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Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfillment
of the requirement for the degree of Doctor of Philosophy.

SOLVING HIGHER ORDER DELAY DIFFERENTIAL EQUATIONS WITH
BOUNDARY CONDITIONS USING MULTISTEP BLOCK METHOD

By

NUR TASNEM BINTI JAAFFAR

April 2021

Chair : Zanariah Abdul Majid, PhD
Institute : Mathematical Research

In this thesis, we derived two numerical methods called two point diagonally
multistep block method order four and order five with the approach of predictor-
corrector technique to solve higher order delay differential equations (DDEs) with
boundary conditions. Shooting technique by using the Newton’s like method is
implemented to solve the boundary value problems (BVPs). This thesis begins with
solving second order DDEs with constant, pantograph and time dependent delay
type by using both methods. Then, those methods are extended to solve third order
DDEs with constant and pantograph delay type.

The approach used to solve constant delay type is by taking the previously calcu-
lated solutions at the delay terms while for pantograph and time dependent delay
types, the approaches are by using the Lagrange interpolation to approximate the
solutions at the delay terms. The derivatives present in the problems at the delay
terms will be approximated by using the finite difference method. The analysis
of both methods in terms of order, local truncation error and stability are also
investigated. Two stability test equations are used to analyze the stability regions of
the block methods.

Several numerical problems are illustrated to solve by using C programming. The
accuracy of the methods in terms of maximum and average errors along with
the total function calls, total iteration steps, total guessing numbers for shooting
technique are discussed and compared with the previous methods.



In conclusion, the higher order DDEs with boundary conditions can be solved by
using the proposed block methods based on the analysis of the methods and their
numerical results.
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Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai
memenuhi keperluan untuk ijazah Doktor Falsafah

MENYELESAIKAN PERSAMAAN PEMBEZAAN LEWAT PERINGKAT
TINGGI DENGAN SYARAT SEMPADAN MENGGUNAKAN KAEDAH
BLOK MULTI-LANGKAH

Oleh

NUR TASNEM BINTI JAAFFAR

April 2021
Pengerusi : Zanariah Abdul Majid, PhD
Institut : Penyelidikan Matematik

Dalam tesis ini, kita memperolehi dua kaedah berangka yang dipanggil kaedah
blok multi-langkah dua titik pepenjuru peringkat empat dan peringkat lima dengan
pendekatan teknik peramal-pembetul untuk menyelesaikan persamaan pembezaan
lewat (PPL) peringkat tinggi dengan syarat sempadan. Teknik penembakan dengan
menggunakan kaedah bak-Newton dilaksanakan untuk menyelesaikan masalah
nilai sempadan (MNS). Tesis ini bermula dengan menyelesaikan PPL peringkat
kedua dengan jenis lewat malar, pantograf dan bersandar masa dengan menggunakan
kedua-dua kaedah. Kemudian, kaedah-kaedah itu diperluaskan untuk menyelesaikan
PPL peringkat ketiga dengan jenis lewat malar dan pantograf.

Pendekatan yang digunakan untuk menyelesaikan jenis lewat malar ialah dengan
mengambil penyelesaian yang dikira sebelum ini pada terma lewat sementara
bagi jenis lewat pantograf dan persandaran masa, pendekatannya adalah dengan
menggunakan interpolasi Lagrange untuk menganggarkan penyelesaian pada terma
lewat. Terbitan yang hadir dalam masalah pada terma lewat akan dianggarkan
dengan menggunakan kaedah perbezaan terhingga. Analisis kedua-dua kaedah
dari segi peringkat, ralat pemusnahan tempatan dan kestabilan juga disiasat. Dua
persamaan ujian kestabilan digunakan untuk menganalisis kawasan kestabilan
kaedah blok.

Beberapa masalah berangka digambarkan untuk diselesaikan dengan menggunakan
pengaturcaraan C. Ketepatan kaedah dari segi ralat maksimum dan purata ralat
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bersama-sama dengan jumlah panggilan fungsi, jumlah langkah lelaran, jumlah
bilangan meneka untuk teknik penembakan dibincangkan dan dibandingkan dengan
kaedah sebelumnya.

Sebagai kesimpulan, PPL peringkat tinggi dengan syarat sempadan boleh disele-
saikan menggunakan kaedah-kaedah blok yang dicadangkan tersebut berdasarkan
analisis kaedah dan hasil berangka.
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CHAPTER 1

INTRODUCTION

1.1 Background

Delay differential equations (DDEs) are the mathematical model in various real
life problems for example in population dynamic, there are delays in breeding and
maturation periods of species. Delay also exists in the time that the signal takes to
travels to the controlled object, the reaction time, and the time that the signal takes
to return in control circuits. Biological process portrays delay in the cell division
time and in cell producing time. Medicine field also possesses delay in the model of
chronic granulocytic leukaemia (CGL) by Wheldon et al. (1974). There are several
detail studies by Driver (1977) on how to form a mathematical model of real life
problems in terms of DDEs.

DDEs in mathematics are the differential equations that take into consideration the
functions at the past and present time. The solutions of DDEs can be determined
by using the exact solutions of the problems however, not all DDEs acquire the
exact solutions. Therefore, the solutions can be computed by using the approximate
solutions with the aid of various numerical methods.

The solutions at the delay can be executed by taking the initial functions given in
the interval of the past time. The initial functions are the smooth exact solutions of
the problems. However, delay can also fall in the outside of the interval of the past
time, causes a new approach to execute the solutions. If the delay falls in the interval
of previously calculated solutions, there would be easier to just take the solutions
but if the delay does not fall in the mentioned interval, interpolation method will be
implemented to execute the approximate solutions.

The numerical method used in this research is direct block multistep method in
the predictor-corrector scheme. Since the focus of the research is higher order
DDE:s, hence, direct method is needed to ensure the total function calls are reduced
without transforming the higher order DDEs to the first order DDEs. Block
method is essential to reduce the total number of steps in the iterations. Based on
(Lambert, 1973), the implicit method is preferable to the explicit method due to
the former has a smaller error constant and bigger size of the interval of absolute
stability. This implicit method is called corrector and is often used in pair with the
predictor method (explicit). The predictor is needed to guess the implicit dependent
variable as accurate as possible before we corrected it by using the implicit method.
Subsequently, with all these approaches eventually reduce the computation time
needed for C program to compute while attaining the accuracy of the method.



Besides, the boundary conditions presented in the problems require a particular
approach. The Newtons-like method in shooting technique will be used to cater this
problem. The boundary value problems (BVPs) are transformed to two initial value
problems (IVPs) so that the solutions of these two IVPs will be used in Newtons-like
formula to obtain the most accurate value for the unknown initial condition needed.

1.2 Problem Statement

DDEs have been arise in practical problems for such a long time and it happens
everywhere in our life that to ignore it is impossible. Some modelers ignore the
’lag” effect and use an ordinary differential equation (ODE) model as a substitute
for a DDE model, however, based on Kuang (1993), even small delays can have
large effects. The fact that many phenomena frequently modeled by ODEs can be
better modeled by DDEs has not escaped the attention of the numerical analysis
community (Baker et al., 1995), hence this became the motivation of our studies.

DDE is a differential equation that consist of constant and time dependent delay
term. Constant delay exists when the delay term is constant while time dependent
delay exists when the delay term is a function of variable x. Different approaches are
needed to handle different type of delays. The numerical methods for solving DDEs
are adapted from numerical methods for ODEs such as linear multistep method. The
proposed block multistep method will be paired with the delay implementation such
as Lagrange interpolation method to obtain the solutions.

1.3 Delay Differential Equations

DDE:s generally can be illustrated in the following form
yW= f<x7y(X) (@)Y () y (= Ty () (r = T3 (x)),

oyl (x— T(x,y(x)))) .

The function 7(x,y(x)) is called the delay, the argument x — 7(x,y(x)) is called the
delay terms, y(x — 7(x,y(x))) and y' (x — 7(x,y(x))) are respectively called as the
solutions of delay terms and it’s derivatives. DDEs can be split in three different
types which are 7 € R (constant delay), 7(x) (time dependent delay) and 7 (x, y(x))
(state dependent delay) (Bellen and Zennaro, 2003). The focus of this research is
only the constant and time dependent delay type.



The general form of second order DDEs of constant delay type is given by

yN :f(xay(x)ay,(x)ay(x_T)vyl(x_T))v X € [Cl,b],

¥(x) = 00, N

with boundary conditions y(a) = ¢(a) = @ and y(b) =  where T € R and ¢ (x) is
the smooth initial function given in the problems.

The general form of second order DDEs of time dependent delay type is given by

y” = f(xvy(x)ayl(x)vy(xf T(xvy(x))ayl (xi ‘L'(x,y(x))), X € [a,b]7

¥(x) = 9 (), h Ty
(1.2)

Another delay type called pantograph delay has also been focused on this research.
Pantograph delay is the subset of time dependent delay type but has special form.
The general form of second order DDEs of pantograph delay type is given by

Y = f(x,y(x),Y (x),y(qx),y (qx)), x€ [a,b], (1.3)

where 0 < g < 1. Since the delay term gx always falls in the interval [a, b], therefore
there is no need for the initial function, ¢ (x) given in the problems.

1.4 Boundary Value Problems

BVPs exist in various aspects of real life problems especially in physics and
engineering field such as in fluid dynamics, soil problems, shock wave problems,
optimal control problems and many more. BVPs in mathematics defined as the
differential equations with the solutions are specified at more than one point. Mostly,
there are two points which are physically at the boundaries of some regions called as
the two points BVPs. These two points are called as the boundary conditions. The
general form of BVPs are as the following

Y = f (0,5 (1), (1), "D ().

This research is only focus on the second and third order of BVPs. The second order
BVP needs two boundary conditions while the third order BVP needs three boundary
conditions. The boundary conditions for second order BVPs can be defined in three
types which are Dirichlet type, Neumann type and Robin type as the following

1. Dirichlet type: The boundary conditions are given at the primary dependent
variable such as

y(a)=a, y(b)=8B,



where a,b, o and f are constants.

2. Neumann type: The boundary conditions are given at the derivative of the
primary dependent variable such as

where a,b, o and B are constants.

3. Robin type: The boundary conditions are given at the linear combination of
primary dependent variable and it’s derivatives such as

cy(a)+ o' (a) = a, c3y(b)+cay (b) = B,

where c1,c3,¢3,c4,a,b,00 and B are constants and cy,cp,c3, and c4 are
nonzeros.

This research scopes are the Dirichlet boundary conditions for second order BVPs
and Type I, Type II, and Type III boundary conditions for third order BVPs. The three
types boundary conditions for the third order BVPs can be defined as the following
(Pei See, 2015)

1. Typel:y(a)=0, y'(a)=Yy, y(b)=p,wherea,b,a,p and yare constants.

2. Typell: y(a) = o, Y'(a)=7vy, Y (b)=0p,

3. Typelll: y(a) =, Y'(a)=7y, y(b)=pB.
This research scope is at all the three types boundary conditions mentioned for third
order BVPs. The existence and uniqueness theory plays a role in illustrating and
analyzing numerical methods for solving BVPs to ensure that the solution of BVPs

exists and unique. The following theorem consists of the general conditions for the
existence and uniqueness solutions of second order BVPs.

Theorem 1.1 (Burden and Faires, 2011)
Suppose the function f in the BVPs of the following

y'=fxyy), xelab], y(a)=o,yb)=p,
is continuous on the set
D= {(x,y,y’)‘for X e [a7b]a ye (—oo’oo)’ y/ € (—oo,oo)},

d d
and that the partial derivatives —f and —f are also continuous on D. If

dy dy

0
1. a—;c (x,3,y') >0, for all (x,y,y') € D, and



2. a constant M exists, with

of

Gy e[ <M, for all (vyy)eD,

then the BVPs have unique solutions.

The detail proof of this theorem can be found in Keller (2018).

1.5 Linear Multistep Method

Consider the general second order ordinary differential equations (ODEs) as follows

¥y =rxyy), x¢€la,b] (1.4)

Most numerical methods used to seek the approximate solutions of the above
differential equations are based on the approach of discretization. Discretization
means to seek the solutions not in the continuous interval [a,b] but on the discrete
point sets {x;|i = 0,1,2,...,(b —a)/h} where h is the step size chosen. Let y;
be an approximation to the theoretical solution at x;. If a numerical method to
determine the sequence of {y;} is in the form of a linear relationship between
Yitj> fivj»J = 0,1,..,k, then this method is named as the linear multistep method
(LMM) of stepnumber k. The LMM for second order differential equations can be
written

k k k
Y i =k Y B+ R Y Vifitj (1.5)
j=0 Jj=0 Jj=0

where fi1 j = y§’+j for j=0,1,2,...k. o, Bj, and y; are constants and also throughout
this thesis we shall assume that @ = 1. The method is said to be explicit if B; =
Y = 0 and implicit if B # 0 or ¥, # 0.

The linear difference operator engaged with the LMM (1.5) is introduced as the
following:

k
L{y(x);h] = Y [ajy(x+ jh) —hB;y (x+ jh) — ¥y (x+ jh)], (1.6)
j=0

where y(x) is a theoretical solution that is continuously differentiable on [a,b]. The
reason to introduce this operator is to assume the arbitrary function y(x) to have as
many higher derivatives as possible to define the order of accuracy of the operator.
Now, the functions y(x + jh), ¥'(x+ jh) and y”(x + jh) are approximated by using



Taylor series about x as follows

N2 N3 .
et i) =30+ iy 09+ Ly 0+ T+ L ) o),
N2 7\3 : -1
e ) =/ )+ )+ S+ FE ) )
rour)
// . " . M ( h 2 h 3 h p72
e ) =33 ")+ B0+ B ) T 0
+o(h"™h.

After substituting the above approximations into (1.6) and collecting terms, finally
the operator can be defined as (Mohd Nasir et al., 2018)

k 2
L@ = Y [ajy<x>+<jaj—ﬁj>hy’<x> ( LA )h2 ")
j=0
23 2 D :p—1
J J J J
+<3!0‘J 51Bi m)h3y’”( )+ +(py i~ =P (1.7
i y)h P (x ﬂ +O(hPT2).
C(p-2nY
Supposed that
k
Co = Z aj,
j=0
k
Ci=) (joj—By),
j=0
k j2
C2 = Z <2' ]ﬁj )7
Jj=0 (1.8)
k -3 2
oy (G- o),
f=

then the linear difference operator (1.7) will be
L[y(x):h] = Coy(x) + Crhy (x) + Ca®y" (x) + Gy (x) + ...+ CphPyP) (x)
+Cp PPy PH) () 1 O(nPF2).



Definition 1.1 (Lambert, 1973)
The LMM (1.5) is said to be of order p if Co =Cy =C, = ... =Cpy1 =0 and
Cp+2 # 0.

From Definition 1.1, the first non vanishing coefficient which is Cpi2 is called an
error constant of the LMM.

Now, introducing the first, second and third characteristic polynomials of the LMM
are defined as p(R), o (R) and w(R) respectively as the following

k . k . k .
p(R)=Y R/, o(R)=Y BiR/, oR)=) vR, (1.9)
j=0 j=0 j=0

where R € C. zero-stability is the stability of the LMM concerning only in the
limit as the step size, h approaching zero. A zero stable method means that
all the roots of the first characteristic polynomial (because we only consider at
h — 0), p(R) lie in or on the unit circle, those on the circle being simple hence
to why R is defined as complex numbers. Thus, definition of zero stable is as follows,

Definition 1.2 (Lambert, 1973)

The LMM (1.5) is said to be zero stable if no root of the first characteristic
polynomial, p(R) has modulus greater than one, and if every root with modulus one
has multiplicity not greater than two.

The truncation error, T; is local if there is no previous truncation error have been
made and this is called localizing assumption. Assume that
Yi+j:y(xi+j)7 ]:O,177k_1

where y; ¢ is the approximate solution of the LMM (1.5) at x; .
From (1.6)

k k
Y By it jh)+ 1Y vif (xi+ jhy(xis )Y (xig)))
j=0 Jj=0

+L[y(x;); ]

k
Z Otjy(x,- -I-jh) =h
Jj=0 .

(1.10)

where y(x) is considered to be the exact solution of the problems. The approximate
solution, y; of the method (1.5) satisfies

k-1 k-1 k-1
Viek+ Y, 0yicj =h Y Biyis i+ Y Vif iy YiejVis )+ By
= = prt (1.11)

+ WP Yf (i ks ik Vi k)



where o = 1. Subtracting (1.11) from (1.10) and using the localizing assumption,
eventually gives

Y(isk) = Yirk = BBl (Xik) — Vi) + 2% [ (i Y (i)Y (i)

— (X VirkoVirr) ] + Tivk

By using mean value theorem,
/ / 5f
f(xi+k’)’(xi+k),y (xi+k)) — ik Vil Yigr) = V(i) —yi+k]5fy(rli+k)
Sf
+[ (xik) — }’f+k] 5y (Misk)
y
where 7,14 is in the interval whose endpoints are (x;ix,y(xitx),) (x;1%)) and

(xi+k7yi+k7y§~+k). Thus,

/ / 0
Y(Xiik) = Yirk = BBy (Xitk) — Vi + 2% {[Y(ka) —~Yitk] 54; (Migx)
/ ! 6
+ [ (%ike) = ¥iga] STC(T]"“‘)} + Tk

5f 6f
2 2
Tik = [y(xipn) =ik [1—h Yk(sfy(murk)] — [ (iske) = Yigre) [MBe+ 1 Yksfy,(nwk)]
Hence, for an explicit method which is f; = 0 and 9 = 0, the local truncation error
(LTE), T; 4 is then

Tivke = Y(Xitk) = Yitk
where LTE is the difference between the theoretical solution and the approximate

solution of the LMM (1.5). Therefore, the LTE is approaching to this difference
when h approaching to zero for an implicit method.

If we consider that theoretical solution y(x) has continuous derivatives of sufficiently
high order, then for both explicit and implicit methods, we can deduce that the LTE
is as the following

Tiok = Y(xirk) = Visk = Cprah? 2 PH2) () + O(hP+3) (1.12)
Thus, the definition of LTE is as follows,
Definition 1.3 (Lambert, 1973)

The LTE at xjyj of the method LMM (1.5) is defined to be the linear difference
operator, L given by (1.6) when y(x) is the theoretical solution of the problems.

From the LTE, the consistency of the method also can be shown as in definition



below

Definition 1.4 (Lambert, 1991)
The LMM (1.5) is said to be consistent if the LTE, T satisfies

1
pim 5 Tk = 0-

The LMM (1.5) is said to be convergent if
lim y; = y(x;),
h—>0yl )’( z)

where y; is the numerical solution and y(x;),x € [a,b] is the exact solution of the
problem for i = 0,1,2,...,N = (b —a)/h. Other than that, Dahlquist equivalence
theorem also can be used to determine the convergence of LMM.

Theorem 1.2 (Dahlquist Equivalence Theorem in Lambert (1973))
The necessary and sufficient conditions for a LMM (1.5) to be convergent are that it
be consistent and zero stable.

Qualitatively speaking, consistency controls the magnitude of the LTE obtained at
each stage of the calculation while zero-stability controls the manner in which this
error is propagated as the calculation continues, making both properties are important
for achieving the convergence (Lambert, 1973).

1.6 Preliminary Mathematical Concepts

Stability plays an important role to study the propagation of error as i — co. There are
two schemes of stability that will be explored which are zero-stability and stability
theory. Zero-stability analyzes the stability of the system just in the limit when step
size, h — 0 as i — oo while the stability theory examines the stability when # takes a
fixed non-zero value as i — co. The definition for zero-stability is already established
previously, this section will discuss the stability theory for second order DDE:s.

The general form of linear second order DDE:s is as follow
i

Y ' =ay(x)+by(x—1)+cy (x— 1) +dy (x), x€la,b],

y(x) = 0(x), € la—1.b]

The study of stability criteria for the above form can be found in Cahlon and Schmidt
(2004) while the study of stability regions can be found in Li et al. (2010) for ¢ =0



and Cahlon (1995) fora=c =0.

This thesis will only focus on the stability when ¢ = d = 0 and when d = 0. For
¢ =d =0, the second order DDEs can be defined as

y” :ay(x)—i—by(x—‘r), X e [a,b],

(1.13)
y(x):¢(x)7 XE[G—’Lb],
Meanwhile, for d = 0, the second order DDESs can be written as
"=ay(x)+by(x—1)+¢y (x—1), x€la,b],
Y =ay(x) +by(x—1)+cy (x— 1) [a,b] (1.14)

y(x)=¢(x), x€la—r1,b],
where a,b,c € C, 7 is constant delay and ¢ (x) is the continuous function.

The stability polynomial for (1.13) and (1.14) based on the first, second and third
characteristic polynomials for LMM (1.5) is derived as

7(R; Hy, Hy) = p(R) — ho (R) — (Hy, Ha) o (R) (1.15)

where H; = ha, H, = hb and c is a fixed value.

Definition 1.5
The LMM (1.5) is said to be absolutely stable for the given H| and H, if, for that H;
and Hy, all the roots, R of (1.15) satisfy |[R;| <'1,j=1,2,... k.

Definition 1.6

The stability region of the LMM (1.5) for second order DDEs (1.13) and (1.14) is
the set S of pairs of complex numbers (H|,H,), Hy = ha, Hy = hb, such that the
solutions of DDEs (1.13) and (1.14), {y;} obtained with constant stepsize h under
the constraint of

G
h=—, m2>1, m integer,
m
satisfies
limy; =0.
j—vo0

1.7 Objectives of the Thesis

The main objective of this thesis is to establish the two-point multistep block method
of order 4 and order 5 to solve directly the second and third order DDEs of constant,
pantograph and time dependent delay type with boundary conditions. This objective
can be achieved by:

10



1. deriving two-point diagonally direct block method of order 4 and order 5 by
using the Lagrange interpolation polynomial.

2. analyzing both methods in terms of order, zero-stability, and local truncation
error.

3. analyzing the stability regions of both methods i.e. the two-point diagonally
direct block method of order 4 and order 5.

4. developing an algorithm based on the derived methods for solving second and
third order DDEs with boundary conditions of constant, pantograph, and time
dependent delay type.

1.8 Scope of the Study

This study concentrates on the approximate solutions of second and third order DDEs
with boundary conditions by using the direct multistep block method of order 4
and order 5. The boundary condition involved in second order DDEs is Dirichlet
type while for the third order DDEs, there are three different types involved which
are Type I, Type II, and Type III. The analysis of these two methods based on the
order, zero-stability, and local truncation error are investigated. There are three delay
types considered in this study which are constant, pantograph and time dependent
delay type. In dealing with the boundary conditions present in the problems, the
shooting technique by using the Newton’s-like method is used. The two different
types stability regions of both methods are studied for second order DDEs.

1.9 Outline of the Thesis

This thesis consists of seven chapters. Chapter 1 describes the brief introduction of
DDEs, BVPs, linear multistep method and several mathematical concepts needed to
analyze both the multistep methods and DDEs along with the objectives and scope
of this thesis.

Chapter 2 explores the review of previous works that closely related to this study
such as the methods used and the problems involved will also be discussed.

Chapter 3 portrays the derivation of the proposed methods which are two-point
diagonally block method of order 4 and order 5 based on the implementation of
Lagrange interpolation polynomial. Order, zero-stability and local truncation error
of the methods are also examined. The consistency of the methods based on the
local truncation error is also investigated. The stability regions of the methods are
presented in two different forms that are appropriate for the problems.

11



Chapter 4 illustrates the implementation of solving second order DDEs with
boundary conditions of constant delay type by using the proposed methods. There
are discussion on the tested problems and it’s comparison with other methods.

Chapter 5 discusses on the application of the methods to solve the second order
DDEs with boundary conditions of pantograph and time dependent delay type.
The implementation of Lagrange interpolation is needed to find the delay in the
problems. Several numerical problems are solved and compared with the established
methods.

Chapter 6 considers the derivation of the proposed methods for solving third order
DDEs. The approaches to solve the constant and pantograph delay type are the
same as in Chapter 4 and Chapter 5 however the differences are the implementations
of Newton’s like method used for shooting technique since the different types of
boundary conditions will be used in Chapter 6. Some numerical problems are tested
and compared with the previous methods.

Finally, Chapter 7 describes the summary of this thesis and some suggestions on the
future works.

12
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