

UNIVERSITI PUTRA MALAYSIA

SERVICE LIMIT CRITERIA FOR DEFLECTION AND CRACKING IN PARTIALLY PRESTRESSED BEAMS

KHONDAKER SHAMSUL ALAM

FK 1985 1

This is to certify that we have read this thesis entitled "Service Limit Criteria on Deflection land Cracking in Partially Prestressed Beams" by Khondaker Shamsul Alam, and in our opinion it is satisfactory in terms of scope, quality and presentation as partial fulfilment of the requirements for the degree of Master of Science

ALANG F. ZAINUDDIN, Ph.D. Assoc. Professor/Dean of Graduate Studies Universiti Pertanian Malaysia (Chairman Board of Examiners)

Montagne 1812/85-

PROFESSOR PETER MONTAGUE, Ph.D. Professor of Civil Engineering University of Manchester United Kingdom (External Examiner)

dultral

MOHD. NORDIN IBRAHIM, Ph.D. Associate Professor Faculty of Engineering Universiti Pertanian Malaysia (Internal Examiner)

S.A. Selan

S.A.SALAM, Ph.D. Associate Professor Facualty of Engineering Universiti Pertanian Malaysia (Internal Examiner)

Opi

ABANG ABDULLAH ABANG ALI Associate Professor/Dean Faculty of Engineering Universiti Pertanian Malaysia (Supervisor)

This thesis was submitted to the Senate of Universiti Pertanian Malaysia and was accepted as partial fulfilment of the requirements for the degree of Master of Science.

Date: G JAN 1536

ALANG P. ZAINUDDIN, PhD. Assoc. Professor/Dean of Graduate Studies Universiti Pertanian Malaysia.

SERVICE LIMIT CRITERIA FOR DEFLECTION AND CRACKING IN PARTIALLY PRESTRESSED BEAMS

KHONDAKER SHAMSUL ALAM

MASTER OF SCIENCE (STRUCTURAL ENGINEERING)

UNIVERSITI PERTANIAN MALAYSIA

1985

SERVICE LIMIT CRITERIA FOR DEFLECTION AND CRACKING IN PARTIALLY PRESTRESSED BEAMS

Ву

KHONDAKER SHAMSUL ALAM B.Sc.Eng.(Hons)(Civil),M.Eng.(Systems)(AIT)

A thesis submitted in partial fulfilment of the requirements for the degree of Master of Science in Structural Engineering.

Department of Civil and Environmental Engineering Faculty of Engineering Universiti Pertanian Malaysia

An abstract of the thesis presented to the senate of University Pertanian Malaysia in partial fulfilment of the requirements for the Degree of Master of Science.

> SERVICE LIMIT CRITERIA FOR DEFLECTION AND CRACKING IN PARTIALLY PRESTRESSED BEAMS.

> > by

Khondaker Shamsul Alam

November, 1985

Supervisor : Associate Professor Abang Abdullah Abang Ali.

Faculty : Engineering

ABSTRACT

This thesis has been concerned with the primary objective of studying the serviceability behavior of partially prestressed concrete beams. Seven simply supported rectangular beams were tested on an effective span of 2.745 m subjected to two third point loadings. The variables were the amount of prestressing wires and ordinary reinforcement steel. The effect of bond was also investigated. Four beams were fully bonded by using pressurised grouting while three other beams were tested unbonded.

Crack widths and deflections were recorded at various loadings and crack propagations observed. The results obtained were compared

ii

with theoretical values proposed by various authors. Results were also compared with the service limit criteria for cracking and deflection according to the British Standards code of practice, CP 110 : 1972.

It was observed that the service limit criteria for cracking and deflection as set out by the code are too conservative for rectangular beams tested. It was found that the existing theory greatly underestimates the ultimate as well as service load carrying capacity and overestimates crack widths of partially prestressed concrete beams. It was also found that the nature of bonding has a great influence on crack widths and deflections. Bonded beams greatly improve on serviceability by having increased load carrying capacity and reduced crack width.

Translation in Bahasa Malaysia

Sebuah abstrak tesis yang disampaikan kepada Senat Universiti Pertanian Malaysia bagi memenuhi secara separa keperluan bagi Ijazah Master Sains.

KRITERIA HAD KHIDMAD BAGI PESONGAN DAN KERETAKAN RASUK-RASUK PRATEGASAN SEPARA

oleh

Khondaker Shamsul Alam

November, 1985

Penyelia : Profesor Madya Abang Abdullah Abang Ali

Fakulti : Kejuruteraan

ABSTRAK

Tesis ini bertujuan menjalankan kajian mengenai kelakuan kebolehkhidmatan rasuk-rasuk konkrit prategasan separa. Tujuh buah rasuk berkeratan segi empat tepat tersokong secara mudah diuji di atas jarak berkesan 2.745m dengan dua bebanan titik ketiga. Pembolehubah terdiri dari jumlah dawai prategasan dan keluli tetulang biasa. Kesan ikatan telah juga dikajikan. Empat buah rasuk yang digunakan terikat penuh melalui turapan tekanan dan tiga buah rasuk yang lain telah diuji tanpa ikatan.

Kelebaran retak dan pesongan telah direkodkan pada beberapa bebanan dan perombatan retak telah diperhatikan. Hasil kajian yang diperolehi dibandingkan, dengan nilai-nilai teori

iv

yang telah dicadangkan oleh beberapa penyelidik. Hasil kajian tersebut telah juga dibandingkan dengan kriteria had kebolehkhidmatan untuk keretakan dan pesongan mengikut Kanun Amalan Piawaian British CP110:1972.

Adalah diperhatikan bahawa kriteria had kebolehkhidmatan untuk keretakan dan pesongan sebagaimana yang ditetapkan oleh kanun tersebut, rasuk keratan segi empat tepat yang diujikan terlalu konservatif. Telah didapati bahawa teori yang sedia ada memberi anggaran rendah terhadap keupayaan membawa beban muktamad dan khidmat dan memberi anggaran tinggi terhadap kelebaran retak bagi rasuk konkrit prategasan separa. Telah juga didapati keadaan ikatan mempunyai pengaruh yang mendalam ke atas kelebaran retak dan pesongan. Rasuk terikat mempunyai kebolehkhidmatan yang lebih baik dengan keupayaan membawa

ACKNOWLEDGEMENT

The author wishes to express his profound gratitude and thanks to his supervisors, Ir. Abang Abdullah Abang Ali, Associate Professor and Dean, Dr. S.A. Salam, Associate Professor of Civil Engineering and Ir. Syed Mansur Syed Junid, Head of the Dept. of Civil and Environmental Engineering, of the Faculty of Engineering, Universiti Pertanian Malaysia, for their continued guidance, encouragement and help to make this study a success.

The author also wishes to extend his thanks to Mr. Halim, Mr. Ghazali and Mr. Quddus, technicians, Structures Lab. for their help in laboratory testing.

Thanks are due to Khatijah for a neat typing of the manuscript. Thanks are also to Universiti Malaya for granting permission to use their library and media facilities.

Last but not the least, my sincere gratitude is due to the Mara Institute of Technology, Shah Alam, for the kind permission to undertake the above study and research.

CONTENTS

		P	age
ABSTRACT			ii
ACKNOWLEDG	EMENT		vi
CONTENTS			vii
LIST OF NOT	IOITA]	IS	x
LIST OF FIC	GURES		xiii
LIST OF TAN	BLES		xiv
LIST OF PL	ATES		xv
LIST OF AP	PENDI	CES	xvi
CHAPTER 1	: 11	NTRODUCTION	1
	1.1	General	
	1.2	Partially prestressed concrete beams	1
	1.3	Scope and objective.	5
CHAPTER 2	: L	ITERATURE REVIEW	9
-	2.1	Prestressed concrete	9
	2.2	Partially prestressed concrete	10
	2.3	Advantages of partially prestressed concrete	12
	2.4	Crack and deflection study of partially prestressed concrete beams	13
	2.5	Conclusion from literature survey	20
CHAPTER 3	: TI	HEORETICAL CONSIDERATION	22
	3.1	Beam under four point loading	22
	3.2	Prediction of cracking load and bending moment	23
	3.3	Prediction of ultimate load and bending moment	24
	3.4	Prediction of service load	27

vi

		Page
	3.5 Calculation of deflection and crack widths	28
CHAPTER 4	: MATERIALS	33
	4.1 Concrete	
	4.1.1 Cement, sand and aggregate	33
	4.2 Prestressing wires	35
	4.3 Reinforcing bars	37
	4.4 Stirrup reinforcement	37
	4.5 Plastic tubing, grease etc.	37
CHAPTER 5	: BEAM TEST PROCEDURES	38
	5.1 Beam specimen preparation	38
	5.1.1 The beam specimen mould	38
	5.1.2 Casting and curing of concrete	39
	5.1.3 Test cubes	40
	5.1.4 Removal of plastic tubing	40
	5.1.5 Prestressing	40
	5.1.6 Grouting	41
	5.2 The beam test	41
	5.2.1 The testing machine	41
	5.2.2 Setting of the beam	42
	5.2.3 Beam testing	43
	5.2.4 Testing the cubes	43
	5.2.5 Details of beams tested	44
CHAPTER 6	: RESULTS AND DISCUSSIONS OF BEAM TESTS	48
	6.1 Beam tests results	48
	6.1.1 Beam Bl	48

	6.1.2	Beam B2	49
	6.1.3	Beam B3	51
	6.1.4	Beam B4	53
	6.1.5	Beam B5	54 '
	6.1.6	Beam B6	56
	6.1.7	Beam B7	58
	6.2	Discussion	59
	6.2.1	Ultimate Load	59
	6.2.2	Cracking Load	60
	6.2.3	Service Load	62
	6.2.4	Crack width and crack propagation	62
	6.2.4	Deflection	67
CHAPTER 7	-	CLUSION AND RECOMMENDATIONS FUTURE RESEARCH	90
	7.1	Conclusions	90
	7.1.1	Ultimate Load	90
	7.1.2	Cracking	91
	7.1.3	Deflection	92
	7.2	Recommendations for future research	92

χ.

BIBLIOGRAPHY

.

94

Page

LIST OF NOTATIONS

A	Area of section
Ap	Area of prestressing steel
A _s	Area of non-prestressed steel
Asv	Cross-sectional area of the two legs of a link
a _{cs}	Average crack spacing
At	Concrete area in tension
Ь	Breadth of a section
С	Cover to reinforcement
dp	Distance of prestress steel from top fibre of the section
dt	Distance of non-prestressed steel from top fibre of the section
е	Eccentricity of prestressing force
Ep	Young's modulus of elasticity for prestressing steel
E _c	Young's modulus of elasticity for concrete
f	Bending stress
fl	Overall flexural tensile stress in concrete
fp	Stress in prestress steel at ultimate
fs	Stress in non-prestressed steel at ultimate
F _{sp}	Force in prestress steel
F _{st}	Force in non-prestressed steel
Fc	Force in concrete block
Fcu	Characteristic strength of concrete
Fu	Ultimate load carrying capacity of a section
f _{ct}	Fictitious tensile stress in concrete

•

f _{nt}	Stress in prestress steel at any load level beyond decompression load
f_d	Stress in prestress steel corresponding to the decompression load
fpu	Characteristic strength of prestressing wire
fy	Characteristic strength of reinforcing bars
f _{cp}	Compressive stress at the centroidal axis due to prestress
ft	Maximum principal tensile stress
f _{pt}	Stress due to prestress
G _k	Dead load on the beam
h	Total depth of a beam
I	Moment of inertia about neutral axis
K	A constant in Bennett-Chandrasekhar formula
L	Span of beam
М	Bending moment
Mu	Ultimate moment capacity of a section
Mo	Moment necessary to produce zero stress
Mc	Cracking moment
n	Modular ratio
Pi	Initial prestressing force
Pe	Effective prestressing force
Pcr	Cracking load
Q_k	Imposed service load on the beam
r	Radius of gyration of a section
Sv	Spacing of link along the member
v _{co}	Ultimate shear resistance of a section uncracked in flexure
v max	Maximum shear stress

vc	Ultimate shear stress in concrete
Vcr	Ultimate shear resistance of a section cracked in flexure
W	Crack width in mm
W _{max}	Maximum crack width in mm
x	Distance of neutral axis from the top fibre
у	Distance of a fibre from the neutral axis
Уb	Distance to the bottom fibre from the neutral axis
z 1	Lever arm for prestress steel force
z ₂	Lever arm for non-prestressed steel force
ଟ୍ର ୧	Strain in prestress steel at ultimate
٤ _t	Strain in non-prestressed steel at ultimate
Δ_{l}	Deflection at mid span of the beam due to two point loads
۵ ₂	Deflection due to self weight u.d.l at mid span of beam
Δ_3	Deflection at mid span due to effective prestress force
Δ_{max}	Maximum total deflection at mid span of the beam
Σο	Sum of the circumferences of the reinforcing elements
Υ _m	Partial factor of safety of material

LIST OF FIGURES

X

1.1	Stress Distribution on Prestressed Concrete Section	2
4.1	Grading Curve for Coarse, Fine and Combined Aggregate	36
6.1.1	Load Against Maxm. Deflection for Beams Bl, B2	69
6.1.2	Load Against Deflection for Beams B3, B4, B5, B6	70
6.1.3	Load Against Deflection for Beam B7	71
6.2.1	Load Against Max. Crack Width for Beams Bl, B2	72
6.2.2	Load Against Max. Crack Width for Beams B3, B4, B5, B6	73
6.2.3	Load Against Max. Crack Width for Beam B7	74
6.3.1	Max. Deflection Against Max. Crack Width for Beams Bl, B2	75
6.3.2	Max. Deflection Against Max. Crack Width for Beams B3, B4, B5, B6	76
6.3.3	Max. Deflection Against Max. Crack Width for Beam B7	77
6.4.1	Load Against Total No. of Cracks for Beams Bl, B2	78
6.4.2	Load Against Total No. of Cracks for Beams B3, B4, B5, B6	79
6.4.3	Load Against Total No. of Cracks for Beam B7	80

,

LIST OF TABLES

		Page
4.1	Properties of Concrete in Beams Specimen	34
5.1	Details of Beams Tested .	47
6.1	Experimental Against Calculated Service Load, Cracking Load and Ultimate Load	81
6.2	Calculation of maximum Deflection.	82
6.3	Experimental Cracking Load and Deflection at 0.2mm Crack Width Against Theoretical Values	82
6.4	Experimental Against Theoretical Maximum Deflection at Calculated Service Load	84
6.5	Calculated Crack Width CEB-FIP Formula	85
6.6	Calculated Crack Width, Beeby-Taylor Formula	86
6.7	Calculated Crack Width, Bennet-Chandrasekhar Formula	87
6.8	Calculated Crack Width and Crack Spacing, Nawy-Huang Formula	88
6.9	Experimental Against Calculated Crack Width at 55% Ultimate Load	89
6.10	Experimental Against Calculated Crack Width at Calculated Service Load	89

LIST OF PLATES

1.	The Casting Mould	97
2.	The Prestressing Machine	97
3.	Concrete Cube Testing Machine	98
4.	The Grouting Pump Showing Grouting Operation	99
5.	The Beam Testing Frame	100
6.	Control Panel of Beam Testing Machine	100
7.	The Curing of Beam	101
8.	Prestressing Jack in Operation	101
9.	Instruments Used : measuring microscope, dial gauge, measuring tape and magnifying glass	1 02
10.	Prestressing wire and polythene tube	102
11.	Test beam mounted on testing frame	103
12.	Cracking pattern of beam Bl	103
13.	Cracking pattern of beam B2	104
14.	Cracking pattern of fully prestressed beam B3	104
15.	Closeup of tree structured cracking pattern of fully prestressed beam B3	105
16.	Cracking pattern of beam B4	105
17.	Cracking pattern of beam B5	106
18.	Cracking pattern of beam B6	106
19.	Cracking pattern of beam B7	107

•

LIST OF APPENDICES

A	Design of Partially Prestressed Concrete Beams for Testing	108
B	Design of Concrete Mix.	155
С	Calculation of Deflection	160
D	Calculation of Crack Width	167
E	Test Results	187

· ·

CHAPTER 1

INTRODUCTION

1.1 General

In the limit state design of concrete structures, the limit state criteria of deflection and cracking are the two service limit criteria which need to be satisfied. This is required for reinforced concrete structures as well as for prestressed concrete structures. In partially prestressed concrete beams, this is important since limited cracking is allowed in this type of structure. Compliance with the limit state requirements for deflection and cracking requires a reasonably good estimate of maximum deflection and the width of cracks. As more and more prestressed concrete beams incorporating bonded reinforcing bars (partially prestressed) are built today, crack control is becoming more significant.

1.2 Partially prestressed concrete beams

Consider a simply supported prestressed concrete beam with eccentric tendons and subjected to external loads as shown in Fig. 1.1(a). In the midspan of the beam the concrete section will have a stress distribution as follows:

Fig 1.1 (b) Uniform compression due to the prestress only. This component of stress is considered axial for uniformity.

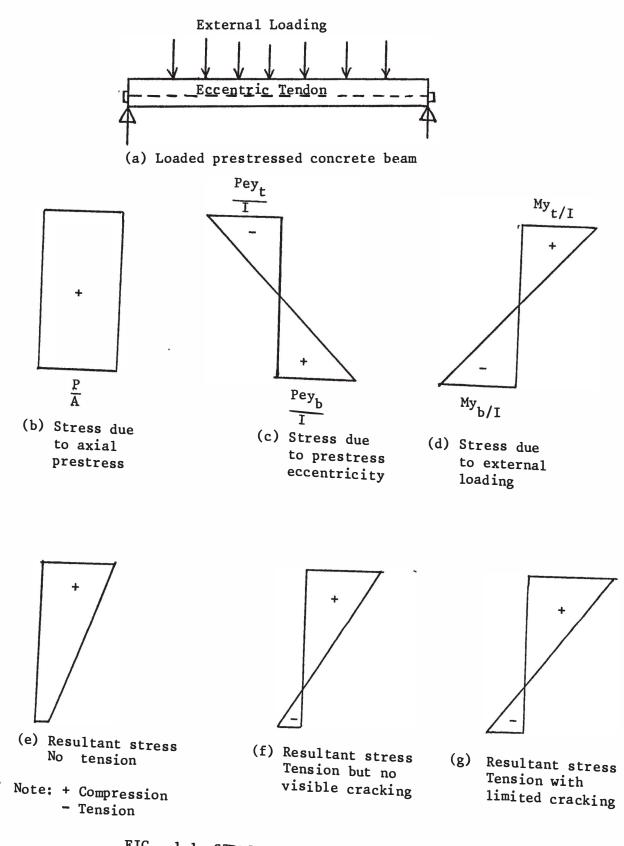


FIG. 1.1 STRESS DISTRIBUTION IN PRESSTRESSED CONCRETE SECTION

- Fig. 1.1 (c) Stress due to the eccentricity, e of prestressing force. This component stress will cause tension at the top fibre and compression at the bottom fibre.
- Fig, 1.1 (d) Stress due to the external applied load. This stress will cause compression at the top fibre and tension at the bottom fibre.

When the prestressing force and the external load act together, the net resultant stress will be the algebraic sum of the stresses described in (b), (c) and (d). The resultant stress distribution can be any of the following types:

- Fig. 1.1 (e) No tensile stress at the bottom fibre i.e the whole section is under compression. The stress diagram can be trapezoidal or triangular depending on whether there will be a compressive stress at the bottem fibre or the stress will be zero.
- Fig. 1.1 (f) Tensile stress at the bottom fibre but with no visible crack.
- Fig. 1.1 (g) Tensile stress at the bottom fibre but with visible cracks.

Based on these three resultant stress conditions, CP 110 (clause 2.2.3.2) classifies prestressed concrete structures into three categories, namely:

Class 1 : No tensile stress.

Class 2 : Tensile stress but no visible cracking.

Class 3 : Tensile stress but surface width of cracks not exceeding 0.2 mm.

According to the classification by CP 110, partially prestressed concrete structures fall under class 3 category. It is also noteworthy that CP 110 restricts the width of cracks to 0.2 mm in prestressed concrete structures and not 0.3 mm as in reinforced concrete. This is due to the fact that the percentage of steel in prestressed concrete is less than that of reinforced concrete and a wider crack will have severe effect on the prestressing tendons which are susceptible to corrosion and environmental changes.

A partially prestressed concrete beam is prepared by introducing a limited number of reinforcing bars in addition to the prestressing tendons. The addition of a few reinforcing bars significantly improve load carrying capacity and flexural behavior of the beam. This also makes it economical as the cost of reinforcing steel is only a small fraction of the expensive prestressing tendons and the cost associated with prestressing.

Partially prestressed concrete may be defined as concrete reinforced with a combination of prestressed and non prestressed reinforcements in which prestress is induced of such magnitude and distribution that the stresses resulting from the dead weight of the structure and from externally applied load are counteracted so as to minimize tensile stresses and cracking in the tension zone of a member.