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Abstract of thesis presented to the Senate of Universiti Putra Malaysia in 
fulfilment of the requirement for the degree of Doctor of Philosophy 

 

SPECTRAL AND FOLIAR ANALYSIS USING MULTIPLE MACHINE 
LEARNING CLASSIFIERS FOR MATURE OIL PALM TREATED WITH 

NITROGEN FERTILIZER 

 

By 
 

AMIRATUL DIYANA BINTI AMIRRUDDIN 

 

March 2021 
 

Chair  : Assoc. Prof. Farrah Melissa Muharam, PhD  
Faculty  : Agriculture 
 

In assessing the leaf biochemical properties, spectral analysis has been 
explored as the non-invasive alternative to destructive leaf analysis. This study 
aims to develop spectral-based classification models to estimate oil palm’s 
chlorophyll (chl) and nutrient status via machine learning (ML). In this study, 
different nitrogen (N) rates were applied to 8 and 11 years old. The leaf 
nitrogen (N), phosphorus, potassium, magnesium, calcium, chl a, chl b, total 
chl content, and relative chl content were measured from frond 9 and 17. 
Meanwhile, spectral reflectance in visible (Vis) and near-infrared (NIR) were 
measured at three spatial scales: leaf (spectroradiometer), canopy (unmanned 
aerial vehicle (UAV)), and scene (SPOT-6 satellite).  
 

The objectives of this study are to; 1) evaluate the leaf spectral data and ML 
(Linear Discriminant Analysis (LDA) and Support Vector Machine (SVM)) in 
classifying N status; 2) examine SPOT-6-derived spectral indices (SIs) in 
monitoring N using LDA and SVM; 3) discriminate chls status via 
spectroradiometer and ML (Random Forest (RF) and Decision Tree (DT)); 4) 
classify nutrients status via integration of spectroradiometer, ML (Logistic 
Model Tree (LMT) and Naïve Bayes) and imbalance approaches (Synthetic 
Minority Over-Sampling TEchnique (SMOTE), Adaptive Boosting (AdaBoost) 
and combination of SMOTE and AdaBoost (SMOTE+AdaBoost)); while 5) 
assess leaf and canopy spectral models in discerning the chls and nutrients 
status via LMT-AdaBoost.  
 

In objective 1, there is a clear trade-off between the number of the sensitive-N 
spectral features with LDA accuracy and the N-sensitive features responses 
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were palm age-dependent. For objective 2, the Vis index (Blue Green Red 
Index (BGRI1 and BGRI2)) (79.55%) and Vis+NIR index (Normalized Difference 
Vegetation Index, Normalized Green, Infrared Percentage Vegetation Index, 
and Green Normalized Difference Vegetation Index) (81.82%)) were the best 
SIs to assess N status of young- and prime-mature palms, respectively via 
SVM. The SVM was superior to LDA in categorizing the N status and the N-
sensitive SIs tested were palm age-dependent. Results from objective 3 
showed that chl-sensitive features are often positioned at the red edge and RF 
outperformed the DT in discriminating the chl status (96.05 to 98.08%). 
Meanwhile, the best discrimination of nutrients status (objective 4) was 
achieved via the LMT-SMOTE+AdaBoost (76.13 to 100.00%). Also, the effect 
of frond-age was prominent in both chls and nutrients studies via 
spectroradiometer. The UAV study (objective 5) highlighted the capability of SIs 
was greater than the raw band in assessing the chls and nutrients status of oil 
palm (74.64 to 100.00%). In comparing the competency of leaf and canopy 
spectral models, the former manifested robust accuracies (98.53 to 100.00%), 
yet, the latter model offered wide coverage with a lesser number of spectral 
features, elucidating by the maximum difference of 25.36%. 
 

In a nutshell, the leaf scale is portrayed as the best platform in discriminating 
the chls and nutrients status followed by canopy and scene. The canopy and 
scene scales could assess the leaf biochemical properties with satisfactory 
accuracy. It is also suggested that the LMT-SMOTE+AdaBoost was the finest 
classifier in evaluating the chls and nutrients of oil palm.  
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Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia 
sebagai memenuhi keperluan untuk ijazah Doktor Falsafah 

 

ANALISA SPEKTRAL DAN DAUN MENGGUNAKAN BEBERAPA 
PEMBELAJARAN MESIN UNTUK POKOK KELAPA SAWIT MATANG 

YANG DIBERI RAWATAN NITROGEN 

 

Oleh 
 

AMIRATUL DIYANA BINTI AMIRRUDDIN 

 

Mac 2021 
 

Pengerusi : Prof. Madya Farrah Melissa Muharam, PhD  
Fakulti  : Pertanian 
 

Dalam mengukur kandungan biokimia daun, analisis spektral telah diterokai 
sebagai alternatif yang tidak invasif kepada analisis daun yang merosakkan. 
Fokus kajian ini adalah untuk membangunkan model pengelasan spektral bagi 
mengukur status klorofil dan nutrien tanaman sawit melalui pembelajaran 
mesin (ML). Dalam kajian ini, beberapa kadar nitrogen (N) diberikan kepada 
tanaman sawit yang berumur 8 dan 11 tahun. Kandungan N, fosforus (P), 
kalium (K), magnesium (Mg), kalsium (Ca), klorofil a (chl a), klorofil b (chl b), 
klorofil total (TCC) dan klorofil relatif (RCC) daun diukur dari pelepah 9 dan 17. 
Selain itu, pantulan spektral dari kawasan boleh dilihat (Vis) dan infra-merah 
(NIR) diukur pada tiga skala spasial: daun (spektroradiometer), kanopi 
(kenderaan udara tanpa pemandu (UAV)) dan pemandangan (satelit SPOT-6). 
 

Objektif kajian ini adalah untuk; 1) menilai potensi spektral daun dan ML 
(Analisis Diskriminasi Linear (LDA) dan Mesin Sokongan Vektor (SVM)) dalam 
pengelasan status N; 2) mengkaji indeks spektral SPOT-6 dalam memantau N 
dengan menggunakan LDA dan SVM; 3) mendiskriminasikan status klorofil 
melalui spektradiometer dan ML seperti Hutan Rawak (RF) dan Pohon 
Keputusan (DT); 4): mengelaskan status nutrient-nutrien melalui integrasi 
spektroradiometer, ML (Model Pohon Logistik (LMT) dan Naïve Bayes (NB)) 
dan kaedah data tidak seimbang (Teknik Pensampelan Minoriti Sintetik 
(SMOTE), Peningkatan Adaptif (AdaBoost) dan kombinasi SMOTE dan 
AdaBoost (SMOTE+AdaBoost)); manakala 5) menilai model spektral daun dan 
kanopi dalam mengelaskan status chl dan nutrien melalui model LMT-
AdaBoost. 
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Dalam objektif 1, terdapat pertukaran yang jelas di antara bilangan ciri-ciri 
spektral N dengan akurasi LDA, dan respon ciri-ciri spektral N tergantung 
kepada umur tanaman sawit. Untuk objektif 2, indeks Vis (Indeks Merah Hijau 
Biru (BGRI1 dan BGRI2)) (79.55%) adalah indeks terbaik untuk menilai status N 
tanaman sawit matang muda dan indeks Vis+NIR (Indeks Vegetasi Perbezaan 
Normalisasi (NDVI), Normalisasi Hijau (NG), Indeks Vegetasi Peratusan 
Inframerah (IPVI) dan Indeks Vegetasi Perbezaan Normalisasi Hijau (GNDVI)) 
(81.82%) bagi tanaman sawit prima, melalui SVM. SVM mengungguli LDA 
dalam mengklasifikasikan status N dan SI yang sensitif terhadap N bergantung 
pada usia tanaman sawit. Keputusan daripada objektif 3 menunjukkan 
kebanyakan ciri-ciri spektral yang sensitif terhadap klorofil berada di kawasan 
pinggir merah dan RF mengatasi DT dalam membezakan status klorofil (96.05 
to 98.08%). Sementara itu, diskriminasi status nutrient-nutrien yang terbaik 
(objektif 4) dicapai melalui model LMT-SMOTE+AdaBoost (76.13 sehingga 
100.00%). Selain itu, kesan faktor usia pelepah adalah ketara dalam kajian 
klorofil dan nutrien melalui spektroradiometer. Kajian UAV (objektif 5) 
membuktikan bahawa prestasi model SI lebih baik berbanding model spektral 
mentah dalam pengelasan klorofil dan nutrien (74.64 sehingga 100.00%). 
Dalam membandingkan kompetensi model spektra daun dan kanopi, model 
spektra daun menunjukkan ketepatan yang teguh (98.53 sehingga 100.00%), 
walaubagaimanapun, model spektral kanopi menawarkan kelebihan melalui 
liputan kawasan lebih luas dengan bilangan ciri spektral yang lebih rendah 
berbanding model spektrum daun dengan perbezaan akurasi yang maksimum 
sebanyak 25.36%. 
 

Kesimpulannya, skala daun merupakan plafform yang terbaik untuk 
mengklasifikasikan status klorofil dan nutrien diikuti dengan kanopi dan 
pemandangan. Model spektral kanopi dan pemandangan mampu menilai 
status klorofil dan nutrien dengan ketepatan yang memuaskan Pengelasan 
dengan LMT-SMOTE+AdaBoost juga dicadangkan sebagai pengelasan terbaik 
dalam menilai klorofil dan nutrien kelapa sawit. 
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CHAPTER 1 
 

INTRODUCTION 

 

1.1 Background 
 

Oil palm is the main source of vegetable oils consumed in the world that 
contributes more than 40% of the global total production in 2019 (FAS/USDA, 
2020). Together Malaysia and its neighbouring country, Indonesia, are the key 
players of the oil palm industry which produce and export about 85 and 90% of 
palm oil worldwide, respectively (FAS/USDA, 2020). Due to the low prices and 
high yield per area basis, oil palm has become the largest source of edible oils 
and fats in the world (Sime Darby, 2013; Yoshizaki et al., 2013). The demands 
for Malaysian palm oil have increased yearly along with the increment of the 
global population, particularly from India, China, the European Union (EU), 
Vietnam and Turkey (Khadir, 2020). According to Mielke (2017), the global 
demand for palm oil has increased from 11.56 in 1992 to 63.84 million tonnes 
in 2017 and will continue to rise in the forthcoming years. Considering the 
increment trend of palm oil consumption, good agriculture practices including 
appropriate nutrient and pest management are essential for sustaining 
optimum oil palm production to satiate the global demand. 
 

In oil palm agronomic practices, efficient nutrient management is important for 
sustaining oil palm production and preserving the environment. Oil palm 
requires a huge amount of (N), phosphorus (P), potassium (K), magnesium 
(Mg) and calcium (Ca) for optimal growth and high yield production. According 
to Sung (2016), oil palm required about 125, 20, 251, 35 and 40 kg of N, P, K, 
Mg and Ca, respectively to produce 30 tonnes of fresh fruit bunch (FFB) ha-1 
year-1.  
 

Chl also plays an important role in monitoring oil palm growth and health 
status. Chl is a green pigment contains in the chloroplast and essential for 
photosynthesis. During the process of photosynthesis, carbon dioxide (CO2) 
and water (H2O) are converted into carbohydrates (CH2O) and oxygen (O2) 
using the solar radiation absorbed by the plant pigments, chl. Generally, chl a 
and chl b are the main pigments for photosynthesis which mainly absorbed the 
red and blue light, respectively (Li et al., 2018). Chl also provides worthy 
information on crop physiological status, productivity, photosynthesis capacity 
and served as a proxy for nutrient assessment (Ling et al., 2011). 
 
 
1.2 Problems Statement 
 

Conventionally, wet chemistry has been long practised to determine the leaf 
biochemical properties including chls and nutrients content of crops. Whilst 
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these practices are accurate, a few drawbacks of this technique have been 
issued including invasive, laborious, time consuming, expensive and produce 
chemical wastage (Muñoz-Huerta et al., 2013; Navarro-Cerrillo et al., 2014). 
Furthermore, these traditional approaches are not applicable to monitor the 
spatial and temporal dynamics of nutrient and chl status (Zhai et al., 2013) in 
the oil palm plantation since oil palms are commonly cultivated in plantation 
scale involving hundreds to thousands hectare of land.  
 

In the oil palm industry, fertilizers are the most expensive agriculture inputs yet 
mandatory for high FFB production, and they account for about 46 to 85% of 
the plantation total cost production (Goh and Härdter, 2003; Silalertruksa et al., 
2012; Pardon et al., 2016). According to the estimation made by Goh (2011), 
the oil palm plantation could suffer an annual economic loss of RM 1.24 and 
0.15 billion resulted from the insufficient fertilizer application and over-
application of ammonium nitrate of 0.25 kg palm-1 year-1, respectively. 
Additionally, the yield response to the fertilizer application may take up 8 
months or even a few years to be perceived, hence delaying fertilizer 
application might cause a reduction in fresh fruit bunch (FFB) production and 
result in the economic loss to the oil palm sector (Goh and Teo, 2011; Corley 
and Tinker, 2015a) . Therefore, there is an urgency for a rapid method for 
monitoring the nutrients and chls status to ensure the sustainability of oil palm 
growth and production, so that proper nutrient management and mitigation 
plans could be executed promptly by the oil palm plantation management to 
prevent economic losses. 
 

As an alternative to the traditional methods, spectral analysis is a powerful 
technique for appraising leaf biochemical properties in crops. This approach 
offers non-invasive measurement, periodic assessment, immediate analysis 
and wide coverage. A plethora of studies using the spectral analysis has been 
explored in appraising the chl and nutrients content of various types of 
perennial crop such as apple (Ding et al., 2009; Ye et al., 2020), hardwood 
trees (Yoder and Pettigrew-Crosby, 1995; Navarro-Cerrillo et al., 2014), citrus 
(Liu et al., 2016; Osco et al., 2019), olive (Zarco-Tejada et al., 2004; Rubio-
Delgado et al., 2020); avocado (Abdulridha et al., 2018) and oil palm 
(Khorramnia et al., 2014; Golhani et al., 2019; Yadegari et al., 2020). Besides, 
the machine learnings (ML) such as Naïve Bayes (NB), Support Vector 
Machine (SVM), Artificial Neural Network (ANN), Linear Discriminant Analysis 
(LDA), Partial Least Square Regression (PLSR) and Random Forest (RF) also 
exhibited promising results in assessing the leaf biochemical status of crops 
(Goel et al., 2003; Muhammad Asraf et al., 2012a, 2012b; de Fátima da Silva 
et al., 2014; James et al., 2018; Santoso et al., 2019; Prado Osco et al., 2019).  
To overcome the limitation of the traditional methods for assessing chl and 
nutrient contents of oil palm as well as to sustain the FFB production, this study 
attempted to develop a rapid method to facilitate in appraising leaf biochemical 
status of oil palm via spectral analysis from different spatial scales including 
leaf, canopy and scene in conjunction with ML classifiers. 
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1.3 Objectives of the Study 
 

The main focus of this study is to develop the classification model to estimate 
the chl and nutrients nutrition status of oil palm via the integration of spectral 
analysis and ML classifier from different spatial scales. 
 

1.3.1 Specific Objectives 
 

The specific objectives of this study are: 
 

1. To evaluate the potential of spectral measurements obtained from 
leaf scale and machine learning approaches as a rapid tool for 
quantifying oil palm N status.  
 

2. To examine the potential of the SI derived from satellite sensors as 
a tool in monitoring the N nutrition status of mature oil palm.  
 

3. To discriminate the chls sufficiency status of mature oil palm using 
hyperspectral data obtained from leaf measurement.  
 

4. To classify the N, P, K, Mg and Ca sufficiency levels of mature oil 
palm using hyperspectral data retrieved from leaf measurement 
and imbalance approaches.  
 

5. To evaluate the performance of spectral data from two different 
spatial scales i.e. leaf and canopy in discriminating the sufficiency 
levels of leaf biochemical properties of mature oil palm.  

 

1.4  Research Framework 
 

This thesis presented the novel method for appraising chls and nutrients 
sufficiency status of mature oil palm by integrating the spectral data extracted 
from different spatial scales with ML classifiers while addressing the imbalance 
problem in ML classification. Extensive foliar sampling was carried out together 
with in situ spectral measurement. The main goal of this study was to evaluate 
the applicability of the spectral model attained from the leaf, canopy and scene 
scales in conjunction with ML classifiers in discriminating the chls and nutrients 
sufficiency status of mature oil palm. The spectral measurement using the 
spectroradiometer represents leaf scale while the unmanned aerial vehicle 
(UAV) images obtained represent canopy scale and SPOT-6 satellite images 
considered as scene scale. The study was carried out in two different sites: i) 
2°22ʹ40” N, 102°15ʹ56.37” E (MP05) and ii) 2°22ʹ49.35” N, 102°14ʹ16.84” E 
(MP02) belongs to United Malacca Berhad plantation located at Machap 
Umboo, Malacca. The MP05 and MP02 represent the 8 and 11 years old palm, 
correspondingly. The N treatments ranging from 0 to 6 kg palm-1 were applied 
for 3 consecutive years. Specific objective 1 and 2 were accomplished through 
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the preliminary study utilizing the data collected from 9 and 12 years old palms 
after 1 year of the fertilizer program completed. On the other hand, specific 
objective 3, 4 and 5 were achieved using the data after completing 3 years of 
fertilizer application, whereby the palms age were 12 and 15 years old.  
 

Generally, the research framework for this study was delineated into three 
spatial scales such as the leaf, canopy and scene (Figure 1.1). For the 
preliminary study, i.e. objective 1 and 2 aim were to investigate the potential of 
the spectral features and SI acquired from the leaf and scene scales in 
monitoring the N nutrition status of mature oil palm, respectively. To 
discriminate the N sufficiency in oil palm from the leaf and scene scales, the 
classifications were executed using LDA and SVM classifiers.  
 

For further evaluation of the spectral analysis technique in appraising chls and 
nutrients status of mature oil palm, the spectral measurement from the leaf 
level using the spectroradiometer was utilized. These evaluations were carried 
out for objective 3 and 4. At the leaf level, the chls and nutrients content was 
collected from the leaflets of frond 9 and 17. From the foliar analysis, chls 
sufficiency levels were determined by Jenks Natural Break classification while 
nutrients sufficiency levels were followed by the standard reference for oil palm 
nutrients presented by Fairhurst et al. (2004). Further, feature selection was 
implemented to select the chls- and nutrients-sensitive spectral features prior to 
the classification. To discriminate the chls sufficiency status from the leaf scale, 
classification via RF and DT classifiers were performed while NB and LMT 
classifiers to classify the nutrients sufficiency status of mature oil palm. The 
best frond number in appraising leaf biochemical status via spectral analysis 
was also evaluated in this study.  
 

Considering that oil palm is commonly cultivated in a plantation scale that 
involves hundreds to thousands of hectares of area, UAV imagery was 
assessed in order to improve the limitation of the leaf scale measurement. This 
evaluation was performed in objective 5. The performance of the raw band and 
SI spectral models generated from the UAV images were examined by using 
the LMT-AdaBoost classifier to determine the best model for appraising chls 
and nutrients status from the canopy scale. Then, the best spectral model 
obtained from the canopy level was compared to the leaf spectral model, also 
classified by using the LMT-AdaBoost algorithm.  
 

Finally, the accuracies of the spectral models acquired from leaf, canopy and 
scene scales were compared to define the best classifier and spatial scale for 
appraising chls and nutrients sufficiency status of mature oil palm. © C
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Figure 1.1: The summarized framework used in the study. 

 

1.5 Outline of the Thesis 
 

The thesis comprised 8 chapters and outlined as follows: 
 

Chapter 1 describes the general overview of oil palm nutrient management and 
its challenges. The problem statement, research objectives and research 
framework also are included in this chapter.  
 

Chapter 2 reviews the literature on oil palm growth, the importance of nutrients 
and chls. This chapter also encompasses comprehensive reviews on the 
available methods for the determination of nutrient and chl status. 
 

Chapter 3 deliberates on the preliminary study “Assessing Leaf Scale 
Measurement for Nitrogen Content of Oil Palm: Performance of Discriminant 
Analysis and Support Vector Machine Classifiers” to accomplish the specific 
objective 1.  
 

Chapter 4 is devoted for the “Evaluation of Linear Discriminant and Support 
Vector Machine Classifiers for Classification of Nitrogen Status in Mature Oil 
Palm from SPOT-6 Satellite Images: Analysis of Raw Spectral Bands and 
Spectral Indices” to accomplish the specific research objective 2.  
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Chapter 5 is dedicated to the “Hyperspectral Remote Sensing for Assessment 
of Chlorophyll Sufficiency Levels in Mature Oil Palm (Elaeis guineensis) Based 
on Frond Numbers: Analysis of Decision Tree and Random Forest” to complete 
the specific research objective 3. 
 

Chapter 6 provides the findings on the “Hyperspectral Spectroscopy and 
Imbalance Data Approaches for Classification of Oil Palm's Macronutrients 
Observed from Frond 9 and 17” obtained to fulfil the specific research objective 
4. 
 

Chapter 7 confers “Synthetic Minority Over-Sampling TEchnique (SMOTE) and 
Logistic Model Tree (LMT)-Adaptive Boosting (AdaBoost) Algorithms for 
Classifying Imbalanced Datasets of Nutrient and Chlorophyll Sufficiency Levels 
of Oil Palm (Elaeis guineensis) Retrieved from Spectroradiometer and 
Unmanned Aerial Vehicle” to achieve the specific research objective 5. 
 

Chapter 8 summarizes the findings attained from the study and the 
recommendations for future work regarding the assessment of chls and 
nutrients status of oil palm.   
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