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Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfilment of the
requirement for the degree of Doctor of Philosophy

DIAGONALLY IMPLICIT TWO AND THREE DERIVATIVE RUNGE-KUTTA
METHODS FOR SOLVING FIRST ORDER OSCILLATORY ORDINARY

AND DELAY DIFFERENTIAL EQUATIONS

By

NUR AMIRAH BINTI AHMAD

December 2020

Chairman : Norazak bin Senu, PhD
Faculty : Institute For Mathematical Research

In this study, Diagonally Implicit Two Derivative Runge-Kutta (DITDRK) methods and
Diagonally Implicit Three Derivative Runge-Kutta (DIThDRK) methods are constructed for
the numerical integration of first-order Initial Value Problems (IVPs). For DITDRK methods,
the methods derived are also used in the solution of stiff Ordinary Differential Equations
(ODEs) and Delay Differential Equations (DDEs). Three new methods with a minimum
number of function evaluations are derived for DITDRK methods. Meanwhile for DIThDRK
methods also, three new methods are constructed with a minimum number of function
evaluations.

Solving ODEs which have periodic or oscillatory solutions in nature are more convenient
with the implementation of trigonometrically-fitted and phase-fitted and amplification-fitted
techniques. Hence, taking this idea into account, we implemented these techniques into
DITDRK and DIThDRK methods. Two new methods each for DITDRK and DIThDRK
methods for both oscillatory techniques are derived. They are fourth and fifth-order for
DITDRK methods and sixth and seventh-order for DIThDRK methods. The Local Truncation
Error (LTE) for each method is computed.

Stiff system of ODEs are solved using implicit formulae and required the use of Newton-like
iteration, which needs a lot of computational effort. Here, we focused on the derivation of
DITDRK methods for both constant and variable step-size. For constant step-size, three
new methods of order three, four and six are constructed. For variable step-size, two new
embedded methods of 3(2) and 4(3) DITDRK methods are derived. The stability of these
methods are discussed along with their stability regions.

A brief introduction on Delay Differential Equations (DDEs) is given. The stability properties
of DITDRK methods when applied to DDEs, using Lagrange interpolation to evaluate the
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delay term are investigated. The P-stability and Q-stability of fourth and fifth-order DITDRK
methods are discussed along with the boundary of the region. In solving first-order DDEs,
Newton Divided Difference Interpolation (NDDI) is used to approximate the delay term. As
for solving periodic DDEs, we use Trigonometric interpolation which is specially design to
solve oscillatory problems due to its periodic properties. Hence, two methods of fourth and
fifth-order Trigonometrically-Fitted DITDRK (TFDITDRK) methods are used to solve these
types of problems.

Numerical experiments show that the newly derived methods are more efficient and accurate
in comparison with existing Diagonally Implicit Runge-Kutta (DIRK) methods of the same
order and properties in the literature in terms of maximum global error, number of function
evaluation per step and execution time.
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Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi
keperluan untuk ijazah Doktor Falsafah

KAEDAH RUNGE-KUTTA DUA DAN TIGA TERBITAN PEPENJURU
TERSIRAT UNTUK MENYELESAIKAN PERSAMAAN PEMBEZAAN BIASA

DAN LENGAH BERAYUN PERINGKAT PERTAMA

Oleh

NUR AMIRAH BINTI AHMAD

Disember 2020

Pengerusi : Norazak bin Senu, PhD
Fakulti : Institut Penyelidikan Matematik

Dalam kajian ini, kaedah Runge-Kutta Dua Terbitan Pepenjuru Tersirat (RKDTPT) dan
kaedah Runge-Kutta Tiga Terbitan Pepenjuru Tersirat (RKTTPT) dibina untuk penyelesa-
ian pengamiran berangka Masalah Nilai Awal (MNA) peringkat pertama. Untuk kaedah
RKDTPT, kaedah yang diterbitkan juga diguna dalam penyelesaian Persamaan Pembezaan
Biasa (PPB) kaku dan Persamaan Pembezaan Lengah (PPL). Tiga kaedah baharu dengan
jumlah penilaian fungsi yang minima diterbitkan untuk kaedah RKDTPT. Sementara itu,
untuk kaedah RKTTPT juga, tiga kaedah baharu dibina dengan jumlah penilaian fungsi yang
minima.

Menyelesaikan PPB yang mempunyai penyelesaian semulajadi berkala atau berayun adalah
lebih sesuai dengan pelaksanaan teknik suai-trigonometri dan suai-fasa dan suai-pembesaran.
Oleh itu, dengan mengambil kira idea ini, kami melaksanakan teknik-teknik ini ke dalam
kaedah RKDTPT dan RKTTPT. Dua kaedah baharu untuk setiap kaedah RKDTPT dan
RKTTPT untuk kedua-dua teknik berkala diterbitkan. Mereka adalah peringkat empat dan
lima untuk kaedah RKDTPT dan peringkat enam dan tujuh untuk kaedah RKTTPT. Ralat
Pangkasan Tempatan (RPT) untuk setiap kaedah dikira.

Sistem PPB kaku diselesaikan menggunakan formula tersirat dan memerlukan penggunaan
lelaran Newton, yang memerlukan pengiraan yang sangat banyak. Di sini, kami mem-
fokuskan kepada penerbitan kaedah RKDTPT untuk kedua-dua saiz langkah tetap dan
berubah. Untuk saiz langkah tetap, tiga kaedah baharu peringkat tiga, empat dan enam dibina.
Untuk saiz langkah berubah, dua kaedah terbenam 3(2) dan 4(3) kaedah RKDTPT diterbitkan.
Kestabilan kaedah-kaedah ini dibincangkan bersama-sama dengan rantau kestabilan.

Pengenalan ringkas terhadap Persamaan Pembezaan Lengah (PPL) diberikan. Sifat kesta-
bilan kaedah RKDTPT apabila digunakan kepada PPL menggunakan interpolasi Lagrange
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untuk mengira sebutan lengah dikaji. Kestabilan-P dan kestabilan-Q peringkat empat dan
lima kaedah RKDTPT dibincangkan bersama-sama dengan sempadan rantaunya. Dalam
menyelesaikan PPB peringakat pertama, Interpolasi Pembezaan Pembahagian Newton
(IPPN) digunakan untuk menganggarkan sebutan lengah. Bagi menyelesaikan PPL berkala,
kami menggunakan interpolasi Trigonometri yang direka khas untuk menyelesaikan masalah
berayun oleh kerana sifat berkalanya. Oleh itu, dua kaedah RKDTPT suai-trigonometri
peringkat empat dan lima digunakan untuk menyelesaikan masalah jenis ini.

Keputusan berangka menunjukkan bahawa kaedah-kaedah yang baharu diterbitkan adalah
lebih jitu dan cekap dalam perbandingan dengan kaedah-kaedah Runge-Kutta Pepenjuru Ter-
sirat (RKPT) sedia ada peringkat sama dan sifat dalam sorotan litratur dalam ralat global
maksima, jumlah penilaian fungsi setiap langkah dan perlaksanaan masa.
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CHAPTER 1

INTRODUCTION

1.1 The Initial Value Problem

The Initial Value Problems (IVPs) for a system of s first-order Ordinary Differential Equations
(ODEs) is defined as:

y′ = f (x,y), y(u) = ω (1.1)

where

y(x) = [y1(x),y2(x), . . . ,yc(x)]T ,

f(x,y) = [ f1(x,y), f2(x,y), . . . , fc(x,y)]T , x ∈ [u,w] ,

and ω=[ω1,ω2, . . . ,ωs]
T is the vector of initial conditions.

Theorem 1.1 (Existence and Uniqueness)
Let f (x,y) are defined and continous for every points (x,y) in the region R-defined by u≤ x≤
w,−∞ < y < ∞, where u and w are finite, and there exist a constant L such that for all x,y,y∗,
(x,y) and (x,y∗) are both in R.

| f (x,y)− f (x,y∗)| ≤ L |y− y∗| . (1.2)

Then, let say if ω is any given random number, there exist a solution y(x) which is unique
where y(x) is continuous and differentiable for all (x,y) ∈ R.

The condition (1.2) is known as Lipschitz condition, and the constant L as Lipschitz constant.
For proof and justification, refer to Henrici (1962). Hence, in this research, the conditions of
the theorem are assumed to be satisfied which contribute to the existence of a unique solution
of (1.1).

1.2 The Delay Differential Equation

Delay Differential Equations (DDEs) can be divided into four different classes namely
retarded DDE (Baker, 2000), neutral DDE (Jackiewicz and Lo, 2006), distributed DDE
(Augeraud-Véron and Leandri, 2014) and stochastic DDE (Fan, 2011). Among these four
type of DDEs, the retarded type has become the most well-known class of DDEs.

Generally, a DDE refers to both a retarded DDE (RDDE) and a neutral DDE (NDDE) . RDDE
is an ODE involving solution of the delay term y(t− τ(t,y(t)))) and is given by

y′(t) = f (t,y(t),y(t− τ(t,y(t)))), t ∈ [u,w],

y(t) = ϕ(t), t ≤ u.

}
(1.3)

1
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A NDDE is an ODE involving both solutions of the delay term y(t − τ(t,y(t)))) and the
derivative of the delay term itself y′(t−σ(t,y(t))), given by

y′(t) = f (t,y(t),y(t− τ(t,y(t))),y′(t−σ(t,y(t)))), t ∈ [u,w],

y(t) = ϕ(t), t ≤ u,

y′(t) = ϕ ′(t), t ≤ u.

 (1.4)

The delays or lags τ and σ are measurable as a physical quatities that is scalar in function.
Function f is assumed to be continuous and it is always non-negative and satisfies the Lipschitz
condition in y(t) for all t ∈ [u,w]. ϕ(t) is the initial function which is known to be defined in
[ρ, t0], where

ρ = min
1≤i≤n

{min
t≥t0

(t− τi)}. (1.5)

There are three conditions that the delay can be represent which are a constant (the constant
delay case), a function of t,τi = τi(t) (the variable or time-dependent delay case) and a
function of both t and y,τi = τi(t,y(t)) (the state-dependent delay case) (Bellen and Zennaro,
2013; Hayashi, 1996).

Since DDE is always refererred to as both RDDE and NDDE, many authors refer the DDE as
the RDDE only. In this thesis, we are only concerned with RDDE, hence it will therefore be
referred to as DDE only.

1.3 Stiff System of Ordinary Differential Equation

Stiffness is a phenomenon identified in the numerical integration of ODEs that arise in various
real life applications including the study of spring and damping system, problems in chemical
kinetics and the analysis of control system. In correspond to a stable solution, it is often
characterized in terms of the largest and smallest real parts of the zero of the stability function.
Firstly, the eigenvalues of the Jacobian matrix of (1.1) is defined

Definition 1.1 (Lambert, 1973)
The eigenvalues λm,m = 1, . . . ,s, of the (1.1) at (x,y) is defined as the eigenvalues of the
Jacobian matrix, J =

(
∂ f
∂y

)
evaluated at (x,y).

With respect to the linear system of first order equations, various definitions of stiffness have
been given in the literature.

y′ = Ay+φ(x), y(u) = η , u≤ x≤ w, (1.6)

where
yT = (y1, . . . ,ys) and η

T = (η1, . . . ,ηs) .

Lambert (1973) has given the most widely accepted definitions on stiffness as follows:
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Definition 1.2 (Lambert, 1973)
The linear system (1.6) is said to be stiff if

1. Re λi < 0, i = 1, . . . ,s and

2. max
i
|Re(λi)| >> min

i
|Re(λi)|, where λi are the eigenvalues of A and the ratio

max
i
|Re(λi)|

min
i
|Re(λi)| is called the stiffness ratio or the stiffness index.

The general solution to (1.6) is in the form of

y(x) =
s

∑
i=1

cieλixui +ψ(x),

where y(x) =
s
∑

i=1
cieλixui is the transient solution and ψ(x) is the steady state solution.

Nonlinear system y′ = f (x,y) exhibits stiffness if the eigenvalues of the Jacobian
∂ f
∂y

behaves

in a similar manner. The eigenvalues are no longer constant, but depend on the solution and
therefore vary with x. Accordingly, the system y′ = f (x,y) is considered stiff in an interval I

of x if for x ∈ I, the eigenvalues λi(x) of
∂ f
∂y

satisfy Definition 1.2 above.

At the beginning of the integration, the solution can be rapidly varying due to the rapidly
decreasing transient solution. This phase is referred to as the transient phase and accuracy
rather than stability restricts the stepsize of any integration method. Thus the structure of the
solutions suggest the application of non-stiff methods in the transient phase and stiff methods
in the steady-state region hoping for computational cost saving.

1.4 Problem Statement

Our attention will be focused on deriving DITDRK and DIThDRK methods for solving first-
order ODEs (1.1) and DDEs (1.3) for the numerical solution of periodic and non-periodic
problems. There are quite a number of research papers discussing on explicit TDRK and
ThDRK methods but there are none on DITDRK and DIThDRK methods. Furthermore, there
are none ongoing research on DITDRK and DIThDRK methods for solving stiff and non-stiff
ODEs as well as oscillating and non-oscillating DDEs. Hence, taking this golden opportunity,
we try to go one step further, digging into diagonally implicit methods since it is theoretically
known that implicit methods are more accurate and precise compared to explicit methods.
Moreover, we believed with the existence of g and ĝ parameter in their general formula will
help in achieving higher order method with a lower stage number.

1.5 The Objectives of the Thesis

The derivation of highly improved and efficient numerical methods based on the DITDRK
method and DIThDRK method for the numerical integration of first order ODEs and DDEs
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in the form of (1.1) and (1.3) respectively for constant step-size and some variable step-size
mode. The main objectives of this thesis are proposed as follows:

1. To derive DITDRK and DIThDRK methods using order conditions for solving first-
order ODEs.

2. To construct trigonometrically-fitted and phase-fitted and amplification-fitted DITDRK
and DIThDRK methods for the solution of first-order ODEs for the numerical solutions
of periodic problems.

3. To develop DITDRK methods for solving first-order stiff ODEs for constant and vari-
able step-size.

4. To derive and analyse P-Stability and Q-Stability for DITDRK methods for the numer-
ical solution of first-order DDEs of constant type.

5. To solve first-order DDEs of constant type for the numerical solutions of periodic prob-
lems using trigonometrically-fitted DITDRK methods and Trigonometric interpolation
to approximate the delay term.

1.6 Scope of the Study

This thesis concentrates on the derivation of DITDRK and DIThDRK methods for solving
first-order ODEs and DDEs of the form (1.1) and (1.3) respectively. We are also going to
solve first-order stiff ODEs. This study focus on the development of efficient methods in
solving ODEs problems which are oscillatory in nature by trigonometrically-fitted and phase-
fitted and amplification-fitted techniques and non-periodic solutions using order conditions. In
addition, Trigonometric interpolation will be used to approximate the delay term for solving
periodic DDEs problems. Note that the second-order IVPs of ODEs and DDEs will be solved
by reducing them to system of first-order ODEs and DDEs. The proposed methods will be
derived using constant and variable step-size approach to produce the approximated solutions.

1.7 Outline of the Study

The background of numerical integration of first order ODEs and DDEs are discussed
briefly in Chapter 1. A brief explanation on IVPs as well as the existence and uniqueness
theorem are given in this chapter. Diagonally Implicit Two Derivative Runge-Kutta method
and Diagonally Implicit Three Derivative Runge-Kutta method along with their algebraic
order conditions are discussed. The local truncation error for both DITDRK and DIThDRK
methods are also presented. In addition, the stability analysis for these two methods are
discussed thoroughly. In Chapter 2, the literature review is given where this section contains
a brief history about Two Derivative Runge-Kutta method, Three Derivative Runge-Kutta
method, oscillatory techniques, DDEs and stiff ODEs.

Three DITDRK methods which are fourth-order two-stage, fifth-order three-stage and
sixth-order four-stage respectively and three DIThDRK methods which are sixth-order
two-stage, seventh-order three-stage and eighth-order four-stage are constructed using order
conditions are proposed in Chapter 3. The stability of the developed methods are analyzed
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and their stability regions are plotted. Numerical experiments are carried out to show their
effectiveness and accuracy compared with other existing DIRK methods of the same order.

In Chapter 4, two DITDRK methods of fourth-order and fifth-order each are constructed using
trigonometrically-fitted and phase-fitted and amplification-fitted techniques. The algebraic
order as well as the local truncation error for these methods are further discussed in this
chapter. Numerical results are presented and compared with other existing DIRK methods
with the same oscillatory properties in the literature. In Chapter 5, two DIThDRK methods
of sixth-order and seventh-order each are constructed using trigonometrically-fitted and
phase-fitted and amplification-fitted techniques. The algebraic order and the local truncation
error for these new methods are briefly discussed in this chapter. Numerical results are
presented and compared with other existing DIRK methods with the same periodic properties
in the literature.

Meanwhile in Chapter 6, three DITDRK methods of third-order two-stage, fourth-order
three-stage and sixth-order four-stage respectively are developed using constant step-size
approach to solve first-order stiff ODEs. As for variable step-size approach, two new
embedded methods of 3(2) and 4(3) DITDRK methods are derived. The stability of these
proposed methods is discussed along with their stability regions. Numerical experiments are
carried out to show their effectiveness and accuracy in comparison with other existing DIRK
methods of the same order.

Next, in Chapter 7, the P-stability and Q-stability of fourth and fifth-order DITDRK methods
are discussed along with the boundary of the region. As for solving periodic DDEs, we use
Trigonometric interpolation which is specially design to solve oscillatory problems due to its
periodic properties. Hence, two methods of fourth and fifth-order Trigonometrically-Fitted
DITDRK (TFDITDRK) methods are used to solve these types of problems. Numerical ex-
periments are carried out to show their effectiveness and accuracy in comparison with other
existing DIRK methods of the same order. Finally, the summary of this thesis and future work
are discussed in Chapter 8.

1.8 Two Derivative Runge-Kutta (TDRK) Method

A Two Derivative Runge-Kutta method is a Runge-Kutta method designed for solving
first-order ODEs in the form of (1.1). A TDRK method can be divided into two kind which is
explicit TDRK methods and implicit TDRK methods. If ai j = 0 for i≤ j, a TDRK method is
an explicit method and if ai j = δ where i = j, δ ∈ ℜ, it is denoted as diagonally implicit or
also known as singly implicit. In our research context, we concentrate mainly on diagonally
implicit TDRK method.

Consider the scalar ODEs (1.1) with f : ℜN →ℜN . In this case, the second derivative is also
assumed to be known where

y′′ = g(y) := f ′(y) f (y), g : ℜ
N →ℜ

N . (1.7)
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An implicit TDRK method for the numerical integration of IVPs (1.1) is given by

Yi =g
(

xn + cih,yn +h
s

∑
j=1

ai j f (Y j)+h2
s

∑
j=1

âi jY j

)
, (1.8)

yn+1 =yn +h
s

∑
i=1

bi f (Yi)+h2
s

∑
i=1

b̂iYi, (1.9)

where i = 1, . . . ,s.

The implicit TDRK method with the coefficients in (1.8) and (1.9) are presented using the
Butcher tableau as follows:

c A Â

bT b̂T

Diagonally implicit methods with a minimal number of function evaluations can be developed
by considering the methods in the form

Yi =g

(
xn + cih,yn +hci f (xn,yn)+h2

s

∑
j=1

âi jY j

)
, (1.10)

yn+1 =yn +h f (xn,yn)+h2
s

∑
i=1

b̂iYi, (1.11)

where i = 1, . . . ,s.

The above method is denoted as a special DITDRK method. The unique part of this method is
that it involves only one evaluation of f and many evaluations of g per step compared to many
evaluations of f per step in traditional RK methods. Its Butcher tableau is given as follows:

c Â

b̂T

The DITDRK parameters ai j, âi j,bi, b̂i and ci are assumed to be real and s is the number of
stage of the method. The s-dimensional vectors b, b̂,c and s×s matrix, A and Â are introduced
where b= [b1,b2, . . . ,bs]

T , b̂=
[
b̂1, b̂2, . . . , b̂s

]T
,c= [c1,c2, . . . ,cs]

T ,A=
[
ai j
]

and Â=
[
âi j
]

respectively.

1.9 Algebraic Conditions and Local Truncation Error for TDRK Method

The DITDRK methods (1.10) and (1.11) can be written as the following:

yn+1 = yn +hy′n +h2
s

∑
i=1

b̂iki, (1.12)
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where

ki =g(xn + cih,yn +hciy′n +h2
i

∑
j=1

âi jk j). (1.13)

The order conditions for DITDRK methods can be easily obtained by expanding the local
truncation error in a direct way. The DITDRK method (1.10) and (1.11) can be expressed as:

yn+1 = yn +hψ(xn,yn,h), (1.14)

where the increment function ψ(xn,yn,h) is denoted as

ψ(xn,yn,h) = y′n +h
s

∑
i=1

b̂iki, (1.15)

and ki is given in (1.13).

The Taylor series increment function is denoted as ∆. After substracting the computed solu-
tion, yn+1 with the exact solution, y(xn+1), the local truncation errors of yn can be obtained
where

LT En+1 = h(ψ−∆). (1.16)

The Taylor series increment function of yn is expressed as

∆ = y′n +
1
2

hy′′n +
1
6

h2y′′′n +
1

24
h3y(iv)n +

1
120

h4y(v)n + . . .+
1
p!

hp−1y(p)
n . (1.17)

The above equations are expressed in terms of elementary differentials. A few elementary
differentials are given as follows:

y′ = F(1)
1 = f ,

y′′ = F(2)
1 = fx + fyy′,

y′′′ = F(3)
1 = fxx +2 fxyy′+ fyy′′+ fyy(y′)

2
,

y(iv) = F(4)
1 = fxxx +3 fxxyy′+3 fxyy(y′)

2
+3 fxyy′′+3 fyyy′y′′+

fyyy(y′)
3
+ fyy′′′.

(1.18)

Expressing ∆ in terms of the elementary differential leads to:

∆ = F(1)
1 +

1
2

hF(2)
1 +

1
6

h2F(3)
1 +

1
24

h3F(4)
1 +O(h4). (1.19)

Substituting (1.18) into (1.15), the increment function ψ for DITDRK method becomes

s

∑
i=1

b̂iki =
s

∑
i=1

b̂iF
(2)
1 +h

s

∑
i=1

b̂iciF
(3)
1 +

1
2

h2
s

∑
i=1

b̂ic2
i F(4)

1 +O(h3). (1.20)
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Using (1.15) and (1.17), the LTE can be written as:

LT En+1 =h2

[(
s

∑
i=1

b̂iF
(2)
1 +h

s

∑
i=1

b̂iciF
(3)
1 +

1
2

h2
s

∑
i=1

b̂ic2
i F(4)

1 + . . .

)

−
(

1
2

F(2)
1 +

1
6

F(3)
1 +

1
24

F(4)
1 + . . .

)]
. (1.21)

Simplifying (1.21)

LT En+1 =h2

[(
s

∑
i=1

b̂i−
1
2

)
F(2)

1 +

(
s

∑
i=1

b̂ici−
1
6

)
hF(3)

1 +

(
1
2

h2
s

∑
i=1

b̂ic2
i −

1
24

)
h2F(4)

1 + . . .

]
.

(1.22)

The order conditions for a s-stage DITDRK method by using (1.22) up to order seven as
proposed by Chan and Tsai (2010) are given as follows:

Order 2: ∑ b̂i =
1
2
, (1.23)

Order 3: ∑ b̂ici =
1
6
, (1.24)

Order 4: ∑ b̂ic2
i =

1
12

, (1.25)

Order 5: ∑ b̂ic3
i =

1
20

, (1.26)

∑ b̂iâi jc j =
1

120
, (1.27)

Order 6: ∑ b̂ic4
i =

1
30

, (1.28)

∑ b̂iciâi jc j =
1

180
, (1.29)

∑ b̂iâi jc2
j =

1
360

, (1.30)

Order 7: ∑ b̂ic5
i =

1
42

, (1.31)

∑ b̂ic2
i âi jc j =

1
252

, (1.32)

∑ b̂iciâi jc2
j =

1
504

, (1.33)

∑ b̂iâi jc3
j =

1
840

, (1.34)

∑ b̂iâ2
i jc j =

1
5040

. (1.35)

For DITDRK methods, the following simplifying assumption as proposed by Chan and Tsai
(2010) to simplify the order conditions is imposed:
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i

∑
j=1

âi j =
1
2

ci
2, i = 1, . . . ,s. (1.36)

Minimizing the error norms is one of the finest strategy to acquire a particular order accuracy
as stated in Dormand (1996). The norm of the local truncation error is:

∥∥∥τ
(ζ+1)

∥∥∥
2
=

√√√√ζ+1

∑
j=1

(
τ
(ζ+1)
j

)2
. (1.37)

The increment function of a DITDRK method can be expressed as follows

Φ =
∞

∑
i=1

hi−2

{
ni

∑
j=1

ρ
(i)
j F(i)

j

}
, (1.38)

where the ρ
(i)
j are the functions of the DITDRK parameters âi j, b̂i,ci and the simplifying

assumption (1.36) is satisfied. By using the equations (1.16) and (1.18) with (1.38), for any
DITDRK methods, the local truncation error can be written as

LT En+1 =
∞

∑
i=2

hi


ni

∑
j=1

ρ
(i)
j −

γ
(i)
j

i!

F(i)
j


=

∞

∑
i=2

hi

{
ni

∑
j=1

τ
(i)
j F(i)

j

}
, (1.39)

where

τ
(i)
j = ρ

(i)
j −

γ
(i)
j

i!
, i = 2,3, . . . ; j = 1,2, . . . ,ni,

are the error coefficients. Hence, the error coefficients up to order seven for DITDRK methods
are given below:

Order 2: τ
(2)
1 = ∑ b̂i−

1
2
, (1.40)

Order 3: τ
(3)
1 = ∑ b̂ici−

1
6
, (1.41)

Order 4: τ
(4)
1 = ∑ b̂ic2

i −
1

12
, (1.42)

Order 5: τ
(5)
1 = ∑ b̂ic3

i −
1

20
, (1.43)

τ
(5)
2 = ∑ b̂iâi jc j−

1
120

, (1.44)

Order 6: τ
(6)
1 = ∑ b̂ic4

i −
1

30
, (1.45)

τ
(6)
2 = ∑ b̂iciâi jc j−

1
180

, (1.46)
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τ
(6)
3 = ∑ b̂iâi jc2

j −
1

360
, (1.47)

Order 7: τ
(7)
1 = ∑ b̂ic5

i −
1

42
, (1.48)

τ
(7)
2 = ∑ b̂ic2

i âi jc j−
1

252
, (1.49)

τ
(7)
3 = ∑ b̂iciâi jc2

j −
1

504
, (1.50)

τ
(7)
4 = ∑ b̂iâi jc3

j −
1

840
, (1.51)

τ
(7)
5 = ∑ b̂iâ2

i jc j−
1

5040
. (1.52)

1.10 Stability of TDRK Method

When a DITDRK method is applied to the model equation

y′ = f (x,y) = λy, y′′ = f ′(x,y) f (x,y) = λ
2y, λ ∈ C, (1.53)

the resulting difference equation is

yn+1 = H(v)yn, v = λh, (1.54)

where H(v) is the stability polynomial of the DITDRK method. It can be clearly seen that
yn→ 0 as n→ ∞ if and only if

|H(v)|< 1, (1.55)

and the method will be absolutely stable for v values for which (1.55) holds.

Applying the test equation (1.53) to DITDRK method (1.10)-(1.11) yields

Yi =yn + civyn + v2
i

∑
j=1

âi jY j, (1.56)

yn+1 =yn + vyn + v2
s

∑
i=1

b̂iYi, (1.57)

where i = 1, . . . ,s.

Define Y,e ∈ℜs by e = (1,1, . . . ,1)T and Y = (Y1,Y2, . . . ,Ys)
T , then (1.56) and (1.57) can be

written in the form

Y =yne+ civyn + v2ÂY, (1.58)

yn+1 =yn + vyn + v2b̂TY. (1.59)
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Solving for (1.58) and substituting into (1.59) gives

yn+1 =
[
(1+ v)+ v2b̂T (e+ cv)(I− v2Â)−1

]
yn, (1.60)

I is the s× s unit matrix b̂ = (b̂1, b̂2, . . . , b̂s)
T and c = (c1,c2, . . . ,cs)

T . The stability function
is then given by

H(v) = 1+ v2b̂T (I− v2Â)−1e+ v(1+ v2b̂T c(I− v2Â)−1). (1.61)

According to Cramer’s rule, the stability function of DITDRK method can be written as

H(v) =
P(v)
Q(v)

=
(1+ v)det

[
(I− v2Â)+(v2/(1+ v))eb̂T +(v3/(1+ v))cb̂T

]
det(I− v2Â)

. (1.62)

It can be seen that yn→ 0 as n→ ∞ if and only if

|H(v)|< 1, (1.63)

and the method is absolutely stable for those v values for which (1.63) holds. The stability
region is defined as {v ∈ C : |H(v)| ≤ 1} or the set of points in the complex plane given that
the computed solution remains bounded after many computation steps as in Wolfram (1991).

Definition 1.3 (Butcher, 1987)
A Runge-Kutta method is said to be absolutely stable for a given v, if for all that v, all the roots
of the stability polynomial have modulus less than or equal to one, with those of modulus one
being simple.

Definition 1.4 (Butcher, 1987)
A Runge-Kutta method is said to be A-stable if its stability region contains C−, the non-
positive half-plane {v|Re(v)< 0}.

Absolute stability property will ensure that the decreasing solution will be approximated
by non-increasing function. Meanwhile, the A-stable method can be regarded as trying to
produce an approximate to the exponential function whose modulus is bounded by unity.

When solving the IVP (1.53), a more satisfactory approximation to the exponential will be the
one that is not only A-stable, but also satisfies the property that as |v| → ∞, with Re(z) < 0,
its modulus approaches zero, which leads to the definition below.

Definition 1.5 (Wanner and Hairer, 1996)
A method is called L-stable if it is A-stable and if in addition lim

v→∞
H(v) = 0. If an Implicit

Runge-Kutta (IRK) method is A-stable, then it is L-stable if and only if H(v) =
P(v)
Q(v)

, such

that the degree of P(v)< degree of Q(v).
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1.11 Three Derivative Runge-Kutta (ThDRK) Method

A Three Derivative Runge-Kutta method is a Runge-Kutta method designed for solving
first-order ODEs in the form of (1.1) other than TDRK method. A ThDRK method can be
divided into two form which is explicit ThDRK methods and implicit ThDRK methods. If
ai j = 0 for i ≤ j, a ThDRK method is an explicit method and if ai j = δ where i = j, δ ∈ℜ,
it is denoted as diagonally implicit or also known as singly implicit. In our research context,
we concentrate mainly on diagonally implicit ThDRK method.

Consider the scalar ODEs (1.1) with f : ℜN→ℜN . In this case, the second and third derivative
are also assumed to be known where

y′′ = g(y) := f ′(y) f (y), g : ℜN →ℜN ,

y′′′ = ĝ(y) := f ′′(y)( f (y), f (y))+ f ′(y) f ′(y) f (y), ĝ : ℜN →ℜN .
(1.64)

An implicit ThDRK method for the numerical integration of IVPs (1.1) is given by

Yi =ĝ
(

xn + cih,yn +h
s

∑
j=1

ai j f (Y j)+
h2

2

s

∑
j=1

âi jg(Y j)+h3
s

∑
j=1

āi jY j

)
, (1.65)

yn+1 =yn +h
s

∑
i=1

bi f (Yi)+
h2

2

s

∑
i=1

b̂ig(Yi)+h3
s

∑
i=1

b̄iYi, (1.66)

where i = 1, . . . ,s.

The implicit ThDRK method with the coefficients in (1.65) and (1.66) are presented using the
Butcher tableau as follows:

c A Â Ā

bT b̂T b̄T

Diagonally implicit methods with a minimal number of function evaluations can be developed
by considering the methods in the form

Yi =ĝ
(

xn + cih,yn +hci f (xn,yn)+
h2

2
ci

2g(xn,yn)+h3
s

∑
j=1

āi jY j

)
, (1.67)

yn+1 =yn +h f (xn,yn)+
h2

2
g(xn,yn)+h3

s

∑
i=1

b̂iYi, (1.68)

where i = 1, . . . ,s.

The above method is denoted as a special DIThDRK method. The unique part of this method
is that it involves only one evaluation of f and g and many evaluations of ĝ per step compared
to a number of evaluations of f per step in traditional RK methods. Its Butcher tableau is
given as follows:
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c Ā

b̄T

The DIThDRK parameters ai j, âi j, āi j,b j, b̂ j and b̄ j are assumed to be real and s is the
number of stage of the method. The s-dimensional vectors b, b̂, b̄,c and s× s matrix A, Â
and Ā, are introduced where b = [b1,b2, ...,bs]

T , b̂ = [b̂1, b̂2, ..., b̂s]
T , b̄ = [b̄1, b̄2, ..., b̄s]

T ,c =
[c1,c2, . . . ,cs]

T ,A = [ai j], Â = [âi j] and Ā = [āi j] respectively.

1.12 Algebraic Conditions and Local Truncation Error for ThDRK Method

The ThDRK methods (1.67) and (1.68) can be written as the following:

yn+1 = yn +hy′n +
h2

2
y′′n +h3

s

∑
i=1

b̄iki, (1.69)

where

ki =ĝ(xn + cih,yn +hciy′n +
h2

2
ci

2y′′n +h3
i

∑
j=1

āi jk j). (1.70)

The order conditions for DIThDRK methods can be easily obtained by expanding the local
truncation error in a direct way. The DIThDRK method (1.69) and (1.70) can be expressed as:

yn+1 = yn +hψ(xn,yn,h), (1.71)

where the increment function ψ(xn,yn,h) is denoted as

ψ(xn,yn) = y′n +
h
2

y′′n +h2
s

∑
i=1

b̄iki, (1.72)

and ki is given in (1.70).

The Taylor series increment function is denoted as ∆. After substracting the computed solu-
tion, yn+1 with the exact solution, y(xn+1), the local truncation errors of yn can be obtained
where

LT En+1 = h(ψ−∆). (1.73)

The Taylor series increment function of yn is expressed as

∆ = y′n +
1
2

hy′′n +
1
6

h2y′′′n +
1

24
h3y(iv)n +

1
120

h4y(v)n +
1

720
h5y(vi)

n + . . .+
1
p!

hp−1y(p)
n . (1.74)

The above equations are expressed in terms of elementary differentials. A few elementary
differentials are given in (1.18) and as follows:
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y(v) = F(5)
1 = fyyyy(y′)

4
+6y′′(y′)2 fyyy +4y′′′ fxyyy +3(y′′)2 fyy +12y′′y′ fxyy+

4y′′′y′ fyy +6(y′)2 fxxyy +6 fxxyy′′+4 fxyy′′′+ fyy(iv)+4 fxxxyy′+
fxxxx.

(1.75)

Express ∆ in terms of the elementary differential lead to:

∆ = F(1)
1 +

1
2

hF(2)
1 +

1
6

h2F(3)
1 +

1
24

h3F(4)
1 +

1
120

h4F(5)
1 +O(h5). (1.76)

Substituting (1.75) into (1.72), the increment function ψ for DIThDRK method becomes

s

∑
i=1

b̄iki =
s

∑
i=1

b̄iF
(3)
1 +h

s

∑
i=1

b̄iciF
(4)
1 +

1
2

h3
s

∑
i=1

b̄ic2
i F(5)

1 +O(h4). (1.77)

Using (1.72) and (1.74), the LTE can be written as:

LT En+1 =h3

[(
s

∑
i=1

b̄iF
(3)
1 +h

s

∑
i=1

b̄iciF
(4)
1 +

1
2

h2
s

∑
i=1

b̄ic2
i F(5)

1 + . . .

)

−
(

1
6

F(3)
1 +

1
24

F(4)
1 +

1
120

F(5)
1 + . . .

)]
. (1.78)

Simplifying (1.78)

LT En+1 =h3

[(
s

∑
i=1

b̄i−
1
6

)
F(3)

1 +

(
s

∑
i=1

b̄ici−
1

24

)
hF(4)

1

+

(
1
2

h2
s

∑
i=1

b̄ic2
i −

1
120

)
h2F(5)

1 + . . .

]
. (1.79)

The order conditions for a s-stage DIThDRK method by using (1.79) up to order eight as
proposed by Turacı and Öziş (2015) are given as follows:

Order 3: ∑ b̄i =
1
6
, (1.80)

Order 4: ∑ b̄ici =
1

24
, (1.81)

Order 5: ∑ b̄ic2
i =

1
60

, (1.82)

Order 6: ∑ b̄ic3
i =

1
120

, (1.83)

Order 7: ∑ b̄iāi jc j =
1

5040
, (1.84)

∑ b̄ic4
i =

1
210

, (1.85)
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Order 8: ∑ b̄ic5
i =

1
336

, (1.86)

∑ b̄iāi jc2
j =

1
20160

, (1.87)

∑ b̄iciāi jc j =
1

8064
. (1.88)

For DIThDRK methods, the following simplifying assumption as proposed by Turacı and Öziş
(2015) to simplfy the order conditions is imposed:

i

∑
j=1

āi j =
1
6

ci
3, i = 1, . . . ,s. (1.89)

The norm of local truncation error is given in (1.37).

The increment function of a ThDRK method can be expressed as follows

Φ =
∞

∑
i=3

hi−3

{
ni

∑
j=1

ρ
(i)
j F(i)

j

}
, (1.90)

where the ρ
(i)
j are the functions of the DIThDRK parameters āi j, b̄i,ci and the simplifying

assumption (1.89) is satisfied. By using the equations (1.16) and the elementary differentials
given in (1.18) and (1.76) with (1.90), for any DIThDRK methods, the local truncation error
can be written as

LT En+1 =
∞

∑
i=3

hi


ni

∑
j=1

ρ
(i)
j −

γ
(i)
j

i!

F(i)
j


=

∞

∑
i=3

hi

{
ni

∑
j=1

τ
(i)
j F(i)

j

}
, (1.91)

where

τ
(i)
j = ρ

(i)
j −

γ
(i)
j

i!
, i = 3,4, . . . ; j = 1,2, . . . ,ni

are the error coefficients. Hence, the error coefficients up to order eight for DIThDRK pro-
cesses are given below:

Order 3: τ
(3)
1 = ∑ b̄i−

1
6
, (1.92)

Order 4: τ
(4)
1 = ∑ b̄ici−

1
24

, (1.93)

Order 5: τ
(5)
1 = ∑ b̄ic2

i −
1

60
, (1.94)

Order 6: τ
(6)
1 = ∑ b̄ic3

i −
1

120
, (1.95)
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Order 7: τ
(7)
1 = ∑ b̄iāi jc j−

1
5040

, (1.96)

τ
(7)
2 = ∑ b̄ic4

i −
1

210
, (1.97)

Order 8: τ
(8)
1 = ∑ b̄ic5

i −
1

336
, (1.98)

τ
(8)
2 = ∑ b̄iāi jc2

j −
1

20160
, (1.99)

τ
(8)
3 = ∑ b̄iciāi jc j−

1
8064

. (1.100)

1.13 Stability of ThDRK Method

When a DIThDRK method is applied to the model equation

y′ = λy, y′′ = λ
2y, y′′′ = λ

3y, λ ∈ C, (1.101)

the resulting difference equation is given by (1.54).

Applying the test equation (1.101) to DIThDRK method (1.67)-(1.68) yields

Yi =yn + civyn +
v2

2
c2

i yn + v3
i

∑
j=1

āi jY j, (1.102)

yn+1 =yn + vyn +
v2

2
yn + v3

s

∑
i=1

b̄iYi, (1.103)

where i = 1, . . . ,s.

Define Y,e ∈ℜs by e = (1,1, . . . ,1)T and Y = (Y1,Y2, . . . ,Ys)
T , then (1.102) and (1.103) can

be written in the form

Y =yne+ civyn +
v2

2
c2

i yn + v3ĀY, (1.104)

yn+1 =yn + vyn +
v2

2
yn + v2b̄TY. (1.105)

Solving for (1.104) and substituting into (1.105) gives

yn+1 =
[
(1+ v+

v2

2
)+ v3b̄T (e+ cv+

v2

2
c2)(I− v3Ā)−1

]
yn. (1.106)

The stability function is then given by

H(v) =1+ v3b̄T (I− v3Ā)−1e+ v(1+ v3b̄T c(I− v3Ā)−1)+

v2

2
(1+ v3b̄T c2(I− v3Ā)−1). (1.107)
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According to Cramer’s rule, the stability function of DIThDRK method can be written as

H(v) =
P(v)
Q(v)

, where

P(v) =(1+ v+
v2

2
)det

[
(I− v3Ā)+(v3/(1+ v+

v2

2
))eb̄T +(v4/(1+ v+

v2

2
))cb̄T

+
1
2
(v5/(1+ v+

v2

2
))c2b̄T

]
, (1.108)

Q(v) =det(I− v3Ā), (1.109)

which will be used in the derivation of the DIThDRK methods in the following chapter.
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