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The RSA cryptosystem developed in 1978 is the earliest public-key cryptosystem
most widely deployed in securing digital information. One of the security features
of RSA is based on the assumption that factoring its modulus N = pgq is an infeasible
task to be done in polynomial time. However, most successful cryptanalysis (or
often called ‘attack’) against RSA and its variants are not based on this integer
factorization problem. Instead, these attacks manipulate the additional information
from the RSA parameters being used. Practically for decades, the RSA cryptosystem
has been generalized in various ways to improve its efficiency in terms of encryption
and decryption time and its security.

This study concentrates on algebraic cryptanalysis via the application of classical
methods such as the Diophantine approximation and lattice basis reduction.
Accordingly, five new cryptanalysis methods are developed to show that the modulus
N = pq of RSA and some of its variants can be factored in polynomial time under
certain specified conditions. It is expected from this study to outline several new
conditions required to design a secure RSA and its variant cryptosystems.

The main contribution of this thesis is a strategy called the ‘continuous midpoint
subdivision analysis’ (CMSA) is developed to find the vulnerabilities of RSA and
some of its variants. In the first attack, CMSA is applied upon an interval containing
the Euler’s totient function, and together with continued fractions on the RSA key
relation, the upper cryptanalytic bound of private exponent d is raised exponentially.
As in the second attack, a similar strategy is conducted upon an interval containing
the modified Euler quotient along with continued fractions on the modified key



relation of some variants of RSA cryptosystems. Note that, in the third attack,
our strategy is considered for the case when the prime factors p and g are of
arbitrary bit-size (i.e. the primes are said to be unbalanced primes). A new weak
RSA key equation structure that solves the factoring problem under certain specified
conditions in polynomial time is proposed in the fourth attack. This attack combines
the continued fractions and Coppersmith’s theory on finding the small solutions of
modular univariate polynomial equations. Whilst in the last attack, the k instances
of RSA moduli with a special-structured of the key equations can be factored
simultaneously in polynomial time using the lattice basis reduction technique. Note
that our cryptanalytic works extend the bound of insecure RSA decryption exponents
of some previous literature.
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Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai
memenuhi keperluan untuk ijazah Doktor Falsafah

KRIPANALISIS TERHADAP SISTEMKRIPTO RSA DAN VARIANNYA
MELALUI KAEDAH ANALISIS BERTERUSAN TERHADAP
SUB-BAHAGIAN TITIK TENGAH DAN KEKISI

Oleh

WAN NUR AQLILI BINTI WAN MOHD RUZAI

Mei 2021

Pengerusi: Prof. Muhammad Rezal Kamel Ariffin, PhD
Institut: Penyelidikan Matematik

Sistemkripto RSA yang telah dibangunkan pada tahun 1978 adalah merupakan
sistemkripto kunci awam terawal dan digunakan dengan meluas untuk memastikan
keselamatan maklumat digital pengguna. Salah satu daripada ciri keselamatan
sistemkripto RSA adalah ia bergantung kepada masalah pemfaktoran integer; iaitu
berdasarkan anggapan bahawa memfaktorkan modulus N = pq adalah tugas yang
amat sulit untuk diselesaikan dalam masa polinomial. Walau bagaimanapun,
kebanyakan kripanalisis atau ‘serangan’ yang dijalankan terhadap RSA dan
variannya bukan bertumpu kepada masalah pemfaktoran integer tetapi memfokuskan
untuk memanipulasi struktur matematik atau aliran kerja pelaksanaan skim tersebut.
Secara praktikalnya selama berdekad-dekad, sistemkripto RSA telah ditambahbaik
dengan matlamat untuk meningkatkan keupayaannya dari segi kecekapan dan
keselamatan.

Kajian tesis ini tertumpu kepada serangan yang dibangunkan melalui aplikasi kaedah
klasik seperti hampiran Diophantus dan kekisi asas terturun. Sebagai hasilnya, tesis
ini telah berjaya menghasilkan lima serangan baharu yang menunjukkan bahawa
modulus N = pq boleh difaktorkan dalam masa polinomial tertakluk kepada syarat
tertentu. Adalah dijangkakan dapatan hasil kajian ini dapat dijadikan garis panduan
untuk membina sistemkripto RSA dan variannya yang selamat.

Sumbangan utama tesis ini adalah membangunkan strategi baharu yang disebut
sebagai ‘analisis berterusan terhadap sub-bahagian titik tengah’ (CMSA). Dalam
serangan pertama, kaedah CMSA telah diaplikasikan terhadap selang yang
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mengandungi fungsi fi Euler bersama dengan kaedah pecahan lanjar yang
mendorong kepada penemuan parameter rahsia sistemkripto RSA. Dalam serangan
kedua dan ketiga, kaedah CMSA digunakan ke atas selang yang mengandungi fungsi
Euler terubahsuai disertakan dengan kaedah pecahan lanjar yang telah mendorong
parameter rahsia bagi sistemkripto varian RSA ditemui. Kami mengkhususkan
serangan kedua untuk kasus apabila nombor perdana p dan ¢ mempunyai saiz
bit yang sama manakala serangan ketiga untuk kasus apabila nombor perdana
tersebut mempunyai saiz bit yang tidak seimbang. Selanjutnya, serangan keempat
telah membuktikan kelemahan baharu dalam parameter awam sistemkripto RSA
yang boleh membawa kepada pemfaktoran N. Akhir sekali, kami membangunkan
serangan terhadap sistem persamaan kunci RSA yang diubahsuai. Kami ingin
menekankan bahawa kesemua serangan yang dibangunkan berjaya mengatasi batas
atas bagi eksponen rahsia yang selamat berbanding dengan sesetengah kajian yang
telah dijalankan.
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CHAPTER 1

INTRODUCTION

1.1 Cryptography Around Us

The past decade has seen a rapid proliferation in the field of communication via
digital platforms. Since the mid-1990s, the Internet has greatly influenced culture,
commerce, and technology, including the rise of near-instant communication by
email, instant messaging, two-way interactive video calls, telephony (Voice over
Internet Protocol or VoIP), and the World Wide Web (WWW) with its social
networking services, discussion forums, blogs, and online shopping sites. Thus,
the execution of information transfer over multiple channels in our daily life
has demanded an efficient exchange of secure information. This prime need
for information security has led to the emergence of a variety of cryptographic
algorithms to implement security in different dimensions and for various purposes.

As technology progressed and commercial opportunities arose through the digital
platform, the field of cryptology turns into a valuable means when security begins
to matters. The terminology cryptology refers to the study of cryptography
and cryptanalysis. Literally, cryptography is the science, practice, and study of
techniques for secure communication in the presence of third parties (usually called
adversaries). In other words, cryptography is the conversion of information from a
readable state to total gibberish. Cryptography can be directly used to achieve these
information security objectives such as data confidentiality, integrity, authentication,
and non-repudiation. Confidentiality ensures the content of data is accessible
only to those authorized to have it. Integrity prevents unauthorized modification
or alteration of data. Authentication ensures the entities in the communication
to identify each other. At the same time, non-repudiation precludes an entity
from denying previous commitments or actions. Hence, the ultimate objective of
cryptography is to address these four areas in both theories and practice adequately.

Cryptanalysis has co-evolved together with cryptography, and the evidence can
be traced through history. The notable work of Al-Kindi (801-873 AD) entitled
Manuscript on Deciphering Cryptographic Messages has given rise to the birth
of cryptanalysis through the invention of the frequency analysis technique.
Consequently, new ciphers are being designed to replace old broken designs, and
new cryptanalytic techniques are invented to crack the improved schemes.

In practice, cryptography and cryptanalysis can be viewed as two sides of the
same coin — secure cryptography requires design against possible cryptanalysis. A
well-known cryptographer Adi Shamir once said, “cryptography is a never-ending
struggle between code makers and code breakers.”



Before proceeding to the next section, let us acknowledge some motivation words
from the winner of ACM Turing Award 2015, Martin Hellman once said:

“...The way to get to the top of the heap in terms of developing original
research is to be a fool, because only fools keep trying. You have an idea
number 1, you get excited, it flops, you get idea number 2, it also flops, then
you get idea number 99, it also flops. Only a fool would be excited with the
100th idea, but it might take 100 ideas before one really pays off. Unless you
are foolish enough to be continually excited, you won’t have the motivation,
you won’t have the energy to carry through. God rewards fools...”

1.2 Public Key Cryptography

In the mid-1970s, all cipher systems adopted symmetric key algorithms in which
the same cryptographic key is used during encryption and decryption processes.
The key must be kept secret at all costs from unauthorized parties. Inevitably, the
key must be exchanged between the communicating parties in advance before using
the system via some secure channel. However, the implementation of symmetric
cryptography causes a chaotic situation, especially in a large network system, as
every communication needs a unique designated key. This situation is referred to as
the key distribution problem. Moreover, the term symmetric cryptography is often
called private-key cryptography.

It was not until 1976 that the notion of asymmetric cryptography emerged in the
public sphere within the seminal work of Whitfield Diffie and Martin Hellman.
Since then, it has shed light on how to solve the key distribution problem. The idea is
to use distinct keys that are mathematically related in the encryption and decryption
processes between two communicating parties. The scenario can be described as
although everyone in the world knows the public key to encrypt messages, but
only the legitimate recipient is able to decrypt messages. The term asymmetric
cryptography is also sometimes referred to as public-key cryptography.

The formal definition of public-key cryptography (PKC) as mentioned in Hinek
(2009) is recalled as follows.

Definition 1.1 A public-key cryptosystem is a system that consists of five-tuple
(,P,€,&,9) which meets the following conditions:

1. X is called a keyspace which consists of finite set of possible keys.

2. 2 is finite set of possible plaintexts.



. € is a finite set of possible ciphertexts.

. For each K € ¥, there exists an encryption rule ency € & and its
corresponding decryption rule decx € 9. Each encg : & — € and deck :
€ — P are functions such that deck(encx(M)) = M for each plaintext
Me 2.

. Both encg (M) and decg (encg(M)) are easy to calculate for every key K € &
and every plaintext M € .

. Each easily computable algorithm equivalent to deck is computationally
infeasible to derive from enck for almost each key K € ¢ . Simply said, it
is hard to decrypt without deck.

. The decryption rule deck is privately kept whilst the encryption rule enck is
publicly known.

One of the important features of PKC is to use a trapdoor one-way function which
ensures the conditions 4-7 of Definition 1.1 are satisfied. This trapdoor function is
auxiliary information that enables the inverse function to be easily computed. In the
case of PKC, the decryption rule decy is said to be a trapdoor information in the set
2. Such function can be formally defined and illustrated as follows.

Definition 1.2 (Trapdoor One-Way Function)(Menezes et al., 1996) An invertible
function f: A — B is a one-way function if for a € A and b € B, it is easy to compute
b= f(a) but it is hard to compute a = f~"(b). Whilst f is called a trapdoor one-way
function if given some information on f~'(b), it is easy to compute a = f~(b).

f(a) easy to compute

f~1(b) hard to compute —
without trapdoor information

Figure 1.1: Illustration of a trapdoor one-way function

Note that, the phrase ‘easy’ or ‘hard’ to compute depends on the context of
time complexity of an algorithm to solve a certain mathematical cryptographic
hard problem. Hence, the standard concepts of computational complexity of
mathematical problems are defined as follows.



Definition 1.3 (Computationally Secure)(Menezes et al., 1996) An algorithm is
considered computationally secure if it cannot be broken with available resources,
either current or future.

Definition 1.4 (Time Complexity)(Sipser, 2012) Time complexity of an algorithm
is a measuring tool to quantify the amount of time needed to execute the algorithm
and is commonly expressed using big-O notation.

Definition 1.5 (Big-& Notation)(Sipser, 2012) Let m(x) and n(x) be defined on X C
R. One writes m(x) = O(n(x)) as x — o if and only if there exists xo € Rand B € R™
such that for all x > x,

As a note, big-& notation can be analogously described in L-notation, defined as

Lofat,c] = (eto() (nm)&(ninn) =6

where « is a constant 0 < o < 1 and c is a positive constant. L-notation is mostly
used to express the complexity of number theoretic problems such as the integer
factorization and discrete logarithms problems.

Based on Definition 1.5, we can describe particular type of time complexities of an
algorithm given n as the size of the input of an algorithm.

Definition 1.6 (Sedgewick and Wayne, 2011) The number of digits (bits) in the
binary representation of a positive integer n is the integral part of logon+1 (i.e.
[logyn] 4 1).

Definition 1.7 (Polynomial Time)(Papadimitriou, 2003) An algorithm is said to be
solvable in polynomial time if the time required to complete the algorithm is O (nk)
where k > 0 and n is the size of the input.

Definition 1.8 (Sub-exponential Time)(Papadimitriou, 2003) An algorithm is said
to be solvable in sub-exponential time if the time required to complete the algorithm

is ﬁ(Z"g) where 0 < € < 1 and n is the size of the input.

Definition 1.9 (Exponential Time)(Papadimitriou, 2003) An algorithm is said to be
solvable in sub-exponential time if the time required to complete the algorithm is

ﬁ(Z”k) where k > 0 and n is the size of the input.



From the above definitions, it means that an algorithm with polynomial time
complexity is considered ‘fast’ and an algorithm with exponential time complexity
is considered ‘slow’. Similarly, an algorithm with sub-exponential time is ‘slow’ but
better than exponential time. Therefore, if a problem cannot be solved in polynomial
time, then it is a ‘hard’ problem. Practically, a ‘hard’ problem should take the best
computers available billions of years to solve; whilst an ‘easy’ problem is one that
can be solved very quickly.

1.3 Cryptanalysis of Public Key Cryptography

The terminology cryptanalysis is used to describe the study of mathematical
techniques for attempting to breach cryptographic security systems and gain access
to the contents of encrypted messages, even if the cryptographic key is unknown.
That is, cryptanalysis is simply referred to as an attack.

The term cryptanalyst refers to someone who engages in cryptanalysis. The ultimate
goal of the cryptanalyst is to gain as much information as possible about the original
plaintext (unencrypted data) if they are given some ciphertext (encrypted data).

Although the security strength of a cryptosystem can be directly reduced by
an attack, it may become a guiding principle for cryptographic practitioners to
implement better cryptosystems in the future. Knudsen (1998) has classified various
implications of an attack according to the amount and quality of private information
that was revealed as follows.

» Total break. The scenario when the adversary retrieves the private key used
in any cryptosystem i.e. Dy (C) = P.

* Global deduction. The scenario when the adversary finds an alternative
algorithm which is equivalent to Dy (C) = P without knowing .

* Local deduction. The scenario when the adversary discovers the plaintext of
an intercepted ciphertext.

* Information deduction. The scenario when the adversary discovers some
information about the key or plaintext. The information could be a few bits of
the key, some information about the form of the plaintext, and so forth.

In this thesis, we show the implication of information deduction attack which leads
to a total break attack upon RSA and its variant cryptosystems within polynomial
time.

Essentially, the security of a cryptosystem is quantified in terms of “bits of security”.
One can think of this as a function of the number of steps needed to break a system by



the most efficient attack. For example, a system with 112 bits of security would take
2112 steps to break, which would take the best computers available today billions of
years. Therefore, according to Barker (2016), algorithms approved by the National
Institute of Standards and Technology (NIST) should provide at least 112 bits of
security.

1.4 Mathematical Preliminaries

This section provides the mathematical components requisite for a better
understanding of the subject, which also aided us to construct the attacks
presented in this thesis.

We begin with some notations that are frequently used in our work. We use R,Q
and Z to denote the set of real numbers, rational numbers and integers, respectively.
Precisely, we use Z T to denote the set of positive integers; Z; to denote the set of
positive integers less than k; and Z;; to denote the set of positive integers less than k
and co-prime to k.

Definition 1.10 (Divisibility)(Hoffstein et al., 2008) Let a,b € Z and b # 0. If there
exists k € Z such that a = bk, then b divides a. This is denoted by b|a.

Definition 1.11 (Division Algorithm)(Hoffstein et al., 2008) Let a,b € Z+. Then,
a divided by b has unique integers called a quotient q and a remainder r such that
a=b-q+rwith0 <r<b.

Definition 1.12 (Greatest Common Divisor)(Hoffstein et al., 2008) A positive
integer d is called the greatest common divisor (gcd) of two integers a and b where
d is the largest integer dividing a and b. This is denoted by gcd(a,b) = d.

Definition 1.13 (Prime and Composite)(Hoffstein et al., 2008) An integer p > 2
is simply called a prime number if it is divisible only by 1 and p itself. If an
integer N > 1 and not a prime, then it is called a composite number. An integer 1 is
neither prime nor composite. The first few prime numbers are 2,3,5,7,11,13,17,---.

Definition 1.14 (Co-prime integers)(Hoffstein et al., 2008) Two integers a and b
are said to be relatively prime or simply called co-prime integers if gcd(a,b) = 1.

Definition 1.15 (Congruence Relation)(Hoffstein et al., 2008) Let a,b,N € Z and
N #£0. We saya=b (mod N) lf”N;b =keZ



Theorem 1.1 (Fundamental Theorem of Arithmetic)(Riesel, 2012) For every integer
N > 1, then N can be represented as

k .
N = Hpjlj
j=1

o
where p; are k distinct prime factors of N for each order o > 1 such that p jj is
unique regardless of its ordering.

Example 1.1 2=2! 3=31 4=2%2 5=5! ¢=213! ... 12=2231 ...,
504 = 23327, ... 1125 =13253 ... 170217 = 3218913, - - -.

From the above example, it is obvious that prime number made up every known
integer in this universe.

1.5 Integer Factorization Problem

In this section, we define one of the oldest known hard problem that is adopted
as a trapdoor one-way function in the RSA cryptosystem. This problem is derived
from the classical Fundamental Theorem of Arithmetic; and is known as the integer
factorization problem (IFP).

Definition 1.16 (Integer Factorization Problem)(Menezes et al., 1996) Given that
N is a positive integer. The IFP is a problem to identify the distinct primes py for
k=1,2,--- ¢ such that
ap o Q
N=p11p22-~~pgz,

and each oy > 1 fork=1,2,--- /L.

Consecutively, we redefine Definition 1.16 to suit the integer factorization problem
for two large primes that can be specified as follows.

Definition 1.17 (Yan, 2009) Given N = pq where p and q are two distinct strong
primes. The IFP is to find the unknown p and q.

Definition 1.18 (Euler’s Totient Function)(Menezes et al., 1996) Given an integer
N > 1, then the Euler’s totient function of N counts the number of integer less than
N that is co-prime to N and is denoted by the notation ¢(N).



Particularly, we will used the following theorem to compute ¢ (N).

k
Theorem 1.2 (Menezes et al., 1996) Suppose N = H p?i fulfills Theorem 1.1. Then
i=1

k a;—1
o) =TTIr" (pi—1).

i=1
Proposition 1.1 (Menezes et al., 1996) If q is a prime number, then
¢(q)=q—1.

1.5.1 Existing Factoring Algorithms

Practically, how hard is it to solve IFP? The question seems simple but for decades,
mathematicians and cryptographers are still trying to find the best efficient algorithm
to solve the IFP in polynomial time.

In this section, we list out some existing factoring algorithms that can solve the IFP.
These algorithms can be categorized into (Menezes et al., 1996):

1. General purpose factoring algorithm

» Targets any composite number without specific structures.

* The running time depends solely on the size of composite number N.

» Example of algorithms: Quadratic sieve, General number field sieve, and
Continued fractions factorization.

2. Special purpose factoring algorithm

» Targets some composite numbers with specific structures.

* The running time depends on certain properties of the factors (i.e.
smallest prime factor) of composite number N.

» Example of algorithms: Trial division, Pollard’s p algorithm, Pollard’s
p — 1 algorithm, Elliptic curve algorithm, and Special number field sieve.

We summarize the time complexity of some known factoring algorithms in the next
table. Note that, the parameters which determine the complexity time varies among
algorithms.



Table 1.1: Time complexity of algorithms for solving IFP

Factoring Algorithm ‘ Time Complexity ‘ Running Time

(Y& +o()) (mn) 3 (ininn) 3

General Number Field | & (e Sub-exponential

Sieve

)

Quadratic Sieve e

T 1
)2 )2 i

1 +o(1 ln n)2 (Inlnn Sub-exponential
1

g 4
( 1+o(1 lnn 2 (Inlnn) 2?
( 2
I

)

N

Elliptic Curve Sub-exponential

Continued Fractions (VZHo() 1"")2(1“1"") ) Sub-exponential

Pollard’s p — 1 B x logB x log n) Logarithmic

)

Trial Division

(n*/N Exponential

Thus far, the general number field sieve (GNFS) is the most efficient classical
factoring algorithm known to factor integers greater than 1019, as shown in Table
1.1. Heuristically, this algorithm runs in sub-exponential time with complexity

Ly [%, %/%] (as written in L-notation). In practice, the second fastest algorithm
is the quadratic sieve (QS) which runs in sub-exponential time with complexity
Ly [%, 1]. QS algorithm is considered simpler than GNFS algorithm and still the
fastest for integers below 100 decimal digits but not better than GNFS algorithm
for integers with 110-120 digits. Elliptic curve (EC) is the third fastest known
factoring method with the same expected running time as QS algorithm in the
hardest case (i.e. when n is the product of the same-bit-size primes). However,
QS is superior in practice since it uses single-precision operations instead of the
multi-precision operations used by EC (Menezes et al., 1996). In the case of
continued fractions (CF) factoring algorithm, it runs in sub-exponential time with
complexity L, [%, ﬁ} . For the special purpose factoring algorithm such as Pollard’s
p — 1 which runs in logarithmic time, larger value of smoothness bound B make the
algorithm runs slower but practically to produce a factor when B maybe between
10° and 10 (Menezes et al., 1996). The most naive factoring algorithm is via
trial division or brute-forcing the given large integer N to find one of the possible
prime factor which runs in exponential time. Trial division algorithm only runs in
polynomial time if N is sufficiently small.

The details of the factoring algorithms mentioned in Table 1.1 can be found mostly
in Menezes et al. (1996), Pomerance (1982), and Pomerance (1996).



1.6 The RSA Cryptosystem

The introduction of asymmetric cryptography in the seminal work of Diffie and
Hellman (1976) and consecutively the invention of the first practical asymmetric
cryptosystem known as RSA by Rivest et al. (1978) are major breakthroughs within
the lengthy history of secret communications. The acronym of RSA is due to
the names of its inventors, namely Rivest, Shamir, and Adleman. Ever since its
existence, RSA has been implemented as the default cryptosystem in most web
browsers and is also the most commonly used feature to secure internet banking
systems. RSA is embedded in millions of digital applications with the objectives to
provide confidentiality, integrity, authenticity and to disallow repudiation.

RSA is made up of three constituents which are the key generation, encryption
and decryption algorithms. In the RSA key generation, the algorithm is initiated
by choosing two same bit, distinct, and strong primes p and g known as RSA
primes which later are used to compute the RSA modulus N = pg. Then, the
¢(N) function of N is computed where ¢(N) = (p —1)(¢ — 1). Both RSA primes
and ¢ (N) are kept secret. Next, an integer e is selected such that e < ¢(N) where
gcd(e,¢(N)) = 1. Both N and e are called the RSA public keys. Conversely, an
integer d is computed based on the modular relation ed = 1 (mod ¢(N)) or can be
rewritten into the RSA key equation given by ed —k¢ (N) = 1 for an integer k. The
algorithm keeps the RSA private keys tuple (p,q, ¢ (N),d).

Assume that Alice wants to communicate with Bob. The entire process of key
generation is conducted by the recipient of a communication or Bob. The tuple
(N,e) will be issued publicly for any entity who wishes to interact with Bob or
will be sent via an insecure channel (internet) to the sender or Alice. In order to
encrypt the plaintext message M, Alice will use Bob’s public information (N, ) and
compute M¢ = C (mod N), and send C to Bob via insecure channel. Upon receiving
C, Bob will use his private exponent d to decrypt back the message M by performing
¢4 =M (mod N).

Here, in brief, we put forward the construction algorithms of the RSA cryptosystem
(Rivest et al., 1978).

Algorithm 1.1 RSA’s Key Generation Algorithm

Input: 7-bits size of chosen primes.

Output: RSA public keys (N, e) and its respective private keys (p,q, 9 (N),d).
Selects randomly two distinct primes p and g such that 2! < p g < 2!*1,
Calculates N = pgand ¢(N) = (p—1)(¢g—1).

Chooses an integer e which satisfies e < ¢(N) and ged(e,¢(N)) = 1.
Calculates a respective integer d such that d = e~! (mod ¢(N)).

Keeps the private keys (p,q,¢(N),d) and publicizes the public keys (N, e).

AN e
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Algorithm 1.2 RSA’s Encryption Algorithm

Input: The plaintext M € Z3; and public tuple (N, e).
Output: The ciphertext C.

1: Calculates C = M¢(mod N).

2: Sends ciphertext C.

Algorithm 1.3 RSA’s Decryption Algorithm

Input: A ciphertext C and the private tuple (N,d).
Output: The plaintext M.

1: Calculates M = C%(mod N).

2: Recovers back plaintext message M.

Before proceeding with the proof of correctness of RSA’s decryption, we provide
the classical Euler’s theorem as follows.

Theorem 1.3 (Euler’s Theorem) If ged(a,N) = 1, then a®™) =1 (mod N) given
that ¢ (N) is the Euler’s totient function.

Proof. Refer to Hardy and Wright (1979). |

Particularly from Theorem 1.3, when computing modulo such as N where N is the
product of distinct primes, the exponent can be reduced to modulo ¢ (N).

With the aid of Euler’s theorem, we show that the decryption process of RSA
reverses its encryption process.

Theorem 1.4 (RSA’s Decryption Proof of Correctness)(Rivest et al., 1978) Let N =
pq be an RSA modulus and ¢ (N) be its Euler’s totient function. Suppose that ed =
1 (mod ¢(N)). For any integer 0 < M < N with gcd(M,N) = 1, if M® = C (mod N),
then C? = M (mod N).

Proof. Since ed =1 (mod ¢ (N)) for some integer ¢, then

c? =m0 =M 9W) = pr- (M9 WN)Y = M (mod N). (1.1)

From Theorem 1.3, we know that (M?™))" = 1! = 1(mod N) since ged(M,N) = 1.
This completes the proof. |

Thus, from (1.1), it is proven that for a given ciphertext C, we can always retrieve
back its corresponding plaintext M.

11



1.6.1 Breaking RSA: In General

Essentially, the security of RSA relies on the hardness of the integer factorization
problem of the shape N = pq together with the modular ¢ root problem and the
difficulty of solving the key equation problem (Menezes et al., 1996). These hard
problems are briefly defined as follows.

1. Integer Factorization Problem (IFP) for Two Large Primes.
Given an RSA modulus N = pq. Then, the integer factorization problem is to
find the prime factors p and q.

2. Modular e’ Root Problem.
Given an RSA public key pair (N,e) where N = pg and e > 3. Then, the
modular e root problem is to solve for an integer M from C which is related
by C =M¢ (mod N).

3. Diophantine Key Equation Problem.
Given an RSA modulus N = pq and e € Z which satisfies the equation ed —
k¢ (N) =1 where ¢(N) = (p—1)(¢g— 1). Then, the key equation problem is
to solve for integers ¢ (N), k, and d.

Hence, in order to cryptanalyze or break RSA, either one of these hard problems
needs to be solved. Practically, solving the IFP to retrieve the prime factors p and g
is desired as the other hard problems of RSA also can be solved. This is supported
by the following theorem.

Theorem 1.5 (Hinek, 2009) If the RSA modulus N = pq is factored, then the e-th
root problem and the Diophantine key equation problem will be solved.

Proof. Suppose that RSA modulus N can be factored feasibly, then p and ¢ is known.
Thus, ¢(N) = (p—1)(¢ — 1) can be computed easily. Once ¢(N) is known, d can
be solved since

d=e"" (mod ¢(N)).

Consequently, M can be obtained by computing M = C¢ (mod N). This leads to
solve the e-th root problem. Also, this leads to solve the Diophantine key equation
problem since ¢(N),k, and d are known. [ |

In the next theorem, we show that by knowing the Euler’s totient function of N will
lead to solve the IFP of N.

Theorem 1.6 (Hinek, 2009) If ¢ (N) is known, then N will be factored in polynomial
time.

12



Proof. Since N = pg and ¢(N) = (p —1)(q — 1) are known, then we can have the
following relation

N—¢(N)+1=pg—(p—1)(g—1)+1
=p+q.

From here, we can construct the polynomial

(X—p)(X—q)=X*—(p+g)X +pq. (1.2)

Thus, by solving the roots of polynomial (1.2) completes the factorization of N

_(p+a) =V (p+9)?*—4pq
p.qg= E .

According to Theorem 1.6, we should consider the value of ¢(N) as a part of RSA’s
private key to ensure the security of RSA modulus V.

1.7 Problem Statement

Although more than four decades of intensive research on the RSA cryptosystem, no
devastating attacks (i.e. factoring algorithms that run in polynomial time) have been
found so far. We are motivated to attack RSA and some of its variants based on the
previous attacks on RSA. The main objective of the attacks launched on RSA and
its variants is to find the weaknesses that make RSA and its variants insecure and,
in the worst case, break the RSA and its variants (i.e. solve the hard mathematical
problems embedded in the scheme). These attacks scrutinize the security of the
RSA in order for RSA to remain relevant in practice. It is a fact that the vastness
of the domains of its parameters and applications exposes the cryptosystem to more
potential attacks and vulnerabilities. This research intends to discover these new
attacks to be compiled for future criteria and conditions required to design a secure
RSA and its variant cryptosystems.

1.8 Research Objectives and Methodology

We conduct a number of attacks on the RSA cryptosystem and some of its variant
cryptosystems throughout this thesis. Thus, we put forward the objectives of every
attack with their methodologies accordingly:

13



1. To propose a new Diophantine approximations cryptanalysis of RSA.

Methodology: To achieve this objective, we introduce our strategy called
the continuous midpoint subdivision analysis on the interval containing the
Euler’s totient function of an RSA cryptosystem. We prove that the unknown
parameters d and k can be found among the convergents of the continued
fractions expansion of certain public number. Afterwards, we solve for the
prime factors of the modulus N = pg. At the end of this work, we will
improve the upper cryptanalytic bound of the private exponent d as opposed
to the previous results with similar approach.

2. To propose a new Diophantine approximations cryptanalysis againts variants
of RSA with modified Euler quotient.

Methodology: This objective can be achieved by conducting a continuous
midpoint subdivision analysis upon an interval containing (p> —1)(g*> — 1)
together with continued fractions on the key relation of some variants of RSA.
Each of these variants share a common key relation given by the key relation
ed —k(p* —1)(¢> — 1) = 1 where ¢ and d are the public and private keys
respectively. We remark at the end of this work, we raise the security bound
for d exponentially as opposed to the previous results with similar approach
(i.e. via the continued fractions algorithm).

3. To propose a new Diophantine approximations cryptanalysis againts variants
of RSA with arbitrary bit-size prime factors.

Methodology: To achieve this objective, we propose a generalization of the
method and strategy that has been discussed in the second objective. The
motivation of the attack is based on the idea that our strategy also works
on the case when the prime factors of modulus N = pg of variants of RSA
cryptosystem are unbalanced primes. That is, the primes p and g are of
arbitrary bit size satisfying the relation ¢ < p < Ag where 4 is a chosen
parameter specifically A > 2.

4. To cryptanalyze RSA modulus with special-structured key equation.

Methodology: To achieve this objective, first we show that if e satisfies the
Diophantine equation of the form ex? — o(N )y2 = z for appropriate values
of x,y and z under certain specified conditions, then one is able to factor

the RSA modulus N. The main idea is to find the unknown % that can be

found amongst the convergents of % via continued fractions algorithm.

Consequently, Coppersmith’s theorem is applied to solve for prime factors p
and ¢ in polynomial time possible.

14



5. To cryptanalyze simultaneously the k RSA moduli with special-structured key
equation.

Methodology: We use the combination of simultaneous Diophantine
approximation and lattice basis reduction via the LLL algorithm to retrieve
the private parameters (x,y;) or (x;,y) that would render the factorisation of k
RSA moduli N; = p;q; simultaneously in polynomial time possible.

1.9 Thesis Outline

This thesis covers eight chapters and is organized as follows.

Chapter 1 briefly describes on the progress of public key cryptography and its
related components such as the integer factorization problem before proceeding
with the details of textbook RSA cryptosystem. This chapter includes the concept of
cryptanalysis upon a PKC and breaking the RSA in general, and also discusses some
existing factoring algorithms in practice. Then, the research objectives together with
their methodologies are presented in depth.

Chapter 2 introduces in detail the mathematical tools (i.e. the Diophantine
approximation and lattice basis reduction) that will be used in subsequent chapters
to construct our algebraic attacks. This chapter also provides some existing
cryptanalytic works on RSA via continued fractions and Coppersmith’s method.
We also survey some variants of RSA with particular structure key equation and its
algebraic cryptanalysis.

Chapter 3 introduces a method called the continuous midpoint subdivision
analysis (CMSA) on the interval containing the Euler’s totient function (i.e.
¢(N)=(p—1)(g—1)), along with continued fractions on the key relation of RSA
with the aim to factor the RSA modulus. We also provide a working numerical
example to illustrate our proposed attack.

Chapter 4 highlights the continuous midpoint subdivision analysis (CMSA) on the
interval containing the modified Euler quotient function together with continued
fractions on the modified key relation of some variants of RSA with the aim to factor
its modulus. Note that, the variants of RSA that we consider utilized the modified
key equation of the form ed — k(p* —1)(¢> — 1) = 1. We also provide numerical
examples to illustrate our proposed attack. In this chapter, we consider the prime
factors of modulus N to be balanced primes.
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Chapter 5 generalizes the strategy that we propose in Chapter 4 by considering the
case when the prime factors are of arbitrary sizes (i.e. ¢ < p < Ag) or simply called
unbalanced primes. We also include working examples to illustrate our generalized
attack and as comparison with the previous results.

Chapter 6 presents a new weak RSA key equation structure that would render
the factorization of modulus N using the combination of continued fractions and
Coppersmith’s method (via LLL algorithm) feasible in polynomial time. In this
chapter, we provide a working example to illustrate our attack and a comparative
analysis against some relevant literatures.

Chapter 7 considers the system of modified generalized RSA key equations that
potentially contribute to solve the k instances of RSA moduli simultaneously from
the given (Nj,e;) for i = 1,2,--- k. Particularly, we propose two cryptanalytic
works upon k instances of Diophantine equations of the form ejx> — yl-zd)(Ni) =z
and e,-xl2 —y?¢(N;) = z;. Both attacks involve solving the simultaneous Diophantine
approximations using lattice basis reduction techniques.

Chapter 8 summarizes all our results together with suggestions of potential future
works that can be extended from this research.
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