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The first public key cryptosystem namely RSA has been used extensively throughout
the world since its invention in 1978. Since then, cryptanalytic research on this
cryptosystem began with the purpose to enhance its security. In this thesis, we
present three analytical attacks on the modulus N = p2q by utilizing Jochemsz-
May strategy. We show that the modulus can be factored if the elements in the
cryptosystem satisfy our conditions.

For the first attack, we utilize the modulus N = p2q where p and q are large
balanced primes. Suppose there exists e ∈ Z+ satisfying gcd(e,φ(N)) = 1 where
φ(N) = p(p−1)(q−1) and d < Nδ be its corresponding private exponent such that
d ≡ e−1 mod φ(N). From ed− kφ(N) = 1, by utilizing the extended strategy of
Jochemsz and May, our attack works when the primes share a known amount of
Least Significant Bits (LSBs). This is achievable since we obtain the small roots of
our constructed integer polynomial that consequently leads to the factorization of N.
More specifically we show that N can be factored when the bound δ < 2

3 +
3
2 α− 1

2 γ .
Our attack enhances the bound of some former attacks upon N = p2q.

Next, we describe a cryptanalytic study on RSA with the modulus N = p2q with the
existence of two key equations. Let e1,e2 < Nγ be the integers such that d1,d2 < Nδ

be their multiplicative inverses. Based on two key equations e1d1 − k1φ(N) = 1
and e2d2− k2φ(N) = 1 where φ(N) = p(p− 1)(q− 1), our attack works when the
primes share a known amount of LSBs and the private exponents share an amount
of Most Significant Bits (MSBs). We apply the extended strategy of Jochemsz and
May to find the small roots of a polynomial and show that if δ < 11

10 + 9
4 α − 1

2 β −
1
2 γ − 1

30

√
180γ +990α−180β +64, then N can be factored. Our attack improves

the bounds of some previously proposed attacks that makes the RSA vulnerable.
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Lastly, we present an attack on RSA with the modulus N = p2q. Let e <
Nγ be the public exponent satisfying the equation ed − k(N − (ap)2 − apbq +
ap) = 1 where a

b is an unknown approximation of q
p . Our attack is applicable

when some amount of LSBs of ap and bq are known. We use the extended
strategy of Jochemsz and May as our main method to find the small roots of our
polynomial and show that the modulus N can be factored if δ < 91

135 +
29
45 β − 44

45 α−
2
3 γ − 2

135

√
2(3α−3β +1)(−84α +45γ +39β −28). In this final segment of our

research, we conclude that our approach via extending Jochemsz and May analytical
strategies does not improve previous bounds. Hence, answers existing unknown
outcome on this matter.
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MASALAH PENGFAKTORAN INTEGER

Oleh

NURUL NUR HANISAH BINTI ADENAN

Februari 2021

Pengerusi: Prof. Muhammad Rezal Kamel Ariffin, PhD
Institut: Institut Penyelidikan Matematik

Kunci umum pertama yang dikenali sebagai RSA telah digunakan di seluruh
dunia sejak penciptaannya pada tahun 1978. Sejak itu, bermulanya penyelidikan
kripanalitik terhadap sistem kripto ini bertujuan untuk menambah baik tahap
keselamatannya. Dalam tesis ini, kami membentangkan tiga serangan secara analitik
terhadap modulus N = p2q dengan menggunakan strategi Jochemsz-May. Kami
menunjukkan bahawa modulus tersebut dapat difaktorkan sekiranya elemen-elemen
dalam sistem kripto ini memenuhi syarat yang telah kami tetapkan.

Pertama, kami mengkaji serangan terhadap sistem kripto RSA yang menggunakan
modulus N = p2q yang mana p dan q adalah suatu nombor perdana besar dan
seimbang. Andaikan e adalah suatu nombor bulat positif dan memenuhi syarat
gcd(e,φ(N)) = 1 yang mana φ(N) = p(p−1)(q−1) dan d < Nδ adalah eksponen
rahsia sedemikian hingga d ≡ e−1 mod (φN). Daripada persamaan kunci RSA
ed−kφ(N)= 1, dengan menggunakan strategi lanjutan Jochemsz dan May, serangan
kami berhasil apabila dua nombor perdana tersebut berkongsi bit keertian terkecil.
Ianya mampu dicapai apabila kami memperoleh nilai punca yang kecil daripada
pembinaan polinomial integer yang membawa kepada pengfaktoran N. Secara
khususnya, kami membuktikan bahawa N mampu difaktorkan sekiranya batas δ <
2
3 +

3
2 α− 1

2 γ . Serangan kami berjaya mengatasi batas beberapa serangan terdahulu
terhadap N = p2q.

Seterusnya, kami memperihalkan berkenaan serangan terhadap RSA yang
menggunakan modulus N = p2q dengan kewujudan dua persamaan kekunci.
Andaikan e1,e2 <Nγ menjadi nombor bulat sedemikian hingga d1,d2 <Nδ menjadi
songsangan terhadap pendaraban mereka. Berdasarkan dua persamaan kekunci,
e1d1−k1φ(N)= 1 dan e2d2−k2φ(N)= 1 di mana φ(N)= p(p−1)(q−1), serangan
kami berhasil apabila nombor -nombor perdana berkongsi bit keertian terkecil dan
eksponen rahsia berkongsi bit keertian terbesar. Kami mengaplikasikan strategi
lanjutan Jochemsz-May untuk mencari nilai punca yang kecil daripada polinomial
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dan menunjukkan jika δ < 11
10 + 9

4 α − 1
2 β − 1

2 γ − 1
30

√
180γ +990α−180β +64,

maka N boleh difaktorkan. Serangan kami telah berjaya menambah baik batas
beberapa serangan yang dibentangkan sebelum ini.

Akhir sekali, kami membentangkan serangan terhadap RSA yang menggunakan
modulus N = p2q. Andaikan e < Nγ adalah eksponen umum yang memenuhi
syarat persamaan ed− k(N− (ap)2− apbq+ ap) = 1 di mana a

b adalah anggaran
q
p yang tidak diketahui nilainya. Serangan kami berjaya dilaksanakan jika sejumlah
bit keertian terkecil ap dan bq diketahui. Kami menggunakan strategi lanjutan
Jochemsz dan May dalam mencari nilai punca yang kecil daripada polinomial dan
menunjukkan bahawa N boleh difaktorkan sekiranya δ < 91

135 +
29
45 β − 44

45 α− 2
3 γ−

2
135

√
2(3α−3β +1)(−84α +45γ +39β −28). Kesimpulannya, kami mendapati

bahawa pendekatan kami melalui strategi lanjutan Jochemsz dan May secara analitik
tidak meningkatkan batas daripada kajian yang sebelumnya.

iv
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CHAPTER 1

INTRODUCTION

1.1 Cryptography

The world of cryptography evolved since centuries ago and its application in
communication is very significant considering it serves the purpose of having a
secure channel and keeping the information sealed from the third party or adversary.
Being in this digital world today, almost every transmission of data, transaction of
money, conversation between two parties, etc involve the usage of the internet and
thus the practice of cryptography becomes more essential.

Cryptography comprises of two branches which are symmetric cryptography and
asymmetric cryptography. Encryption and decryption via symmetric cryptography
uses only one key. Thus, the key needs to be kept secret between the sender and
the receiver. The examples of symmetric cryptography are Advanced Encryption
Standard (AES), Data Encryption Standard (DES), stream ciphers and block ciphers.
For futher reading, reader may refer to (Katz and Lindell, 2020) and (Stinson and
Peterson, 2018).

On the other hand, asymmetric cryptography uses two different keys to encrypt and
decrypt the data. It is also known as public key cryptography. However, only
the encryption key is publicized. Its decryption key must be kept secret. Diffie-
Hellman Key Exchange was the first concept introduced by Diffie and Hellman
(1976) that leads to the invention of other asymmetric crytosystem. The instance of
cryptosystem that practice this type of cryptography are RSA(Rivest et al., 1978), El
Gamal Cryptosystem (ElGamal, 1985), Rabin-p Cryptosystem (Asbullah and Ariffin,
2016), and Elliptic Curve Cryptography (ECC) .

Every of the cryptosystem needs to achieve four objectives of cryptography in
order to ensure their cryptosystems are secure to be applied. The first objective
is confidentiality which means unauthorised party cannot access the information.
The second objective is authenticity; the source of the message must be validated
to ensure the sender is properly identified. The third is integrity. One need to
assure or pledge that the message was not modified during transmission whether
by accidentally or intentionally. The last one is non-repudiation. A sender cannot
deny that he has sent the message to the receiver.

1
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1.2 Asymmetric Encryption

Assymetric encryption is composed by two different keys which known as public
key and private key. We provide an appropriate definition as follows.

Definition 1.1 (Asymmetric Encryption)(Diffie and Hellman, 1976). Let the
message space be denoted as M, the ciphertext space be denoted by L, the key space
be denoted by K, the plaintext be denoted by m and the ciphertex be denoted by c.
Asymmetric encryption scheme is defined as follows.

1. Key generation algorithm K is a probabilistic algorithm that will generate a
public key denoted as e ∈ K and private key as d ∈ K respectively.

2. Encryption algorithm E is a probabilistic algorithm that takes a message m ∈
M and the public key e, to produce a ciphertext c ∈ C as a function of c =
Ee(m).

3. Decryption algorithm D is a deterministic algorithm which is given the
ciphertext and the private key d, will output m. That is, m = Dd(c).

Definition 1.2 (One-way Function and Trapdoor One-way Function)
(Menezes et al., 2018). A one-way function is a function that only easy applied in
one direction but not in vice versa. The inverse is very hard to compute. For x ∈ X
and y ∈ Y , let f : X −→ Y be an invertible function. Then

1. The computation of the value y = f (x) is easy.

2. The computation of the value x = f−1(y) is hard.

The computation of the inverse for one-way function x = f−1(y) would be easy with
a trapdoor one-way function.

1.3 Integer Factorization Problem

The security of the RSA cryptosystem relies on the intractability of solving its
hard problems. We include Integer Factorization Problem (IFP) in our section to
emphasize the importance of this problem as it is the main strength that keeps the
RSA secure until today. If the IFP is solvable, then the RSA cryptosystem is no
more relevant to be used. Since this problem relates to the factorization of two
large primes, thus we provide some essential definitions and theorems regarding this
matter.

2
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Definition 1.3 (Prime Number) For an integer p such that p≥ 2, can be called as
a prime if such number only divisible by 1 and itself.

Definition 1.4 (Balanced Primes) The primes p and q are considered balanced
primes if they have the same bit size such that q < p < 2q.

Theorem 1.1 (The Fundamental Theorem of Arithmetic)(Hoffstein et al., 2008)
Given {n ∈ Z|n≥ 2}, the prime factorization of n is written as

n = p
a1
1 p

a2
2 . . . p

ak
k

where p1 . . . pk are distinct primes and ai ≥ 1 for i = 1, . . . ,k. Regardless of its
ordering, this expression is unique.

Definition 1.5 (Integer Factorization Problem)(Menezes et al., 2018). Suppose
N ∈ Z+. Then the integer factorization problem (IFP) is described as the problem to
find the prime factorization of N such that N = p

a1
1 p

a2
2 . . . p

ak
k where pi are distinct

primes and ai ≥ 1.

The researchers were intrigued by the IFP because this problem is seemingly easy
to solve. Hence, many algorithms have been proposed with the aim to find the
factorization of N. For instance, Trial Division, Pollards p−1 Factoring Algorithm,
Factorization via Difference of Square, Quadratic Sieve Factoring, Elliptic Curve
Method and Number Field Sieve Method(Hoffstein et al., 2008). We discuss in brief
some of the algorithms in this section.

1.3.1 Pollard’s p−1 Factoring Algorithm

In 1974, J. M. Pollard invented an algorithm to show that there exists insecure RSA
modulus although it seemingly secure. Let N = pq be the product of two primes.
Suppose that there exists an integer L that comply to this condition

p−1 divides L and q−1 does not divide L.

This means that there exists integers h, i and j such that

L = h(p−1) and L = i(q−1)+ j.

3
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Assuming we choose an integer a and we want to compute aL. From Fermat’s Little
Theorem, it proves that

aL = ah(p−1) = (ap−1)h ≡ 1h ≡ 1(mod p)

aL = ai(q−1)+ j = a j(aq−1)i ≡ a j1i ≡ a j(mod q)

which can be translate into

p|(aL−1) and q - (aL−1).

Since p|(aL − 1), thus, we can retrieve the prime p through the following
computation

p = gcd(aL−1,N).

However, in order to find the integer L, the factor of p− 1 must contain a lot of
small primes. Thus, taking the product a few of the first small primes would give the
multiple of p− 1. Thus, one needs to ensure that the choice of the prime does not
have these properties in order to resist Pollard’s p−1 Factoring Algorithm.

1.3.2 Factorization via Difference of Square

This algorithm relies on the following mathematical relation

X2−Y 2 = (X +Y )(X−Y ).

From the above equation, it can interpreted that the difference between two squares
is equal to a product. It can be apply on the factorization of N. In order to factor N,
we need to find an integer c such that N + c2 = b2 where b is also an integer. Thus,

N = b2− c2 = (b+ c)(b− c).

4



© C
OPYRIG

HT U
PM

Example 1.1 Given N = 19519, find an integer c such that the summation of N and
b2 is equal to perfect square.

19519+12 = 19520

19519+22 = 19523

19519+32 = 19528

19519+42 = 19535

19519+52 = 19544

19519+62 = 19555

19519+72 = 19568

19519+82 = 19583

19519+92 = 19600 = 1402 (square!)

Hence, we compute 19519 = 1402−92 = (140−9)(140+9) = 131 ·149.

However, if the number N is a large number, then it is quite difficult to randomly
choose the value c such that N+c2 = b2. Thus, the mathematical equation is altered
into

kN = b2− c2 = (b+ c)(b− c).

Since the product (b + c)(b− c) = kN, thus we need to find gcd(N,b + c) and
gcd(N,b− c) in order to factor N.

1.3.3 Quadratic Sieve Factoring

This method is known as the fastest algorithm in order to factor the modulus N = pq.
However it is only retsricted to 300 bits long. The following definition describes the
basis principle of this method (Katz and Lindell, 2008).

Definition 1.6 Let N ∈ Z and there exists x,y ∈ Z such that x2 ≡ y2(mod N) and
x 6≡ ±y(mod N). This implies that x2 − y2(mod N) 6≡ 0(mod N) which means
N - (x− y) and N - (x+ y). Thus, (x− y) must be relatively prime to N.

1.3.4 Complexity and Running time of Current Known Strategies to Solve IFP

We summarize the complexity and running time of current stratergies to solve integer
factorization problem through the following table.

5
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Table 1.1: Complexity and running time of current algorithms to solve IFP

Algorithm Complexity Running Time
Trial Divisions O(n2√N) Exponential

Pollard p−1 Factorization O(K logK log2 n) Logarithmic

Factorization via O(
√

N) Exponential
Difference of Square

Quadratic Sieve Factoring O(e(1+o(1))(lnn)
1
2 (ln lnn)

1
2 ) Sub-exponential

Elliptic Curve Method O(e(1+o(1))(lnn)
1
2 (ln lnn)

1
2 ) Sub-exponential

Continued Fraction Method O(e(
√

2+o(1))(lnn)
1
2 (ln lnn)

1
2 ) Sub-exponential

Number Field Sieve O(e(
3
√

64
9 +o(1))lnn

1
3 (ln lnn)

2
3
) Sub-exponential

1.4 RSA Cryptosystem

Secure communication up till the 70’s was executed through symmetrical ways. In
other word, the same key is used for encryption and decryption processes. Later
in 1978, the first asymmetric cryptosystem went public and solved the problematic
issue of distributing keys. This cryptosystem used different keys to encrypt and
decrypt the data. It is known as the RSA cryptosystem(Rivest et al., 1978). The
construction of the RSA algorithm comprises of key generation, encryption and
decryption. During the key generation process, two large balanced primes p and
q are generated and the number N = pq is computed. Next, let e be a random
integer that is coprime with φ(N) where φ(N) = (p− 1)(q− 1) is the Euler totient
function and d be the multiplicative inverse of e mod φ(N). The security of the
RSA relies on the difficulty on solving three hard problems which are factoring the
large modulus N, solving the modular eth root problem and solving the key equation
ed− kφ(N) = 1.

Definition 1.7 (Modular eth Root Problem)(Menezes et al., 2018) Suppose N = pq
and e≥ 3 be the odd integer. Then the modular eth problem is finding m ∈ Z from c
such that c≡ me (mod N).

Definition 1.8 (Euler’s φ Function)(Menezes et al., 2018) Suppose the set
{0,1, · · · ,N − 1} be the elements of residue system modulo N. This number of
element in the set of residue system modulo N is called Euler’s totient function and
denoted as φ(N).
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Theorem 1.2 (Menezes et al., 2018) If the prime factorization of N is N =
p

r1
1 p

r2
2 p

r3
3 p

r4
4 · · · p

rt
t , then

φ(N) =
t

∏
j=1

p
r j−1
j (p j−1).

Corollary 1.1 (Menezes et al., 2018) If N = pq then

φ(N) = (p−1)(q−1).

The RSA construction algorithm is defined as follows.

Algorithm 1.1 RSA Key Generation

Input: The bitsize k of the modulus
Output: A public key (N,e) and a private key (N,d)

1. Generate two large random and distinct primes p and q with (k/2)-bit size.

2. Compute N = pq and φ(N) = (p−1)(q−1).

3. Choose a random integer e such that gcd(e,φ(N)) = 1.

4. Compute multiplicative inverse of e, d ≡ e−1 (mod (φ(N)).

5. Return the public key (N,e) and the private key (N,d).

Algorithm 1.2 RSA Encryption

Input: The public key (N,e) and the plaintext M
Output: The ciphertext C

1. Choose plaintext M with M ∈ Z∗N .

2. Compute C ≡Me(mod N).

3. Return the ciphertext C.

Algorithm 1.3 RSA Decryption

Input: The private key (N,d) and the plaintext C
Output: The plaintext M

1. Compute M ≡Cd(mod N).

2. Return the message M.

Proof of Correctness for RSA Decryption

Proposition 1.1 (Rivest et al., 1978). Suppose N = pq be the RSA modulus
and φ(N) = (p− 1)(q− 1). If M ∈ Z such that M and N are coprime, then
Mφ(N) ≡ 1 (mod N).

7
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Proposition 1.2 (Rivest et al., 1978). Let (N,e) be the public key pair while (N,d)
be the respective private key. For M ∈ Z+N such that M and N are relatively prime
and C ≡Me (mod N). Then M ≡Cd (mod N).

Proof. Suppose the RSA parameters consists of N = pq, φ(N) = (p−1)(q−1) and
ed ≡ 1 (mod φ(N)). Hence, there exists k ∈ Z that satisfies ed = 1+ kφ(N). Thus
we have

Cd ≡ (Me)d ≡Med ≡M1+kφ(N) ≡M ·Mkφ(N) (mod = N).

From Proposition 1.1, it follows that M ·Mkφ(N) ≡M (mod N). Since M < N, then
we have Cd ≡ M (mod N). �

1.5 Problem Statement

Multi-Power RSA N = prq is one of the variant of the RSA. It has been implimented
in order to make the cryptosystem more secure and more efficient. By using Chinese
Remainder Theorem, the execution time for this type of modulus is faster compared
to the standard one and thus lessen the cost. However, the exposure of some of
the information on either the MSBs or LSBs of the private key might lead to the
factorization of modulus N, specifically N = p2q.

1.6 Research Objective

In this section, we describe briefly the research objectives as follows.

1. To cryptanalyse the modulus N = p2q. We study the consequence when some
of the information on the private key is leaked or exposed. Our attacks are
divided into three distinct cases as follows.

(a) The primes p and q share some known value of LSBs.
(b) The primes p and q share some known value of LSBs with the existence

of e1,e2 such that their corresponding multiplicative inverses d1,d2 share
an amount of MSBs.

(c) The LSBs of the multiple of the prime factors is known.

With the information that we have, we form an integer multivariate
polynomial. By utilizing Jochemsz-May technique, we find the roots of the
polynomial and thus factor the modulus N (Jochemsz and May, 2006).

2. To find the bound of d that insecure from our attack. The implementation of
Jochemsz May technique in our theorem may also find the bound of d that
insecure from our attack. We find the bound for all of the three attacks and we
make a comparison with the bound from the previous attacks.
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1.7 Thesis Outline

This thesis consists of seven chapters and is structured as follows.

Chapter 1 is an introductory part to briefly explain the motivation of this research.
It covers topics on cryptography, asymmetric encryption, the framework of the RSA
cyptosystem, problem statement and objective of this research.

In Chapter 2 provides some crucial information on the previous attacks that we use
as reference and instigate us to come out with our research problem.

Chapter 3 covers the methodology of our research. We present useful theorems,
lemmas, and basic techniques that are needed throughout this thesis.

In Chapter 4, we describe our first result of our attack on the modulus N = p2q. By
considering the case where the primes of the modulus share some known amount of
LSBs, we reformulate the lemma from Nitaj et al. (2014), and produce our lemma
based on the condition that has been set. By using the strategy of Jochemsz-May
technique, we manage to obtain a bound for d that is unsafe through our attack
besides manage to prove that the modulus N is factorable based on Assumption 3
in Algorithm 6 . We also make a comparison of bound with some of the previous
attacks.

In Chapter 5, we extend the first attack to the case where there exists two public
parameters e1,e2 such that their corresponding private parameters d1,d2 share some
amount of MSBs. By utilizing the strategy of Jochemsz-May technique, we obtain
a bound for d that is insecure through our attack. Moreover, we also prove that the
modulus N can be factored if Assumption 3 in Algorithm 6 is satisfied. We make
a comparison of bounds with the previous attacks that also worked on the modulus
N = p2q.

In Chapter 6, we propose an attack on the modulus N = p2q. we investigate the case
when there exists an integer e that satisfies an equation ed− k(N− (ap)2− apbq+
ap) = 1 where a

b is an unknown approximation of q
p . Our attack works when some

amount of LSBs of ap and bq is known. We utilize the strategy of Jochemsz-May
technique to solve for the roots of the polynomial and thus factor the modulus N
provided Assumption 3 in Algorithm 6 is satisfied. We also obtain an unsafe bound
for d. We build a table of comparison of bound with some of the former attacks that
also work on the modulus N = p2q.

Finally in Chapter 7, we summarize all the contributions of our works and suggestion
of future works that can be extended from this research.
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Blömer, J. and May, A. (2004). A generalized wiener attack on rsa. In International
Workshop on Public Key Cryptography, pages 1–13. Springer.

Boneh, D. and Durfee, G. (2000). Cryptanalysis of RSA with private key d less than
N0.292. IEEE Transformation Information Theory, 46(4):1339–1349.

Boneh, D., Durfee, G., and Howgrave-Graham, N. (1999). Factoring n = prq
for larger r. In Annual International Cryptology Conference, pages 326–337.
Springer.

Coppersmith, D. (1997). Small solutions to polynomial equations, and low exponent
RSA vulnerabilities. Journal of Cryptology, 10:233–260.

Coron, J.-S. (2004). Finding small roots of bivariate integer polynomial equations
revisited. In International Conference on the Theory and Applications of
Cryptographic Techniques, pages 492–505. Springer.

Diffie, W. and Hellman, M. (1976). New directions in cryptography. IEEE
Transactions Information Theory, 22(6):644–654.

ElGamal, T. (1985). A public key cryptosystem and a signature scheme based on
discrete logarithm. IEEE Transaction on Information Theory, 31(4):469–472.

Galbraith, S. D. (2012). Mathematics of Public Key Cryptography. Cambridge
University Press.

Hinek, M. J. (2009). Cryptanalysis of RSA and its variants. CRC Press.

76



© C
OPYRIG

HT U
PM

Hoffstein, J., Pipher, J., and Silverman, J. H. (2008). An Introduction to
Mathematical Cryptography, volume 1. Springer.

Howgrave-Graham, N. (1997). Finding small roots of univariate modular equations
revisited. pages 131–142. Springer.

Jochemsz, E. and May, A. (2006). A strategy for finding roots of multivariate
polynomials with new applications in attacking RSA variants. pages 267–282.
Springer.

Katz, J. and Lindell, Y. (2008). Introduction To Modern Cryptography: Principles
And Protocols. Chapman And Hall / CRC Press.

Katz, J. and Lindell, Y. (2020). Introduction to Modern Cryptography. CRC Press.

Lenstra, A. K., Lenstra, H. W., and Lovasz, H. W. (1982). Factoring polynomials
with rational coeffcients. Mathematische Annalen, 261:515–534.

Lu, Y., Zhang, R., Peng, L., and Lin, D. (2015). Solving linear equations modulo
unknown divisors: revisited. In International Conference on the Theory and
Application of Cryptology and Inormation Security, pages 189–213.

May, A. (2004). A secret exponent attacks on RSA-typer schemes with moduli
N = prq. In An International Workshop on Public Key Cryptography, pages 218–
230.

Menezes, A., Oorschot, P., and Vanstone, S. (2018). Hanbook of applied
cryptography. CRC Press.

Nitaj, A. (2013). An attack on RSA using LSBs of multiples of the prime factors. In
International Conference on Cryptologyin Africa, pages 297–310.

Nitaj, A., Ariffin, M. R. K., Nassr, D. I., and M., B. H. (2014). New attacks on the
RSA cryptosystem. pages 178–198. Springer.

Qiao, G. and Lam, K.-Y. (1998). Rsa signature algorithm for microcontroller
implementation. In International Conference on Smart Card Research and
Advanced Applications, pages 353–356. Springer.

Rivest, R. L., Shamir, A., and Adleman, L. (1978). A method for obtaining digital
signatures and public-key cryptosystems. Communication of the ACM, 21(2):120–
126.

Sarkar, S. (2014). Small secret exponent attack on RSA varian with modulus N =
prq. Designs, Codes, and Cryptography, 73(2):383–392.

Shehu, S. and Ariffin, M. R. K. (2017). New attacks on prime power RSA N = prq
using good approximation of φ(N). Malaysian Journal of Mathematical Sciences,
11(S):121–138.

Stinson, R. and Peterson, M. (2018). Cryptography Theory and Practice. CRC Press.

77



© C
OPYRIG

HT U
PM

Takagi, T. (2004). A fast RSA-type public-key primitive modulo pkq using Hensel
lifting. IEICE Transactions on fundamentals of electronics, communications and
computer sciences, 87(1):94–101.

Wiener, M. (1990). Cryptanalysis of short RSA secret exponents. Journal IEEE
Transactions on Information theory, 36(3):553–558.

78



© C
OPYRIG

HT U
PM

BIODATA OF STUDENT

Nurul Nur Hanisah binti Adenan was born in August 1993. Started her primary
school at Sekolah Kebangsaan Sungai Lalang, she then continued her secondary
school in Sekolah Menengah Kebangsaan Ibrahim. She pursued her next stage of
study in Foundation of Science at Universiti Teknologi Mara. After graduating
her degree in Bachelor Science(Hons) Major Mathematics from Universiti Putra
Malaysia in 2016, she then pursued her Master of Science in Cryptography in
Universiti Putra Malaysia. Her research field is in cryptanalysis on asymmetric
cryptography specifically on the RSA cryptosystem.

The student can be reached through her supervisor,

Prof. Dr. Muhammad Rezal Kamel Ariffin
Institute for Mathematical Research
Email : rezal@upm.edu.my
Tel : +03-97696838

or through her email, hanisahadenan@gmail.com.my.



© C
OPYRIG

HT U
PM

LIST OF PUBLICATIONS

The following are the list of publications that arise from this study.

Nurul Nur Hanisah Adenan, Muhammad Rezal Kamel Ariffin, Faridah Yunos, Siti
Hasana Sapar, and Muhammad Asyraf Asbullah. (2021). Analytical
Cryptanalysis Upon N = p2q Utilizing Jochemsz-May Strategy. PLoS ONE,
16(3), Article ID: e024888.

Nurul Nur Hanisah Adenan, Muhammad Rezal Kamel Ariffin, Siti Hasana
Sapar, Amir Hamzah Abd Ghafar and Muhammad Asyraf Asbullah. (2021).
New Jochemsz-May Cryptanalytic Bound For RSA System Utilizing Common
Modulus N = p2q. Mathematics, 9(4), 340.

Wan Nur Aqlili Ruzai , Nurul Nur Hanisah Adenan, Muhammad Rezal Kamel
Ariffin, Amir Hamzah Abd Ghafar and Mohamat Aidil Mohamat Johari(2021).
An Attack on N = p2q as a Result When Some Information of Bits on the
Multiple of the Prime Factors is Known. Malaysian Journal of Mathematical
Sciences. (Accepted for Publication).

Muhammad Rezal Kamel Ariffin, Amir Hamzah Abd Ghafar, Wan Nur Aqlili Wan
Mohd Ruzai and Nurul Nur Hanisah Adenan. (2021). New Approach for
Efficiently Computing Factors of the RSA Modulus. In Soft Computing Approach
for Mathematical Modeling of Engineering Problems, 1 September 2021, CRC
Press.

Abderahmanne Nitaj, Muhammad Rezal Kamel Ariffin, Nurul Nur Hanisah
Adenan, Domenica Stefania Merenda and Ali Ahmadian. (2021). Exponential
Increment of RSA Attack Range via Lattice Based Cryptanalysis, Journal of
Multimedia Tools and Applications, (Accepted for Publication).

Abderahmanne Nitaj, Muhammad Rezal Kamel Ariffin, Nurul Nur Hanisah
Adenan and Nur Azman Abu. (2021). Classical Attacks on a Variant of
the RSA Cryptosystem, In Proceeding of Seventh International Conference on
Cryptology and Information Security in Latin America, (Accepted for publication)

Abderahmanne Nitaj, Muhammad Rezal Kamel Ariffin, Nurul Nur Hanisah
Adenan and Nur Azman Abu. (2021). Small Prime Difference Attack on a Cubic
Pell Variant of RSA, Cryptography and Communications, (Submitted)

80



© C
OPYRIG

HT U
PM

UNIVERSITI PUTRA MALAYSIA 

STATUS CONFIRMATION FOR THESIS / PROJECT REPORT AND COPYRIGHT 

ACADEMIC SESSION :  SECOND SEMESTER 2020/2021 

TITLE OF THESIS / PROJECT REPORT : 

  EXTENDING JOCHEMSZ-MAY ANALYTICAL STRATEGIES UPON INTEGER FACTORIZATION PROBLEM 

NAME OF STUDENT :    NURUL NUR HANISAH BINTI ADENAN 

I acknowledge that the copyright and other intellectual property in the thesis/project report 

belonged to Universiti Putra Malaysia and I agree to allow this thesis/project report to be placed at 

the library under the following terms: 

1. This thesis/project report is the property of Universiti Putra Malaysia.

2. The library of Universiti Putra Malaysia has the right to make copies for educational purposes

only.

3. The library of Universiti Putra Malaysia is allowed to make copies of this thesis for academic
exchange.

I declare that this thesis is classified as : 

*Please tick (√ )

CONFIDENTIAL (Contain confidential information under Official Secret 
Act 1972). 

RESTRICTED (Contains restricted information as specified by the 
organization/institution where research was done). 

OPEN ACCESS I agree that my thesis/project report to be published 
as hard copy or online open access. 

This thesis is submitted for : 

PATENT Embargo from until 
(date) (date) 

Approved by: 

(Signature of Student) (Signature of Chairman of Supervisory Committee) 
New IC No/ Passport No.: Name: 

Date : Date : 

[Note : If the thesis is CONFIDENTIAL or RESTRICTED, please attach with the letter from the
organization/institution with period and reasons for confidentially or restricted. ] 




