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Abstract of thesis presented to the Senate of Universiti Putra Malaysia in 
fulfilment of the requirement for the degree of Doctor of Philosophy 

 

DEVELOPMENT OF ROBUST PROCEDURES FOR PARTIAL LEAST 
SQUARE REGRESSION WITH APPLICATION TO NEAR INFRARED 

SPECTRAL DATA 

By 

DIVO DHARMA SILALAHI 

January 2021 

Chair  : Professor Habshah Binti Midi, PhD  
Institute : Mathematical Research 
 
 
The Partial Least Square Regression (PLSR) is a multivariate method 
commonly used to build a predictive model of Near Infrared (NIR) spectral data. 
Based on our experience, several weaknesses of the PLSR have been 
identified with respect to its robustness issues in the pre-processing and in-
processing when outliers and High Leverage Points (HLP) exist in the dataset. 
In addressing these problems, some robust procedures for PLSR are 
developed.  
 
 
In the pre-processing, the pretreatment procedure is needed to remove both 
additive and multiplicative baseline effects and to distinguish the scattering 
effect in the raw spectral. The existing methods are not very successful in 
removing those effects. Hence, a new robust Generalized Multiplicative Scatter 
Correction (GMSC) algorithm is proposed to correct the additive and/or 
multiplicative baseline effects during pre-processing spectra. The results 
indicate that the proposed method outperforms the existing methods in this 
study.  
 
 
In the in-processing, the PLSR model is very sensitive to the optimal number of 
PLS components used in the model fitting process. Several selection 
procedures of the optimal number of PLS components have been developed in 
this regard. However, each procedure yields different result. To date, no one 
has been able to determine the more superior method. Hence, a Robust 
Reliable Weighted Average (RRWA-PLS) which does not require the selection 
of an optimal number of PLS is developed by employing the weighted average 
strategy from multiple PLSR models generated by different complexity of the 
PLS components. In the PLSR model there is no variable selection procedure 
that able to remove the irrelevant wavelengths. To fill-in the gap in the 
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literature, a new robust procedure in wavelength selection based on input 
scaling method is developed using Filter-Wrapper method. The PLSR fails to 
discover the nonlinear structure in the original input space. As such, the use of 
the classical PLSR might not be appropriate. In addition, the contamination of 
outliers and HLP in the dataset also might damage the whole data processing 
procedures. To address these problems, robust nonlinear solutions of PLSR 
are developed through kernel based learning by nonlinearly projecting the 
original input data matrix to a high dimensional feature mapping corresponding 
to the kernel space. The nonlinear solutions coupled with some improved 
robust methods such as Diagnostic Robust Generalized Potential (DRGP) 
method and GM6-Estimator are also introduced.   
 
 
Several statistical measures such as Root Mean Squared Error (RMSE), 
Coefficient of Determination (R2), Ratio of Performance to Deviation (RPD), and 
Standard Error (SE) are used to evaluate the superiority of the proposed 
methods. The results of the simulation study and two NIR spectral data sets, 
namely the NIR spectral of oil palm (Elaeis guineensis Jacq.) fresh and dried 
ground fruit mesocarp, show that all the proposed methods are superior 
compared to the existing methods in this study.  
 
 
Keywords: Near Infrared, Spectral Data, Partial Least Squares, Generalized 
Multiplicative Scatter Correction, Average-Weighted, Number of Components, 
Reliability Coefficients, Variable Selection, Variable Importance Projection, 
Uninformative Variable Eliminations, Nonlinear, Kernel, Hilbert-Space, GM6-
Estimator, Diagnostic Robust Generalized Potential. 
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sebagai memenuhi keperluan untuk ijazah Doktor Falsafah 

 

MEMBANGUNKAN PROSEDUR TEGUH KEATAS KAEDAH REGRESI 
SEPARA KUASA DUA TERKECIL DAN APLIKASI TERHADAP DATA 

SPEKTRUM INFRA MERAH  

Oleh 

DIVO DHARMA SILALAHI 

Januari 2021 

Pengerusi : Profesor Habshah Binti Midi, PhD 
Institut  : Penyelidikan Matematik 
 
 
Regresi separa kuasa dua terkecil (PLSR) adalah teknik multivariate yang 
biasa digunapakai untuk membina model ramalan data spektrum infra merah 
dekat (NIR). Berdasarkan pengalaman kami, beberapa kelemahan PLSR telah 
dikenal pasti dari segi isu keteguhannya dalam pra-pemprosesan dan semasa 
pemprosesan apabila wujud titik terpencil dan titik tuasan tinggi (HLP) dalam 
set data. Bagi menangani masalah ini, beberapa prosedur teguh keatas PLSR 
telah dibangunkan.  
 
 
Dalam pra-pemprosesan, prosedur prarawatan diperlukan bagi menghapuskan 
kedua-dua kesan dasar aditif dan multiplikatif dan bagi membezakan kesan 
serakan pada spektrum mentah. Kaedah sedia ada tidak berjaya untuk 
menghapuskan kesan tersebut. Oleh itu, algoritma baru pembetulan serakan 
multiplikatif teritlak teguh (GMSC) dicadangkan bagi membetulkan kesan garis 
dasar aditif atau multiplikatif semasa pra-pemprosesan spektra. Keputusan 
menunjukkan bahawa kaedah yang dicadang mengatasi kaedah sedia ada 
dalam kajian. 
 
 
Semasa pemprosesan, model PLSR sangat sensitif terhadap bilangan optimal 
komponen PLS yang digunakan dalam proses pemodelan. Beberapa prosedur 
pemilihan bilangan optimal komponen PLS telah dibangunkan. Walau 
bagaimana pun, setiap prosedur menghasilkan keputusan yang berbeza. 
Sehingga kini, tiada seorang pun yang berupaya menentukan kaedah yang 
lebih unggul. Oleh itu, kaedah purata berwajaran teguh yang boleh dipercayai 
(RRWA-PLS) yang tidak memerlukan pemilihan bilangan optimal PLS 
dibangunkan dengan menggunakan strategi purata berpemberat dari model 
PLSR berganda yang dijanakan oleh komponen PLS yang berbeza dan 
komplek. Sehingga kini, belum ada prosedur pemilihan pembolehubah yang 
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berupaya untuk menghapuskan gelombang yang tidak relevan dalam model 
PLSR. Untuk mengisi jurang dalam kesusasteraan, prosedur baru teguh dalam 
pemilihan gelombang berasaskan kaedah penskalaan input dibangun 
menggunakan kaedah penapis-pembungkus. PLSR tidak berjaya untuk 
mengesan struktur tak linear dalam ruang input asal. Oleh itu, penggunaan 
PLSR klasik berkemungkinan tidak bersesuaian. Tambahan pula, pencemaran 
dari titik terpecil dan titik tuasan tinggi (HLP) dalam set data boleh 
mengganggu keseluruhan prosedur pemprosesan data. Untuk menangani 
masalah ini, beberapa penyelesaian tak linear teguh keatas PLSR 
dibangunkan melalui pembelajaran berasaskan kernel dengan mengunjurkan 
secara tak linear input matrik data asal kepada pemetaan cirri dimensi tinggi 
yang sepadan dengan ruang kernel. Penyelesaian tak linear dengan gabungan 
beberapa kaedah peningkatan teguh seperti kaedah potensi teritlak teguh 
berdiagnostik (DRGP) dan penganggar GM6 juga diperkenalkan. 
 
 
Beberapa ukuran statistik seperti ralat punca min kuasa dua (RMSE), pekali 
penentuan (R2), nisbah prestasi kepada penyimpangan (RPD), dan ralat piawai 
(SE) digunakan untuk menilai keunggulan kaedah yang dicadangkan. Hasil 
kajian simulasi dan dua set data spectrum NIR sebenar, spektrum NIR dari 
mesokarp segar dan kering buah kelapa sawit (Elaeis guineensis Jacq.) 
menunjukkan semua kaedah yang dicadangkan lebih unggul berbanding 
kaedah yang sedia ada dalam kajian ini. 
 
 
Kata kunci: Infra Merah Dekat, Data Spektrum, Kuasa Dua Terkecil Separa, 
Pembetulan Serakan Multiplikatif Teritlak, Purata Berpemberat, Bilangan 
Komponen, Pekali Kebolehpercayaan, Pemilihan Pembolehubah, Unjuran 
Kepentingan Pembolehubah, Penghapusan Pembolehubah Tak Berinformatif, 
Tak Linear, Kernel, Ruang Hilbert, Penganggar GM6, Potensi Teritlak Teguh 
Berdiagnostik. 
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CHAPTER 1 

 

INTRODUCTION 

 

1.1  Background and Purposes 
 
 
The Near Infrared Spectroscopy (NIRS) technology has been attracting much 
attention as secondary analytical tool for chemical analysis of agricultural 
products. It has been proven that it is rapid, chemical-free, non destructive, 
reliable, and requires less (even no) sample preparation. It offers the 
opportunity for the agricultural industry to increase their productivity particularly 
for quality inspection. In the oil palm (Elaeis guineensis Jacq.) industry, this 
quality inspection is very important which corresponds to the evaluation on the 
final product of the breeding program and cultivation practice.  
 
 
The NIRS requires a spectrometer to produce sufficient information called NIR 
spectrum. It is resulted from the interaction between physical properties of the 
sample with the optical light of electromagnetic. Practically, the NIR spectral 
data consist of a large amount of spectrum that leads to a high-dimensional 
problem. This is due to the situation where a huge number of n observations 
and wavelength ranges (as m predictors) are employed in the dataset. This 
high-dimensional may suffers to a potential risk of multicollinearity and 
heterocedasticity. The NIR spectral are also very often composed of complex 
overtone, noise, and overlapping peaks with related to the sample condition 
and instrument performance. These bring the parallel shift, slope and intensity 
effect and path length difference in the spectra baseline. In addition, the risk of 
contamination from outliers and High Leverage Points (HLP) in the spectral 
dataset may decrease the fitted model accuracy. Therefore, a well-assign of 
robust pretreatment procedure coupled with multivariate analysis is highly 
suggested.  
 
 
In multivariate analysis, the Partial Least Square Regression (PLSR) (Wold, 
1973) is a statistical standard procedure to build the predictive model of NIR 
spectral data. It summarizes the variability in both the predictor ( X ) and 
response ( y ) variables into a new smaller set of uncorrelated variables called 

latent variables or PLS components. The PLSR keeps a maximize covariance 
of the highly collinear original predictors to create the latent variables and 
regress these to the dependent variable.  
 
 
The PLSR has the ability to identify the unwanted samples in the dataset (Xu et 
al., 2011), to handle the multicollinearity and heterocedasticity effects (Haenlein 
& Kaplan, 2004), and practically distribution-free assumption (Wold, 1980; 
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Manne, 1987). It does not matter whatever data distribution is, it is also 
opposed violations of independence, collinear, and small sample size that are 
known as major requirement assumptions in classical regression. Aside of its 
benefits, some studies have reported the weakness due to its robustness 
issues. The fitted model performs poorly when outliers and HLP exist in a 
dataset (Kerkri et al., 2018). The model is sensitive to the number of PLS 
components used in the fitting process (Wiklund et al., 2007). Each time the 
dataset are updated, the re-calculation on the number of components used in 
the model is required and often yields to different accuracy. There is still no 
variable selection procedure applied to prevent the irrelevant wavelengths 
which may impair the model accuracy (Mehmood et al., 2012; Wang et al., 
2016). The method fails to discover the nonlinear structure in the original input 
space, whereby the irregular data space problem still appear in the dataset 
(Qin & McAvoy, 1992; Rosipal & Trejo, 2001). In addition, the contamination 
from HLP comprises Good Leverage Point (GLP) and Bad Leverage Point 
(BLP). The GLP are not significant because they are still near to the fitted 
regression line, and they can increase the efficiency of an estimate (Midi et al., 
2009; Bagheri & Midi, 2015). On the other hand, the BLP are far from the 
majority pattern of the data; they have significant damage on the computed 
values of various estimates (Bagheri & Midi, 2015; Alguraibawi et al., 2015). 
The contamination of outliers and BLP in the dataset should be eliminated 
during the fitting process. Therefore some improvements on the PLSR method 
including the robust procedures both in the pre-processing and in-processing 
spectra are introduced to overcome these problems. 
 
 
1.2  Importance and Motivation of the Study 
 
 
In the pre-processing of PLSR, several pretreatment methods are considered 
such as the Standard Normal Variate (SNV) (Barnes et al., 1989), Multiplicative 
Spectral Correction (MSC) (Geladi et al., 1985), and the Detrending (Barnes et 
al., 1989). These methods are often treated in combination to the Derivative 
method (Owen, 1995) as smoothing procedure. The SNV uses only row-
oriented individual spectra transformation through its mean and standard 
deviation in the standardization. The MSC includes the entire spectra to 
remove the baseline effect both translation and offset in the spectra. The 
Detrending applies the subtraction using polynomial fit to remove the baseline 
shift. In many cases, the Detrending has similarity with the Derivative that could 
be treated in parallel with the SNV or MSC. It is observed that these 
pretreatment methods are non-robust since outliers, HLP, and uninformative 
predictors are not taken care off in the scatter correction process. The 
weakness of these methods has inspired us to propose a new robust 
Generalized Multiplicative Spectra Correction (GMSC) method. The proposed 
method is expected to be able to correct the additive and/or multiplicative 
baseline effects during pre-processing spectra. This GMSC is based on the 
row-column weights includes the ability to remove or to reduce the effect of 
outliers and HLP. Moreover, this method is also able to downgrade the 
influence of uninformative predictors during the pretreatment. 
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The PLSR model is sensitive to the number of components used in the fitted 
model. The Weighted Average (WA) strategy then is suggested as alternative 
to prevent the sensitivity in the classical PLS. The classical PLS model uses 
cross-validation approach with one-sigma heuristic (Hastie et al., 2009) to 
determine the optimum number of components used. The re-calculation on the 
number of components is done each time the calibration dataset are updated. 
To encounter this, the WA-PLS method (Hastie et al., 2009) was reviewed. The 
method uses averaging strategy to incorporate all the possible complexity of 
the model. In fact some irrelevant variables are still included during the fitting 
model that may affect model accuracy. The shortcoming of this method has 
motivated us to develop a Robust Reliable Weighted Average Partial Least 
Square (RRWA-PLS). The method utilizes the weighted average strategy from 
multiple PLSR models with different complexity of the PLS components. Two 
weighting schemes are employed namely the trimmed version (20%) of the 
standard error prediction (SEP) based on the re-sampling of k -fold Cross 
Validation (CV) and the reliability values of each predictor variables. 
 
 
Several variable selection methods attempts to remove irrelevant variables in 
the PLSR. A proper selection method is crucial to prevent the PLSR from 
processing certain number of irrelevant wavelengths during model fitting 
process. Some existing variable selection methods such as filter and wrapper 
methods are used as the scaling matrix for input variable X . The classical 
Variable Importance Projection (VIP) (Wold et al., 1993) is a famous filter 
method that uses the weighted combination over all component variables of the 
squared PLSR. However, it does not include the projection to the orthogonal 
components (Galindo‐Prieto et al., 2014). In the wrapper method, the Monte 
Carlo Uninformative Variable Elimination (MCUVE) (Cai et al., 2008) constructs 
the reliability of each wavelength through the fraction between the mean and 
standard deviation of PLS regression coefficient. It is suspected that these 
methods are easily affected by outliers. Their works have motivated us to 
propose an improvised input scaling method which is based on the Filter-
Wrapper method. The method combines the superiority of modified VIP using 
Orthogonal Projections to Latent Structures (OPLS) (Galindo‐Prieto et al., 
2014) and the Monte Carlo Uninformative Variable Eliminations (MCUVE) to 
scale the wavelength variable as input factor for PLSR. Moreover, a new robust 
reliability coefficient and new robust cut-off criterion are introduced in the 
procedure. 
 
 
The collected spectra are very often composes of complex overtone and many 
overlapping peaks which may lead to misinterpretation because of its 
significant nonlinear characteristics. Using linear solution might not be 
appropriate. Moreover, with the high-dimension of dataset due to large number 
of observations and data points will impact to the multicollinearity problem. This 
also will increase the risk of contamination from multiple outliers and HLP. The 
multiple linear regression methods are considered not suitable to fit these 
problems. In order to deal with these irregular data space problem, this has 
encouraged us to apply the nonlinear solution for PLSR. The solution deploys 
the kernel based learning by nonlinearly projecting the original input data matrix 
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to a high dimensional feature space corresponding to a Reproducing Kernel 
Hilbert Spaces (RKHS) (Aronszajn, 1950). Here, the performance of existing 
non-kernel of classical PLSR and robust PLSR using modified M-estimator 
(Serneel et al., 2005), MM-estimator, modified GM6-estimator, and Diagnostic 
Robust Generalize Potential (DRGP) are compared with their kernel version.  
 
 
Aside on handling irregular data space problem using kernel solution of RKHS, 
the elimination on outliers and BLP is required to prevent a serious damage on 
the parameter estimate. In relation to this, there are many studies (see 
Atkinson, 1994; Imon, 2002; Seneels et al., 2015; Jia et al., 2010) have been 
conducted to identify the outliers and HLP, but none of them has ability to 
classify the HLP into good or bad. This has encouraged us to introduce a new 
method by considering only the outliers and BLP in the elimination. The 
improvement on bounded influence and high breakdown-point (with close to 
50%) robust procedure of GM6-estimator (Coakley & Hettmanspreger, 1993) 
are introduced. The proposed method accommodates several robust 
approaches on the initial weight in GM6-estimator to remove both outliers and 
BLP in the dataset.  
 
 
The desirability indices (Trautmann, 2004) using several statistical measures 
are presented to evaluate the superiority of the proposed methods. The 
measure involves the Root Mean Squared Error (RMSE), Coefficient of 
Determination (R2), Ratio of Performance to Deviation (RPD), and Standard 
Error (SE) based on the differentiation of the actual values against their 
prediction values. The existing and proposed methods with related to the study 
are reviewed clearly in each chapter together with their application using 
artificial data and NIR spectral dataset. Monte Carlo simulation is then utilized 
in the artificial data to evaluate the stability of the proposed methods. This 
study provides a development and important contribution to tackle the 
challenges of scientific big data particularly for process control in the vibrational 
spectroscopy technique.  
 
 
1.3  Objective of Thesis 
 
 
In summary, the foremost objective of our study can be outlined with the 
following objectives: 
 

1. Developing a new robust pretreatment method that is resistant to 
outliers and HLP that able to downgrade the influence of 
uninformative predictors in the NIR spectral data. 

2. Establishing a new PLSR model based on modified weighted average 
strategy with less sensitivity to the optimum number of PLS 
components used in the model fitting.  

3. Improving the wavelength selection method in the PLSR model using 
input scaling strategy based on the reliability coefficient of filter-
wrapper method. 
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4. Formulating a robust nonlinear solution to the PLSR method using 
kernel based learning of RKHS in handling the irregular data space in 
the input data matrix. 

5. Improving the robust solution to the nonlinear PLSR method with high 
resistant to the outliers and BLP in the dataset. 
 
 

1.4  Scope and Limitation of Study 
 
 

The PLSR is the commonly used algorithm to solve a partial least squares 
regression problem for high dimensional data, when the number of predictors      
( m) is larger than the sample size ( n). It can also be used for big and low 
dimensional data where the number of predictors ( m) is smaller than the 
sample size ( n). In this thesis, the focus of the study is for big data when large 
data points are considered whereby the number of predictors and sample size 
are very huge. The NIR spectral data are categorized as big data because the 
dataset has a large number of n observations and m predictors. The PLSR 
method is the common solution to reduce the dimension into smaller new latent 
variables called components scores.  
 
 
The development of PLSR model on NIR spectral data is still limited particularly 
in the area of robust statistics. This is probably due to the high cost of the NIRS 
instrument that hinders the development of such methods. Consequently, the 
limitations of the PLSR are not getting much attention. The existing software 
still employs the classical methods for analyzing the pre-processing and in-
processing NIR spectral data. These have motivated us to develop new 
algorithm with main objectives are to minimize all the complexities found in the 
classical PLSR model. 
 
 
We focus our study in the pre-processing and in-processing the NIR spectral 
data, since these process are the most important to the outcome of the post-
processing. Post-processing is related to the use of fitted PLSR model to the 
routine laboratory analysis and quality control procedures.  
 
 
In this thesis, the NIR spectral data are just an application of the proposed 
techniques. The techniques are applicable in the situation where number of 
observations is greater than the number of predictors. 
 
 
1.5  Outline of the Thesis 

 
 

In accordance to the objective and scopes of study, the contents of this thesis 
are organized into seven chapters. The thesis chapters are structured so that 
the objectives of the study are apparent in the sequence outline. 
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Chapter Two: This chapter discusses about the literature reviews of the PLSR 
model, pretreatment of NIR spectral data, and in-processing such as weighted 
average PLSR model, variable selection, and kernel based learning of RKHS. 
The important of existing robust methods for estimation parameter in the 
presence of outliers and HLP are also reviewed. The desirability index as 
statistical measures used to evaluate the superiority of the methods and the 
fundamental of NIRS spectral data is also discussed in the rest of this chapter. 
 
 
Chapter Three: This chapter evaluates the performance of the existing 
pretreatment methods: SNV, Detrend, SNV with Detrend, MSC, and MSC with 
Detrend. Our developed method called Generalized Multiplicative Spectra 
Correction (GMSC) is discussed in detail. The superiority of the proposed 
GMSC is also evaluated by combining the method with the Detrend and 
Derivative algorithm. 
 
 
Chapter Four: This chapter evaluates the performance of our proposed 
Robust Reliable Weighted Average PLS (RRWA-PLS) with the classical WA-
PLS and the improvised weight of classical WA-PLS which is called as MWA-
PLS.  
 
 
Chapter Five: This chapter discusses about our new procedure of wavelength 
selection in the PLSR model called modified VIP-MCUVE (mod-VIP-MCUVE). 
The method uses input scaling strategy based on reliability coefficient of filter-
wrapper method. The existing of classical VIP and MCUVE method and the 
auto scaling in classical PLSR are also included in the evaluation. 
 
 
Chapter Six: This chapter deals with the development of robust PLSR which is 
based on the improvised MM-estimator, improvised GM6-estimator, and 
Diagnostic Robust Generalize Potential (DRGP). These methods are compared 
with the classical PLSR and the existing improvised M-estimator. The existing 
kernel versions on classical PLSR called Kernel PLSR (KPLS) and improvised 
M-estimator (KPRM) are also reviewed with the kernel version on DRGP 
(KPDRGP). These kernel versions are used to evaluate their performance in 
handling the irregular data space that may happen in the NIR spectral dataset.  
 
 
Chapter Seven: In this chapter, the improvement on the robust procedure of 
kernel solution in the Chapter Six is extended by removing only the outliers and 
BLP in the dataset. The proposed methods called as Kernel Partial Robust 
GM6-estimator (KPRGM6) and Kernel Partial Robust Modified GM6-estimator 
(KPRMGM6) are presented. The superiority of the proposed robust methods is 
compared with the non-robust KPLS.  
 
 
Chapter Eight: This chapter provides the general conclusions of the studies 
and the recommendations for future research. 
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