y,n to the Diophantine equation

x2 +2a · zb = y3n (1.1)

for z = 7 and n = 1.

(ii) to find integral solutions a,b,x,y,n to the Diophantine equation

x2 +2a · zb = y3n (1.2)

for z = 7 and n = 2,3.

(iii) to provide upper bound for integral solutions to the Diophantine equation

x2 +2a · zb = yn,z = 7 (1.3)

for n> 3.

Now, we will present the methodology to determine the integral solution for the
Diophantine equation. In order to find the integral solution for x2 + 2a · zb = y3n

for z = 7 when n 6 3, we will consider the parity of x and y. By using substitution
method, quadratic residue modulo and cubic residue modulo, the integral solutions
of a,b,x,y will be obtained. Lastly, as we do not get any pattern of solution, hence
we could not form the general form of solution. Then, we use Baker’s and local
method to find out upper bound for n.

1.5 Organization of Thesis

This thesis covers eight chapters as follows:

Chapter 2 provides a literature review related to the research. The previous research
give an idea and more effective techniques on this research by finding the integral of
Diophantine equation x2 +2a · zb = y3n for z = 7.

Chapter 3 focus on finding the integral solution to the Diophantine equation
x2 +2a ·7b = y3n for n = 1. We focused only for a = 2 for any values of b. In order
to solve the equation, we consider two cases either x and y are even or x and y are odd.

Chapters 4 and 5 study on the integral solution to the Diophantine equation
x2 +2a ·7b = y3n for n = 1. This chapter focus on a6 8 and for any values of b. In
order to solve the equation, we consider the case either x and y are even or x and y
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are odd. We used used simple substitution method, and quadratic residue modulo in
our results.

Chapter 6, we investigate on the intgeral solution to the Diophantine equation
x2 + 2a · 7b = y3n for n = 2,3. This chapter study on a 6 8 for any values of b. In
order to solve the equation, we consider two case either x and y are even or x and
y are odd. We also used simple substitution method, quadratic residue modulo and
cubic residue modulo to prove our results.

Then, followed by finding bound for n in Chapter 7 for the integral solutions of the
Diophantine equation x2 +2a ·7b = yn where a,b,x,y are positive integers. We used
local argument combining with Baker’s method to find bound for n> 3.

Chapter 8, provide a summary of the research and the upper bound for all the
integral solutions for case y = 2 and y > 2. Also, some future works will be discused
in the last section of this chapter.
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