

UNIVERSITI PUTRA MALAYSIA

ESTIMATION OF MULTIPLE EXPONENTIAL SUMS ASSOCIATED WITH QUARTIC POL YNOMIALS

YAP HONG KEAT

ESTIMATION OF MULTIPLE EXPONENTIAL SUMS ASSOCIATED WITH QUARTIC POLYNOMIALS

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfilment of the Requirements for the Degree of Doctor of Philosophy

COPYRIGHT

All material contained within the thesis, including without limitation text, logos, icons, photographs, and all other artwork, is copyright material of Universiti Putra Malaysia unless otherwise stated. Use may be made of any material contained within the thesis for non-commercial purposes from the copyright holder. Commercial use of material may only be made with the express, prior, written permission of Universiti Putra Malaysia.

Copyright © Universiti Putra Malaysia

ESTIMATION OF MULTIPLE EXPONENTIAL SUMS ASSOCIATED WITH QUARTIC POLYNOMIALS

By

YAP HONG KEAT

March 2018

$\begin{array}{ll}\text { Chairman } & : \\ \text { Institute } & \text { Associate Professor Siti Hasana Binti Sapar, PhD } \\ \text { Mathematical Research }\end{array}$

Let p be a prime number and $f(x, y)$ be a polynomial in $Z_{p}[x, y]$. For $\alpha>1$, the exponential sums associated with f modulo a prime p^{α} is defined as $S\left(f ; p^{\alpha}\right)=\sum_{x, y \bmod p^{\alpha}} e_{p^{\alpha}}(f(x, y))$. Estimation of $S\left(f ; p^{\alpha}\right)$ has been shown to depend on the cardinality of common roots of the partial derivative polynomials, f_{x} and f_{y} of f. Such cardinality then has been shown can be derived from the p-adic orders of common roots of the partial derivative polynomials, f_{x} and f_{y} in the neighbourhood of $\left(x_{0}, y_{0}\right)$. The objective of this research is to arrive at such estimations associated with three different quartic polynomials.

To achieve this objective we employ the Newton polyhedron technique to estimate the p-adic sizes of common zeros of partial derivative polynomials associated with the three quartic polynomials considered. The combination of indicator diagrams associated with the polynomials are examined and analyzed on cases where p-adic sizes of common zeros occur at the intersection point of the indicator diagrams. In addition, we apply certain conditions to ensure the existence of common zeros of partial derivative polynomials associated with the three quartic polynomials considered.

The information obtained above is then applied to estimate the cardinality of the set $V\left(f_{x}, f_{y} ; p^{\alpha}\right)$. This estimation is then applied in turn to arrive at the estimation of exponential sums for the polynomials considered.

PENGANGGARAN HASIL TAMBAH EKSPONEN BERGANDA DISEKUTUKAN DENGAN BENTUK KUARTIK

Oleh

YAP HONG KEAT

Mac 2018

Pengerusi : Profesor Madya Siti Hasana Binti Sapar, PhD
 Institut : Penyelidikan Matematik

Katakan p suatu nombor perdana dan $f(x, y)$ suatu polinomial dalam $Z_{p}[x, y]$. Untuk $\alpha>1$, hasil tambah eksponen yang disekutukan dengan f modulo p^{α} ditakrifkan sebagai $S\left(f ; p^{\alpha}\right)=\sum_{x, y \bmod p^{\alpha}} e_{p^{\alpha}}(f(x, y))$ yang dinilaikan bagi semua x dan y di dalam set reja lengkap modulo p^{α}. Penganggaran $S\left(f ; p^{\alpha}\right)$ telah ditunjukkan bersandar kepada kekardinalan pensifar sepunya polinomial terbitan separa, f_{x} dan f_{y} bagi f. Kekardinalan tersebut kemudiannya ditunjukkan boleh diterbitkan dari saiz p-adic pensifar sepunya polinomial terbitan separa, f_{x} dan f_{y} dalam kejiranan (x_{0}, y_{0}). Objektif kajian ini adalah untuk mendapatkan penganggaran hasil tambah eksponen disekutukan dengan tiga polinomial berbentuk kuartik yag berbeza.

Untuk mencapai objektif di atas kami menggunakan teknik polihedron Newton untuk menganggarkan saiz p-adic pensifar sepunya polinomial terbitan separa yang disekutukan dengan tiga polinomial kuartik yang dipertimbangkan. Kombinasi gambar rajah penunjuk yang disekutukan dengan polinomial di atas diperiksa dan dianalisis bagi kes saiz p-adic pensifar sepunya yang berlaku di titik persilangan gambar rajah penunjuk. Di samping itu, kami mengenakan syarat-syarat tertentu bagi memastikan kewujudan pensifar sepunya polinomial terbitan separa yang disekutukan dengan tiga polinomial kuartik yang dipertimbangkan.

Keputusan yang diperolehi digunakan untuk menganggarkan kekardinalan bagi set $V\left(f_{x}, f_{y} ; p^{\alpha}\right)$. Penganggaran tersebut kemudiannya digunakan untuk mendapatkan penganggaran hasil tambah eksponen yang disekutukan dengan polinomial kuartik yang dipertimbangkan.

ACKNOWLEDGEMENTS

I am thankful to Professor Dato' Dr. Haji Kamel Ariffin Bin Mohd Atan and Associate Professor Dr. Siti Hasana Binti Sapar, both my supervisor, for their guidance, encouragement, patience, advice and critical reviews towards completion of my study and thesis. Without their guidance and help from the initial to the final level that enabled me to develop an understanding of the study, I could never accomplish this difficult task. I would also like to extend my gratitude to my cosupervisor, Associate Professor Dr. Mohamad Rushdan Md Said and Dr. Mohamad Aidil Mohamad Johari for their guidance, providing related information, and advice. I would also like to express my gratitude to all lecturers who had taught me before.

I am grateful to all my friends for giving me advice and providing related information in my study. They also gave me support and encouragement whenever I encounter problems.

Finally, my appreciation goes to my dearest parents and beloved family for their understanding, endless patience and encouragement when it was most required. I would like to share my enjoyment with them, they will always in my heart.

This thesis was submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfilment of the requirement for the degree of Doctor of Philosophy. The members of the Supervisory Committee were as follows:

Siti Hasana bt Sapar, PhD

Associate Professor
Faculty of Science
Universiti Putra Malaysia
(Chairman)
Mohamad Rushdan Md Said, PhD
Associate Professor
Faculty of Science
Universiti Putra Malaysia
(Member)
Mohamad Aidil Mohamad Johari, PhD
Senior Lecturer
Faculty of Science
Universiti Putra Malaysia
(Member)

ROBIAH BINTI YUNUS, PhD

Professor and Dean
School of Graduate Studies
Universiti Putra Malaysia
Date: 19 December 2019

Declaration by graduate student

I hereby confirm that:

- this thesis is my original work;
- quotations, illustrations and citations have been duly referenced;
- this thesis has not been submitted previously or concurrently for any other degree at any institutions;
- intellectual property from the thesis and copyright of thesis are fully-owned by Universiti Putra Malaysia, as according to the Universiti Putra Malaysia (Research) Rules 2012;
- written permission must be obtained from supervisor and the office of Deputy Vice-Chancellor (Research and innovation) before thesis is published (in the form of written, printed or in electronic form) including books, journals, modules, proceedings, popular writings, seminar papers, manuscripts, posters, reports, lecture notes, learning modules or any other materials as stated in the Universiti Putra Malaysia (Research) Rules 2012;
- there is no plagiarism or data falsification/fabrication in the thesis, and scholarly integrity is upheld as according to the Universiti Putra Malaysia (Graduate Studies) Rules 2003 (Revision 2012-2013) and the Universiti Putra Malaysia (Research) Rules 2012. The thesis has undergone plagiarism detection software

Signature: \qquad
Name and Matric No: Yap Hong Keat, GS31101

Date: \qquad
\qquad

Declaration by Members of Supervisory Committee

This is to confirm that:

- the research conducted and the writing of this thesis was under our supervision;
- supervision responsibilities as stated in the Universiti Putra Malaysia (Graduate Studies) Rules 2003 (Revision 2012-2013) were adhered to.

Signature:
Name of
Chairman of Supervisory Committee:

Associate Professor Dr. Siti Hasana bt Sapar

Signature:
Name of Member of Supervisory Committee:

Associate Professor Dr. Mohamad Rushdan Md Said

Signature:
Name of Member of Supervisory Committee:

Dr. Mohamad Aidil Mohamad Johari

TABLE OF CONTENTS

Page
ABSTRACT i
ABSTRAK ii
ACKNOWLEDGEMENTS iv
APPROVAL v
DECLARATION vii
LIST OF FIGURES xiii
LIST OF SYMBOLS AND ABBREVIATIONS xv
CHAPTER
1 INTRODUCTION 1
1.1 Introduction 1
$1.2 \quad$ Background 1
1.3 Problem Statement 15
1.4 Research Objectives 15
1.5 Organization of Thesis 16
1.6 Conclusion 172 NEWTON POLYHEDRON AND ITS INDICATORDIAGRAM18
2.1 Introduction 18
2.2 Newton Polygon 18
2.3 Newton Polyhedron 21
2.4 Normal to Newton Polyhedron 24
2.5 Indicator Diagram 28
2.5.1 Points on the Indicator Diagram 29
2.5.2 p-adic Orders of Common Zeros of Polynomials 31
2.6 Conclusion 33
3 p-ADIC ORDERS OF COMMON ZEROS OF PARTIALDERIVATIVE POLYNOMIALS ASSOCIATED WITHQUARTIC POLYNOMIAL34
3.1 Introduction 34
$3.2 p$-adic Orders of Common Zeros in the Neighbourhood of 0,0 34
$3.3 \quad p$-adic Orders of Common Zeros in the Neighbourhood of $x 0, y 0$ 44
3.4 Conclusion 53
4 p-ADIC ORDERS OF COMMON ZEROS OF PARTIAL DERIVATIVE POLYNOMIALS ASSOCIATED WITH QUARTIC POLYNOMIAL 54
4.1 Introduction 54
$4.2 \quad p$-adic Orders of Common Zeros in the Neighbourhood of $x 0, y 0$ with the condition ordpac2 > ordpb3 54
$4.3 \quad$-adic Orders of Common Zeros in the Neighbourhood of $x 0, y 0$ with the condition ordpb3 > ordpac2 68
4.4 Conclusion 775 p-ADIC ORDERS OF COMMON ZEROS OF PARTIALDERIVATIVE POLYNOMIALS ASSOCIATED WITHQUARTIC POLYNOMIAL78
5.1 Introduction 78
$5.2 \quad p$-adic Sizes of Common Zeros in the Neighbourhood of $x 0, y 0$ subject to condition ordpbc >ordp $\lambda>$ ordpab 79
$5.3 \quad$-adic Sizes of Common Zeros in the Neighbourhood of $x 0, y 0$ subject to condition ordpab $>\operatorname{ordp} \lambda>\operatorname{ordpbc}$ 102
$5.4 \quad p$-adic Sizes of Common Zeros in the Neighbourhood of $x 0, y 0$ subject to condition ordp $\lambda>$ ordpbc $>$ ordpab 117
$5.5 \quad p$-adic Sizes of Common Zeros in the Neighbourhood of $x 0, y 0$ subject to condition ordp $\lambda>$ ordpab $>$ ordpbc 131
$5.6 \quad p$-adic Sizes of Common Zeros in the Neighbourhood of $x 0, y 0$ subject to condition ordpbc >ordpab > ordp λ 144
$5.7 \quad p$-adic Sizes of Common Zeros in the Neighbourhood of $x 0, y 0$ subject to condition ordpab $>$ ordpbc $>$ ordp λ 157
5.8 Conclusion 1706 ESTIMATION OF CARDINALITY OF THE SET OFSOLUTIONS TO CONGRUENCE EQUATIONS171
6.1 Introduction 171
6.2 Cardinality of Set of Solution to Congruence Equations of Partial Derivative Polynomials associated with Quartic Polynomial of the form $f x, y=a x 4+b x 3 y+c x y 3+$ $d y 4+r x+s y+t$ 172
6.3 Cardinality of Set of Solution to Congruence Equations ofPartial Derivative Polynomials associated with QuarticPolynomial of the form $f x, y=a x 4+b x 2 y 2+c x y 3+$$d y 4+r x+s y+t$173
6.4 Cardinality of Set of Solution to Congruence Equations ofPartial Derivative Polynomials associated with QuarticPolynomial of the form $f x, y=a x 4+b x 3 y+c x 2 y 2+$$d x y 3+e y 4+r x+s y+t$175
6.4.1 Cardinality of Set of Solution to Congruence Equations of Partial Derivative Polynomials associated with Complete Quartic Polynomial under Condition ordpbc >ordp $\lambda>$ ordpab 176
6.4.2 Cardinality of Set of Solution to Congruence Equations of Partial Derivative Polynomials
associated with Complete Quartic Polynomial under Condition ordpab>ordp $\lambda>$ ordpbc 178
6.4.3 Cardinality of Set of Solution to Congruence Equations of Partial Derivative Polynomials associated with Complete Quartic Polynomial under Condition ordp $\lambda>$ ordpbc $>$ ordpab 180
6.4.4 Cardinality of Set of Solution to Congruence Equations of Partial Derivative Polynomials associated with Complete Quartic Polynomial under Condition ordp $\lambda>$ ordpab $>$ ordpbc 183
6.4.5 Cardinality of Set of Solution to Congruence Equations of Partial Derivative Polynomials associated with Complete Quartic Polynomial under Condition ordpbc $>$ ordpab $>$ ordp λ 184
6.4.6 Cardinality of Set of Solution to Congruence Equations of Partial Derivative Polynomials associated with Complete Quartic Polynomial under Condition ordpbc $>$ ordpab $>$ ordp λ 186
6.5 Conclusion 187
7 ESTIMATION OF EXPONENTIAL SUMS IN TWO VARIABLES 188
7.1 Introduction 188
7.2 Estimation of Exponential Sums associated with Quartic Polynomial of the form $f x, y=a x 4+b x 3 y+c x y 3+$ $d y 4+r x+s y+t$ 191
7.3 Estimation of Exponential Sums associated with Quartic Polynomial of the form $f x, y=a x 4+b x 2 y 2+c x y 3+$ $d y 4+r x+s y+t$ 193
7.4 Estimation of Exponential Sums associated with QuarticPolynomial of the form $f x, y=a x 4+b x 3 y+c x 2 y 2+$$d x y 3+e y 4+r x+s y+t$196
7.4.1 Estimation of Exponential Sums associated with Quartic Polynomial of the form $f x, y=a x 4+$ $b x 3 y+c x 2 y 2+d x y 3+e y 4+r x+s y+t$ under condition ordpbc>ordp $\lambda>\operatorname{ordpab}$ 196
7.4.2 Estimation of Exponential Sums associated with Quartic Polynomial of the form $f x, y=a x 4+$ $b x 3 y+c x 2 y 2+d x y 3+e y 4+r x+s y+t$ under condition ordpab>ordp $\lambda>$ ordpbc 199
7.4.3 Estimation of Exponential Sums associated with Quartic Polynomial of the form $f x, y=a x 4+$ $b x 3 y+c x 2 y 2+d x y 3+e y 4+r x+s y+t$ under condition $\operatorname{ordp} \lambda>$ ordpbc $>$ ordpab 202
7.4.4 Estimation of Exponential Sums associated with Quartic Polynomial of the form $f x, y=a x 4+$ $b x 3 y+c x 2 y 2+d x y 3+e y 4+r x+s y+t$ under condition ordp $\lambda>$ ordpab $>$ ordpbc 207
7.4.5 Estimation of Exponential Sums associated with Quartic Polynomial of the form $f x, y=a x 4+$ $b x 3 y+c x 2 y 2+d x y 3+e y 4+r x+s y+t$ under condition ordpbc $>$ ordpab $>$ ordp λ 208
7.5 Conclusion 212
8 CONCLUSION AND FUTURE RESEARCH 213
8.1 Introduction 213
8.2 Main Results 213
8.3 Conclusion 233
8.4 Future Research 234
REFERENCES 235
BIODATA OF STUDENT 238
LIST OF PUBLICATIONS 239

LIST OF FIGURES

Figure

Page

2.2.1 Newton polygon of polynomial $f(x)=81-63 x+15 x^{2}-x^{3}$ with $p=3$
2.2.2 Newton polygon of polynomial $f(x)=4-x^{2}$ with $p=2$
2.3.1 \quad Newton diagram of polynomial $f(x, y)=4 x^{2}+2 y^{2}-16$ with 22 $p=2$
2.3.2 Newton diagram of polynomial $f(x, y)=25 x^{2}-5 x y-$ 22 $75 y^{2}-1125$ with $p=5$

2.3.3 Newton polyhedron of polynomial $f(x, y)=4 x^{2}+2 y^{2}-16$ with $p=2$

2.3.4 Newton polyhedron of polynomial $f(x, y)=25 x^{2}-5 x y-$23 $75 y^{2}-1125$ with $p=5$

2.5.1.1 Indicator diagram associated with Newton polyhedron of the polynomial $f(x, y)=4 x^{2}+2 y^{2}-16$ with $p=2$

2.5.1.2 Indicator diagram associated with Newton polyhedron of the 29 polynomial $f(x, y)=25 x^{2}-5 x y-75 y^{2}-1125$ with $p=5$
2.5.1.1.1 Indicator diagram associated with Newton polyhedron of 30 polynomial $f(x, y)=4 x^{2}+2 y^{2}-16$ with $p=2$
2.5.1.1.2 Indicator diagram associated with Newton polyhedron of polynomial $f(x, y)=25 x^{2}-5 x y-75 y^{2}-1125$ with $p=5$
2.5.2.1 Combination of indicator diagrams associated with $f(x, y)=$ $8 x+4 y-32$ (in solid lines) and $g(x, y)=4 x+4 y-24$ (in dash lines) with $p=2$. The simple intersection point $(1,2)$ corresponds to the 2 -adic order of the root $(2,4)$ of f and g
2.5.2.2 Combination of indicator diagrams associated with $f(x, y)=$ $9 x^{2}+9 y^{2}-162$ (in solid lines) and $g(x, y)=18 x y-162$ (in dash lines) with $p=3$. The intersection point $(1,1)$ at the vertex corresponds to the 2-adic order of the root $(\pm 3, \pm 3)$ of f and g
2.5.2.3 Combination of indicator diagrams associated with $f(x, y)=$ 33
$4 x+8 y-40$ (in solid lines) and $g(x, y)=24 x+8 y-80$ (in dash lines) with $p=2$. The point $(1,2)$ corresponds to the 2 - adic order of the root $(2,4)$ of f and g
3.2.1 Combination of indicator diagrams associated with F (in solid lines) and G (in dash lines)3.3.1 Combination of indicator diagrams associated with F (in solid47lines) and G (in dash lines)4.2.1 \quad Indicator diagram associated with $f(U, V)=U^{3}+a U^{2}+b U+$58 c
4.2.2 Indicator diagram associated with $g(U, V)=V^{3}+r V^{2}+s V+$59 t
4.2.3 Combination of indicator diagrams associated with $f(U, V)=$ 59 $U^{3}+a U^{2}+b U+c$ (in solid lines) and $g(U, V)=V^{3}+r V^{2}+$ $s V+t$. (in dash lines)

LIST OF SYMBOLS AND ABBREVIATIONS

p	Prime number
α	Exponent of prime numbers
Z	Ring of integers
R	Field of real numbers
Q	Field of rational numbers
Z_{p}	Ring of p-adic numbers
Q_{p}	Field of p-adic numbers
$\overline{Q_{p}}$	Algebraic closure of Q_{p}
Ω_{p}	Completion of $\overline{Q_{p}}$
\underline{X}	n-tuple of variable (x_{1}, \ldots, x_{n})
\underline{f}	n-tuple ($f_{1}, f_{1} \ldots, f_{n}$) of polynomials, $n \geq 1$
$\operatorname{deg}(\underline{f})$	Degree of \underline{f}
$\Delta(f)$	Discriminant of f
N_{f}	Newton polyhedron of f
ord ${ }_{p} a$	Highest power of p which divides a
V	Vertex of N_{f}
E	Edge of N_{f}
F	Face of N_{f}
δ	Determinant factor
max	Maximum
min	Minimum
mod	Modulo
exp	Exponential

$e_{k}(f(t))$	$e^{2 \pi i f(t) / k}$
Σ	Summation
$\operatorname{det} A$	Determinant A
$V\left(\underline{f} ; p^{\alpha}\right)$	Set $\left\{x \bmod p^{\alpha}: \underline{f} \equiv 0 \bmod p^{\alpha}\right\}$
$N\left(\underline{f} ; p^{\alpha}\right)$	Cardinality of set $V\left(\underline{f} ; p^{\alpha}\right)$
$S(f ; q)$	Exponential sums of f

CHAPTER 1

INTRODUCTION

1.1 Introduction

To obtain estimates of the multiple exponential sums has been the objective of research of a number of number theorists. In this chapter, we will first go through the background of multiple exponential sums by discussing results and methods of earlier researchers. Subsequently, questions or problems that can be solved will be discussed in the problem statement. This is followed by our research objectives that state the concentration of our research and the methods we will employ. Finally, the summary of thesis will be given.

1.2 Background

Refer to Burton's (2011) book, in year 1782 Waring wrote in his book that each positive integer is expressible as a sum of at most 9 cubes, also a sum of at most 19 fourth powers, and so on. Waring's assertion has been interpreted as for a given k, can a number $g(k)$ be sought such that every $N>0$ can be represented in at least one way as

$$
N=a_{1}{ }^{k}+a_{2}^{k}+\cdots+a_{g(k)}{ }^{k}
$$

where the a_{i} are nonnegative integers, not necessarily distinct. The basic tool in the estimation of the numbers of solution is the exponential sums.

The exponential sums can be divided into two types, complete exponential sum and incomplete exponential sum. A complete exponential sum is typically a sum over all residue classes modulo an integer q. An incomplete exponential sum is a sum where the range of summation is restricted by an inequality.

Let $\underline{x}=\left(x_{1}, x_{2}, x_{3}, \ldots, x_{n}\right)$ denote a vector in the space Z^{n} where Z denotes the ring of integers. Let q be a positive integer and f a polynomial in $Z[x]$. The multiple exponential sums associated with f as defined by Loxton and Smith (1982a) is

$$
S(f ; q)=\sum_{\underline{x} \bmod q} \exp \left(\frac{2 \pi i f(x)}{q}\right)
$$

where the sum is taken over a complete set of $\underline{x} \bmod q$.

Refer to Korobov's (2011) book, in year 1811 Gauss first introduced Gaussian sums in the form

$$
\sum \exp \left(\frac{2 \pi i r^{2}}{p}\right)
$$

where p is a prime. Weyl then provided the first general method of bounding exponential sums in connection with the study of uniform distribution in year 1916.

In 1919, Hardy and Littlewood proved that

$$
|S(f ; q)| \leq c(k) q^{1-\frac{1}{k}}
$$

where $c(k)$ is a positive constant depending on k, q is an integer >1 and $S(q, f(x))=q^{1-\frac{1}{k}}$.

Mordell (1932) proved that for $q=p$ where p is large prime,

$$
|S(f ; p)|=O\left(p^{1-\frac{1}{k}}\right)
$$

where $k \geq 3$ is the degree of a polynomial with integral coefficients and O is a constant that depends only on k.

Let $f(x)=a x^{n}+b x$ with $(a, q)=1$. Davenport and Heilbronn (1936) showed that

$$
S\left(a x^{n}+b x ; q\right) \ll_{\varepsilon} q^{\theta+\varepsilon}(q, b)
$$

where \ll means much less than, $\theta=\frac{2}{3}$ when $n=3$ and $\theta=\frac{3}{4}$ when $n \geq 4$.

Let $P \in Z[x]$ be a polynomial of degree $k \geq 3$ of the form

$$
P(x)=a_{n} x^{n}+\cdots+a_{1} x+a_{0}
$$

Suppose $\alpha_{1}, \alpha_{2}, \cdots, \alpha_{n}$ be the roots of P. Then the discriminant Δ of P is defined by

$$
\Delta(P)=a_{n}^{2 n-2} \prod_{1 \leq i<j \leq n}\left(\alpha_{i}-\alpha_{j}\right)^{2} .
$$

Let $P^{\prime}(x)=(R(x))^{t}\left(R_{1}(x)\right)^{t_{1}} \cdots\left(R_{s}(x)\right)^{t_{s}}, t \geq t_{1} \geq \cdots \geq t_{s}$ where $R(x), R_{1}(x)$, \cdots are different irreducible polynomials with integral coefficients. Hua (1938) showed that

$$
|S(P(x) ; q)|<c_{1}\left(\Delta(P)^{2 k^{2}}, q\right) q^{1-\frac{1}{k}+\varepsilon}
$$

for any $\varepsilon>0$, where c_{1} depends only on k and ε.

In 1940, Hua found that for every $\varepsilon>0$,

$$
|S(f ; q)| \leq c q^{1-\left(\frac{1}{m}\right)+\varepsilon}
$$

where c is a constant which depends only on the degree of f, m and ε.

Min (1947) proved that

$$
|S(f ; q)|=O\left(q^{m\left(1-\frac{1}{n}\right)}\right)
$$

where the constant O depends on m, number of variables and n, the degree of polynomial f.

In 1948, Weil proved that

$$
|S(f ; p)| \leq(\operatorname{deg} f-1) p^{\frac{1}{2}}
$$

where p is a prime and $f \notin p Z[X]$.

An algebraic field F is a finite degree field extension of the field of rational numbers Q. Let K be an algebraic field of degree n over the rational field. Hua (1951) worked on exponential sums over an algebraic number field and found that

$$
|S(f ; q)|=O\left(N(q)^{1-\frac{1}{k}+\varepsilon}\right)
$$

where the constant implied by the symbol O depends only on k, n and ε.

As mentioned in paper of Mohd Atan and Loxton (2006) that in year 1974 Deligne showed that for a prime p,

$$
|S(f ; p)| \leq(m-1)^{n} p^{\frac{n}{2}}
$$

where m denotes the total degree of a polynomial f, when the homogeneous part of f of highest degree is non-singular modulo p.

Chubarikov (1976) proved the general estimate

$$
|S(f ; p)| \leq e^{7 d^{\prime} n} 3^{n v(q)} \tau(q)^{n-1} q^{n-1 / d^{\prime}},
$$

provided that the content of f is prime to q, where d^{\prime} is the maximum degree of f in any variable, $v(q)$ is the number of distinct prime divisor of q and $\tau(q)$ is the number of divisors of q.

In 1977, Chen considered k be an integer ≥ 3 and $f(x)=a_{k} x^{k}+\cdots+a_{1} x+a_{0}$ be a polynomial with integral coefficients such that $\left(a_{1}, \cdots, a_{k}, q\right)=1$, where q is a positive integer. He showed that

$$
|S(f ; q)| \leq c_{4}(k) q^{1-\frac{1}{k}}
$$

where

$$
c_{4}(k)=\left\{\begin{array}{cc}
e^{4 k} & \text { for } k \geq 10 \\
e^{c_{5}(k) k} & \text { for } 3 \leq k \leq 9
\end{array}\right.
$$

and $c_{5}(3)=6.1, c_{5}(4)=5.5, c_{5}(5)=5, c_{5}(6)=4.7, c_{5}(7)=4.4, c_{5}(8)=4.2$, $c_{5}(9)=4.05$.

Chen then replaced the q above by p^{l} where p is a prime and l is a positive integer while considered the same polynomial and conditions. He obtained that

$$
\left|S\left(f ; p^{l}\right)\right| \leq c_{3}(k) p^{l\left(1-\frac{1}{k}\right)}
$$

where $\quad c_{3}(k)=\left\{\begin{array}{cc}1 & \text { for } p \geq(k-1)^{\frac{2 k}{k-2}}, \\ k^{\frac{2}{k}} & \text { for }(k-1)^{\frac{2 k}{k-2}}>p \geq(k-1)^{\frac{k}{k-2}}, \\ k^{\frac{3}{k}} & \text { for }(k-1)^{\frac{k}{k-2}}>p>k, \\ (k-1) k^{\frac{3}{k}} & \text { for } p \leq k .\end{array}\right.$

Smith (1980) proved that if the discriminant $\Delta\left(F^{\prime}\right)$ of the derivative F^{\prime} of F does not vanish. Then

$$
|S(f ; p)| \leq q^{1 / 2}\left(\Delta\left(F^{\prime}\right), q\right) d_{m}(q)
$$

holds for all $q \geq 1$, where $d_{m}(q)$ denotes the number of representations of q as a product of m positive integers and $\left(\Delta\left(F^{\prime}\right), q\right)$ denotes the greatest common divisor of $\Delta\left(F^{\prime}\right)$ and q.

Let p be a prime, F be a non-linear polynomial in $Z[x]$ of degree $m+1$ such that $D(\nabla F) \neq 0$ and n number of variables. Loxton and Smith (1982a) showed that for any $\alpha>1$,

$$
\left|S\left(f ; p^{\alpha}\right)\right| \leq m^{n} p^{\frac{n \alpha}{2}}\left(D(\nabla F)^{5}, p^{\alpha}\right)^{\frac{n}{2}}
$$

In the same year, Loxton and Smith (1982b) considered f a polynomial in $Z[x]$ of degree $m+1$ with $m \geq 2$ and f^{\prime} has exponent e written as

$$
f(x)=a_{0} \prod_{\xi}(x-\xi)^{e_{\xi}}
$$

where the ξ are the distinct zeros of f, and e_{ξ} is multiplicity of ξ, so that

$$
\sum_{\xi} e_{\xi}=m .
$$

The semi-discriminant Δ of f is defined by

$$
\Delta(f)=a_{0}^{2 m-2} \prod_{\xi \neq \eta}(\xi-\eta)^{e_{\xi} e_{\eta}}
$$

where the product is over all ordered pairs ξ, η of zeros of f. Loxton and Smith (1982b) obtained that for any positive integer q,

$$
\left|S\left(f ; p^{\alpha}\right)\right| \leq q^{1-1 / 2 e}(\Delta, q)^{1 / 2 e} d_{m}(q)
$$

where $d_{m}(q)$ denotes the number of representations of q as a product of m positive integers and $e=e\left(f^{\prime}\right)$.

In 1985, Loxton and Vaughan considered a polynomial f of degree $n \geq 2$ with integer coefficients, $\delta=\operatorname{ord}_{p}\left(D\left(f^{\prime}\right)\right)$, where $\Delta\left(f^{\prime}\right)$ is the intersection of the fractional ideals of K, a submodule of the quotient field of an integral domain generated by the numbers

$$
\frac{f^{\left(e_{i}\right)}\left(\xi_{i}\right)}{e_{i}!}, i>1
$$

and

$$
\begin{gathered}
\tau= \begin{cases}1 & \text { if } p \leq n \\
0 & \text { if } p>n\end{cases} \\
e=\max _{\xi} e_{\xi}
\end{gathered}
$$

where ξ are the distinct zeros of f^{\prime} and e_{ξ} is the multiplicity of ξ.

Loxton and Vaughan (1985) obtained

$$
\left|S\left(f ; p^{\alpha}\right)\right| \leq(n-1) p^{(\alpha e+\delta+\tau) /(e+1)}
$$

Define t satisfying $p^{t} \mid\left(k a_{k}, \cdots, 2 a_{2}, a_{1}\right)$ and $p^{t+1} \nmid\left(k a_{k}, \cdots, 2 a_{2}, a_{1}\right)$. Let μ_{1}, \cdots, μ_{r} be the different zeros modulo p of the congruence equation

$$
p^{-t} f^{\prime}(x) \equiv 0(\bmod p), 0 \leq x<p
$$

and let m_{1}, \cdots, m_{r} be their multiplicities. Let $\max _{1 \leq i \leq r} m_{i}=M=M(f), m_{1}+\cdots+$ $m_{r}=m=m(f)$. Chalk (1987) showed that for $n \geq 2$, if $r>0$, then

$$
\left|S\left(f ; p^{n}\right)\right| \leq m k p^{t /(M+1)} p^{n[1-1 /(M+1)]}
$$

and if $r=0$, then

$$
S\left(f ; p^{n}\right)=0 \text { for all } n \geq 2(t+1)
$$

and otherwise

$$
\left|S\left(f ; p^{n}\right)\right| \leq p^{2 t+1} \text { where } p^{t} \leq k .
$$

Mohd Atan (1986a) showed the existence of a relationship between a Newton polyhedron and zeros of its associated polynomial. Such relationship is used to arrive at the p-adic estimates of the zeros. An upper bound to the p-adic orders of these zeros can be found using the Newton polyhedron method.

Let p be an odd prime, Z_{p} be the ring of p-adic integers, Q_{p} the field of p-adic numbers, $\overline{Q_{p}}$ the closure of Q_{p} and Ω_{p} to denote the algebraically closed and complete extension of the field $\overline{Q_{p}}$. Let $f(x, y)=a x^{3}+b x^{2} y+c x y^{2}+d y^{3}+$ $k x+m y+n$ be a polynomial in $Z_{p}[x, y], \delta=\max \left\{\operatorname{ord}_{p} 3 a, \frac{3}{2} \operatorname{ord}_{p} b\right\}$ and and $\alpha>0$. Mohd Atan (1989) showed that for this polynomial

$$
\left|S\left(f ; p^{\alpha}\right)\right| \leq \min \left\{p^{2 \alpha}, 4 p^{\frac{3 \alpha}{2}+\delta}\right\} .
$$

In 1991, Ding showed an improvement to Chalk's estimation of exponential sums by considering $r>0$ and $M \geq 1$. He proved that

$$
\left|S\left(f ; p^{n}\right)\right| \leq m k^{\frac{1}{2}} p^{t /(M+1)} p^{n[1-1 /(M+1)]} .
$$

Suppose t is a positive integer satisfying $p^{t} \mid\left(k a_{k}, \cdots, 2 a_{2}, a_{1}\right)$ and $p^{t+1} \nmid$ ($k a_{k}, \cdots, 2 a_{2}, a_{1}$). Let μ_{1}, \cdots, μ_{r} be different zeros modulo p of the congruence

$$
p^{-t} f^{\prime}(x) \equiv 0(\bmod p), 0 \leq x<p
$$

and let m_{1}, \cdots, m_{r} be their multiplicities. Put $\max _{1 \leq i \leq r} m_{i}=M=M(f), m_{1}+\cdots+$ $m_{r}=m=m(f)$. For $n \geq 2$ and $r>0$, Ding (1997) showed that if $3 \leq p \leq$ m^{M+1}, then

$$
\left|S\left(f ; p^{n}\right)\right| \leq m p^{t /(M+1)} p^{n[1-1 /(M+1)]} .
$$

Also, for case where $p \geq 3$ and $p>m^{M+1}$, he obtained

$$
\left|S\left(f ; p^{n}\right)\right| \leq p^{1 /(M+1)} p^{t /(M+1)} p^{n[1-1 /(M+1)]} .
$$

Heng and Mohd Atan (1999) considered the polynomial

$$
f(x, y)=a x^{3}+b x y^{2}+c x+d y+e
$$

in $Z_{p}[x, y]$ where p be an odd prime, $\alpha>1$ and $\delta=\max \left\{\operatorname{ord}_{p} 3 a, \frac{3}{2} \operatorname{ord}_{p} b\right\}$. If $\operatorname{ord}_{p} b c^{2}>$ ord $_{p} a d^{2}$, then

$$
\left|S\left(f ; p^{\alpha}\right)\right| \leq \min \left\{p^{2 \alpha}, 4 p^{\frac{3 \alpha}{2}+\delta}\right\} .
$$

They then considered the condition $b c^{2}-3 a d^{2}=0$ and obtained another result

$$
\left|S\left(f ; p^{\alpha}\right)\right| \leq \min \left\{p^{2 \alpha}, 2 p^{\frac{3 \alpha}{2}+\delta}\right\}
$$

Let f be a polynomial in $Z[x]$. Suppose grad f has rank n where grad f is gradient of f and set $\rho=\rho(\operatorname{grad} f)$ and $\theta=\left[\frac{\alpha}{2}\right]$. Loxton (2000) found that

$$
\left|S\left(f ; p^{\alpha}\right)\right| \leq\left\{\begin{array}{cc}
p^{n \alpha} & \text { if } 1<\alpha \leq 2 \rho+1 \\
p^{n(\alpha-\theta+\rho+1)} & \text { if } 2 \rho+2 \leq \alpha \leq 4 \rho+1 \\
(\operatorname{deg} f-1)^{n} p^{n(\alpha-\theta+\rho)} & \text { if } \alpha>4 \rho+1
\end{array}\right.
$$

Let p be an odd prime, Z_{p} be the ring of p-adic integers and $\alpha>1$. Let $f(x, y)=$ $a x^{3}+b x^{2} y+c x y^{2}+d y^{3}+k x+m y+n$ be a polynomial in $Z_{p}[x, y]$ with nonzero coefficients in its cubic segment. Let $\delta=$ $\max \left\{\operatorname{ord}_{p} 3 a, \operatorname{ord}_{p} b, \operatorname{ord}_{p} c, \operatorname{ord}_{p} 3 d\right\}$. Mohd Atan and Loxton (2006) showed that for this polynomial

$$
\left|S\left(f ; p^{\alpha}\right)\right| \leq \min \left\{p^{2 \alpha}, 4 p^{\frac{3 \alpha}{2}+\delta}\right\} .
$$

Let p be an odd prime and $\alpha>1$. Let $N\left(f_{x}, f_{y} ; p^{\alpha}\right)$ denote the cardinality of the set $V\left(f_{x}, f_{y} ; p^{\alpha}\right)$ is the number of common solutions of congruence equation

$$
f_{x}(x, y) \equiv 0, f_{y}(x, y) \equiv 0\left(\bmod p^{\alpha}\right)
$$

in the complete set of residues modulo p^{α}, where f_{x} and f_{y} are the partial derivative polynomials with respect to x and y respectively. Estimation of multiple exponential sums depends on the estimates of cardinality of the set $V\left(f_{x}, f_{y} ; p^{\alpha}\right)$ and also p-adic sizes of common zeros to the partial derivative polynomials associated with the polynomial f considered.

Mohd Atan (1986b) investigate the estimation of $N\left(f_{x}, f_{y} ; p^{\alpha}\right)$ involved the polynomial $f(x, y)=a x^{3}+b x y^{2}+c x+d y+e$ in $Z_{p}[x, y]$ and obtained

$$
N\left(f_{x}, f_{y} ; p^{\alpha}\right) \leq\left\{\begin{array}{cc}
p^{2 \alpha} & \text { if } \alpha \leq \delta \\
4 p^{\alpha+\delta} & \text { if } \alpha>\delta
\end{array}\right.
$$

where $\alpha>0$ and $\delta=\max \left\{\operatorname{ord}_{p} 3 a, \frac{3}{2}\right.$ ord $\left._{p} b\right\}$.

Let $f(x, y)=a x^{3}+b x^{2} y+c x y^{2}+d y^{3}+k x+m y+n$ be a polynomial in $Z_{p}[x, y]$ and $\delta=\max \left\{\operatorname{ord}_{p} 3 a\right.$, ord $\left._{p} b\right\}$, Mohd Atan and Abdullah (1992) showed that for this polynomial

$$
N\left(f_{x}, f_{y} ; p^{\alpha}\right) \leq\left\{\begin{array}{cc}
p^{2 \alpha} & \text { if } \alpha \leq \delta \\
4 p^{\alpha+\delta} & \text { if } \alpha>\delta
\end{array}\right.
$$

In 1993, they considered the same cubic form and showed that δ is in fact the p adic order of at least one of the coefficient of the dominant terms of the cubic form. That is $\delta=\max \left\{\operatorname{ord}_{p} 3 a, \operatorname{ord}_{p} b, \operatorname{ord}_{p} c, \operatorname{ord}_{p} 3 d\right\}$. The form of result obtained is the same as above.

Chan and Mohd Atan (1997) investigated a quartic polynomial $f(x, y)=a x^{4}+$ $b x^{3} y+c x^{2} y^{2}+d x y^{3}+e y^{4}+r x+s y+t$ in $Z_{p}[x, y]$ and gave the p-adic orders of common zeros of partial derivative polynomials associated with $f(x, y)$ by employing Newton polyhedron method. They obtained $\operatorname{ord}_{p}\left(\xi-x_{0}\right), \operatorname{ord}_{p}(\eta-$ $\left.y_{0}\right)>\frac{1}{3}(\alpha-\delta)$ where $p>3$ is a prime, (ξ, η) is the common solution of partial derivative polynomials, $\alpha>0$ and $\delta=\max \left\{\operatorname{ord}_{p} a, \operatorname{ord}_{p} b, \operatorname{ord}_{p} c, \operatorname{ord}_{p} d, \operatorname{ord}_{p} e\right\}$.

Subsequently, they obtained the estimates for $N\left(f_{x}, f_{y} ; p^{\alpha}\right)$ of the polynomial f as follows

$$
N\left(f_{x}, f_{y} ; p^{\alpha}\right) \leq\left\{\begin{array}{cc}
p^{2 \alpha} & \text { if } \alpha \leq \delta \\
9 p^{\frac{2}{3}(2 \alpha+\delta)} & \text { if } \alpha>\delta
\end{array}\right.
$$

In 2002, Sapar and Mohd Atan considered polynomial $f(x, y)=a x^{2}+b x y+$ $c y^{2}+d x+e y+m$ in $Z_{p}[x, y]$ with p an odd prime, $\alpha>0$ and $\delta=$ $\max \left\{\operatorname{ord}_{p} a, \operatorname{ord}_{p} b, \operatorname{ord}_{p} c\right\}$. They showed that if $\left(x_{0}, y_{0}\right) \in \Omega_{p}^{2}$ such that $\operatorname{ord}_{p} f_{x}\left(x_{0}, y_{0}\right), \operatorname{ord}_{p} f_{y}\left(x_{0}, y_{0}\right) \geq \alpha>\delta$, then there exists (ξ, η) in $\Omega_{p}{ }^{2}$ such that $f_{x}(\xi, \eta)=0, f_{y}(\xi, \eta)=0$ and $\operatorname{ord}_{p}\left(\xi-x_{0}\right) \geq(\alpha-\delta), \operatorname{ord}_{p}\left(\eta-y_{0}\right) \geq(\alpha-\delta)$.

Subsequently, they obtained the estimates for $N\left(f_{x}, f_{y} ; p^{\alpha}\right)$ of the polynomial as follows

$$
N\left(f_{x}, f_{y} ; p^{\alpha}\right) \leq \begin{cases}p^{2 \alpha} & \text { if } \alpha \leq \delta \\ p^{2 \delta} & \text { if } \alpha>\delta\end{cases}
$$

Sapar and Mohd Atan (2002) also investigated a cubic polynomial $f(x, y)=$ $a x^{3}+b x y^{2}+c x+d y+e$ in $Z_{p}[x, y]$ with p an odd prime, $\alpha>0$ and $\delta=$ $\max \left\{\operatorname{ord}_{p} a, \operatorname{ord}_{p} b\right\}$. They showed that if $\left(x_{0}, y_{0}\right) \in \Omega_{p}^{2}$ such that $\operatorname{ord}_{p} f_{x}\left(x_{0}, y_{0}\right), \operatorname{ord}_{p} f_{y}\left(x_{0}, y_{0}\right) \geq \alpha>\delta$, then there exists (ξ, η) in $\Omega_{p}{ }^{2}$ such that $f_{x}(\xi, \eta)=0, \quad f_{y}(\xi, \eta)=0$ and $\operatorname{ord}_{p}\left(\xi-x_{0}\right) \geq \frac{1}{2}(\alpha-\delta), \operatorname{ord}_{p}\left(\eta-y_{0}\right) \geq$ $\frac{1}{2}(\alpha-\delta)$. For this cubic polynomial, the estimates for $N\left(f_{x}, f_{y} ; p^{\alpha}\right)$ is

$$
N\left(f_{x}, f_{y} ; p^{\alpha}\right) \leq\left\{\begin{array}{cc}
p^{2 \alpha} & \text { if } \alpha \leq \delta \\
4 p^{\alpha+\delta} & \text { if } \alpha>\delta
\end{array}\right.
$$

Let polynomial $f(x, y)=a x^{5}+b x^{4} y+c x^{3} y^{2}+d x^{2} y^{3}+e x y^{4}+m y^{5}+n x+$ $t y+k$ in $Z_{p}[x, y]$ with $p>5$. Suppose $\alpha>0$ and $\delta=$ $\max \left\{\operatorname{ord}_{p} a, \operatorname{ord}_{p} b, \operatorname{ord}_{p} c, \operatorname{ord}_{p} d, \operatorname{ord}_{p} e, \operatorname{ord}_{p} m\right\}, \operatorname{ord}_{p} b^{2}>\operatorname{ord}_{p} a c$ and $\operatorname{ord}_{p}(10 c m-2 d e)^{2}>\operatorname{ord}_{p}\left(10 d m-4 e^{2}\right)\left(2 c e-d^{2}\right)$. Sapar and Mohd Atan (2006) showed that if $\operatorname{ord}_{p} f_{x}(0,0), \operatorname{ord}_{p} f_{y}(0,0) \geq \alpha>\delta$, there exists (ξ, η) in $\Omega_{p}{ }^{2}$ such that $f_{x}(\xi, \eta)=0, f_{y}(\xi, \eta)=0$ and $\operatorname{ord}_{p} \xi \geq \frac{1}{4}(\alpha-\delta), \quad \operatorname{ord}_{p} \eta \geq$ $\frac{1}{4}(\alpha-\delta)$.

In the same year, Sapar et al. (2006) considered the same polynomial and condition as above and obtained p-adic sizes of common zeros to the partial derivative polynomials associated with the polynomial f in the neighbourhood of (x_{0}, y_{0}) as $\operatorname{ord}_{p}\left(\xi-x_{0}\right) \geq \frac{1}{4}(\alpha-\delta), \operatorname{ord}_{p}\left(\eta-y_{0}\right) \geq \frac{1}{4}(\alpha-\delta)$. Subsequently, they obtained the estimates for $N\left(f_{x}, f_{y} ; p^{\alpha}\right)$ as

$$
N\left(f_{x}, f_{y} ; p^{\alpha}\right) \leq\left\{\begin{array}{cc}
p^{2 \alpha} & \text { if } \alpha \leq \delta \\
16 p^{\frac{1}{3}(3 \alpha+\delta)} & \text { if } \alpha>\delta
\end{array}\right.
$$

Aminudin et al. (2014) investigated $f(x, y)=a x^{3}+b x^{2} y+c x y^{2}+d y^{3}+$ $\frac{3}{2} a x^{2}+b x y+\frac{1}{2} c y^{2}+s x+t y+k$ a polynomial in $Q_{p}[x, y]$ with $p>3$ is a prime. Suppose $\alpha>0$ and $\delta=\max \left\{\operatorname{ord}_{p} a, \operatorname{ord}_{p} b, \operatorname{ord}_{p} c, \operatorname{ord}_{p} d\right\}$ and $\left(x_{0}, y_{0}\right) \in \Omega_{p}^{2}$. They showed that if $\operatorname{ord}_{p} b c>\operatorname{ord}_{p} a d$ and $\operatorname{ord}_{p} f_{x}\left(x_{0}, y_{0}\right), \operatorname{ord}_{p} f_{y}\left(x_{0}, y_{0}\right) \geq \alpha>$ 2δ, then there exists (ξ, η) in $\Omega_{p}{ }^{2}$ such that $f_{x}(\xi, \eta)=0, f_{y}(\xi, \eta)=0$ where

$$
\operatorname{ord}_{p}\left(\xi-x_{0}\right) \geq \alpha-\delta \text { or } \operatorname{ord}_{p}\left(\xi-x_{0}\right) \geq \alpha-\delta-\frac{1}{2} \varepsilon
$$

and $\operatorname{ord}_{p}\left(\eta-y_{0}\right) \geq \alpha-\delta$ or $\operatorname{ord}_{p}\left(\eta-y_{0}\right) \geq \alpha-\delta-\frac{1}{2} \varepsilon$
or $\operatorname{ord}_{p}\left(\eta-y_{0}\right) \geq \alpha-2 \delta$ or $\operatorname{ord}_{p}\left(\eta-y_{0}\right) \geq \alpha-2 \delta-\frac{1}{2} \varepsilon$ for some $\varepsilon>0$.

By applying the above results, they obtained the estimates for $N\left(f_{x}, f_{y} ; p^{\alpha}\right)$ as

$$
N\left(f_{x}, f_{y} ; p^{\alpha}\right) \leq\left\{\begin{array}{cc}
p^{2 \alpha} & \text { if } \alpha \leq \delta \\
4 p^{4 \delta+\varepsilon} & \text { if } \alpha>\delta
\end{array}\right.
$$

for some $\varepsilon \geq 0$.

Suppose $f(x, y)=a x^{7}+b x^{6} y+c x^{5} y^{2}+s x+t y+k \quad$ be a polynomial in $Q_{p}[x, y]$ with $p>7$ is a prime. Let $\alpha>0, \delta=\max \left\{\operatorname{ord}_{p} a, \operatorname{ord}_{p} b, \operatorname{ord}_{p} c\right\}$ and $\left(x_{0}, y_{0}\right) \in \Omega_{p}^{2}$. Lasaraiya et al. (2015) showed that If ord $b_{p} \neq \operatorname{ord}_{p} a c$, $\operatorname{ord}_{p} f_{x}\left(x_{0}, y_{0}\right), \operatorname{ord}_{p} f_{y}\left(x_{0}, y_{0}\right) \geq \alpha>7 \delta$, then there exists (ξ, η) in $\Omega_{p}{ }^{2}$ such that $f_{x}(\xi, \eta)=0, f_{y}(\xi, \eta)=0$ where

$$
\operatorname{ord}_{p}\left(\xi-x_{0}\right) \geq \frac{1}{6}(\alpha-\delta)-\varepsilon_{1} \text { and }
$$

$$
\operatorname{ord}_{p}\left(\xi-x_{0}\right) \geq \frac{1}{6}(\alpha-\delta)-\varepsilon_{2} \text { and }
$$

$$
\operatorname{ord}_{p}\left(\eta-y_{0}\right) \geq \frac{1}{6}(\alpha-3 \delta)-\varepsilon_{3} \text { or }
$$

$$
\operatorname{ord}_{p}\left(\eta-y_{0}\right) \geq \frac{1}{6}(\alpha-3 \delta)-\varepsilon_{4} \text { or }
$$

$$
\operatorname{ord}_{p}\left(\eta-y_{0}\right) \geq \frac{1}{6}(\alpha-4 \delta)-\varepsilon_{3} \text { or }
$$

$$
\operatorname{ord}_{p}\left(\eta-y_{0}\right) \geq \frac{1}{6}(\alpha-4 \delta)-\varepsilon_{4} \text { or }
$$

$$
\operatorname{ord}_{p}\left(\eta-y_{0}\right) \geq \frac{1}{6}(\alpha-3 \delta)-\frac{2}{3} \varepsilon_{0}-\varepsilon_{3} \text { or }
$$

$$
\operatorname{ord}_{p}\left(\eta-y_{0}\right) \geq \frac{1}{6}(\alpha-4 \delta)-\frac{2}{3} \varepsilon_{0}-\varepsilon_{4} \text { or }
$$

$$
\operatorname{ord}_{p}\left(\eta-y_{0}\right) \geq \frac{1}{6}(\alpha-4 \delta)-\frac{2}{3} \varepsilon_{0}-\varepsilon_{3} \text { or }
$$

$$
\begin{gathered}
\operatorname{ord}_{p}\left(\eta-y_{0}\right) \geq \frac{1}{6}(\alpha-4 \delta)-\frac{2}{3} \varepsilon_{0}-\varepsilon_{4} \text { or } \\
\text { ord }_{p}\left(\eta-y_{0}\right) \geq \frac{1}{6}(\alpha-5 \delta)-\varepsilon_{3} \text { or } \\
\operatorname{ord}_{p}\left(\eta-y_{0}\right) \geq \frac{1}{6}(\alpha-5 \delta)-\varepsilon_{4} \text { or } \\
\text { ord }_{p}\left(\eta-y_{0}\right) \geq \frac{1}{6}(\alpha-6 \delta)-\varepsilon_{3} \text { or } \\
\operatorname{ord}_{p}\left(\eta-y_{0}\right) \geq \frac{1}{6}(\alpha-6 \delta)-\varepsilon_{4} \text { or } \\
\text { ord }_{p}\left(\eta-y_{0}\right) \geq \frac{1}{6}(\alpha-5 \delta)-\frac{2}{3} \varepsilon_{0}-\varepsilon_{3} \text { or } \\
\text { ord }_{p}\left(\eta-y_{0}\right) \geq \frac{1}{6}(\alpha-5 \delta)-\frac{2}{3} \varepsilon_{0}-\varepsilon_{4} \text { or } \\
\text { ord }_{p}\left(\eta-y_{0}\right) \geq \frac{1}{6}(\alpha-6 \delta)-\frac{2}{3} \varepsilon_{0}-\varepsilon_{3} \text { or } \\
\text { ord }_{p}\left(\eta-y_{0}\right) \geq \frac{1}{6}(\alpha-6 \delta)-\frac{2}{3} \varepsilon_{0}-\varepsilon_{4}
\end{gathered}
$$

for some $\varepsilon_{0}, \varepsilon_{2}, \varepsilon_{4} \geq 0$ and $\varepsilon_{1}, \varepsilon_{3}>0$. Subsequently, they obtained the estimates for $N\left(f_{x}, f_{y} ; p^{\alpha}\right)$ as

$$
N\left(f_{x}, f_{y} ; p^{\alpha}\right) \leq\left\{\begin{array}{cc}
p^{2 \alpha} & \text { if } \alpha \leq \delta \\
36 p^{12 \delta+8 \varepsilon_{0}+12 q} & \text { if } \alpha>\delta
\end{array}\right.
$$

for some $\varepsilon_{0}, q \geq 0$ where $q=\max \left\{\varepsilon_{3}, \varepsilon_{4}\right\}$.

Let $f(x, y)=a x^{11}+b x^{10} y+c x^{9} y^{2}+s x+t y+k$ be a polynomial in $Z_{p}[x, y]$ with $p>11$ is a prime. Suppose $\alpha>0, \delta=\max \left\{\operatorname{ord}_{p} a, \operatorname{ord}_{p} b, \operatorname{ord}_{p} c\right\}$ and $\operatorname{ord}_{p} b^{2}=$ ord $_{p} a c$. Lasaraiya et al. (2016) showed that if $\operatorname{ord}_{p} f_{x}(X+$ $\left.x_{0}\right), \operatorname{ord}_{p} f_{y}\left(Y+y_{0}\right) \geq \alpha>\delta$, then there exists (ξ, η) in $\Omega_{p}{ }^{2}$ such that $f_{x}(\xi, \eta)=0$, $f_{y}(\xi, \eta)=0$ where

$$
\begin{aligned}
& \operatorname{ord}_{p}\left(\xi-x_{0}\right) \geq \frac{1}{10}(\alpha-\delta)-\frac{1}{20} \varepsilon_{0}-\varepsilon_{2}, \\
& \operatorname{ord}_{p}\left(\xi-x_{0}\right) \geq \frac{1}{10}(\alpha-\delta)-\frac{1}{20} \varepsilon_{0}-\varepsilon_{3}, \\
& \operatorname{ord}_{p}\left(\xi-x_{0}\right) \geq \frac{1}{10}(\alpha-\delta)-\frac{3}{20} \varepsilon_{0}-\varepsilon_{2}, \\
& \operatorname{ord}_{p}\left(\xi-x_{0}\right) \geq \frac{1}{10}(\alpha-\delta)-\frac{3}{20} \varepsilon_{0}-\varepsilon_{3}, \\
& \operatorname{ord}_{p}\left(\xi-x_{0}\right) \geq \frac{1}{10}(\alpha-\delta)-\frac{3}{20} \varepsilon_{0}+\frac{1}{5} \varepsilon_{1}-\varepsilon_{2}, \\
& \operatorname{ord}_{p}\left(\xi-x_{0}\right) \geq \frac{1}{10}(\alpha-\delta)-\frac{3}{20} \varepsilon_{0}+\frac{1}{5} \varepsilon_{1}-\varepsilon_{3}, \\
& \operatorname{ord}_{p}\left(\eta-y_{0}\right) \geq \frac{1}{10}(\alpha-9 \delta)-\frac{11}{20} \varepsilon_{0}-\varepsilon_{4}, \\
& \operatorname{ord}_{p}\left(\eta-y_{0}\right) \geq \frac{1}{10}(\alpha-9 \delta)-\frac{11}{20} \varepsilon_{0}-\varepsilon_{5}, \\
& \operatorname{ord}_{p}\left(\eta-y_{0}\right) \geq \frac{1}{10}(\alpha-9 \delta)-\frac{3}{20} \varepsilon_{0}-\varepsilon_{4}, \\
& \operatorname{ord}_{p}\left(\eta-y_{0}\right) \geq \frac{1}{10}(\alpha-9 \delta)-\frac{3}{20} \varepsilon_{0}-\varepsilon_{5}, \\
& \operatorname{ord}_{p}\left(\eta-y_{0}\right) \geq \frac{1}{10}(\alpha-9 \delta)-\frac{3}{20} \varepsilon_{0}-\frac{4}{5} \varepsilon_{1}-\varepsilon_{4},
\end{aligned}
$$

$$
\text { and } \operatorname{ord}_{p}\left(\eta-y_{0}\right) \geq \frac{1}{10}(\alpha-9 \delta)-\frac{3}{20} \varepsilon_{0}-\frac{4}{5} \varepsilon_{1}-\varepsilon_{5}
$$

for certain $\varepsilon_{0}, \varepsilon_{1}, \varepsilon_{3}, \varepsilon_{5} \geq 0$ and $\varepsilon_{2}, \varepsilon_{4}>0$. Subsequently, they obtained the estimates for $N\left(f_{x}, f_{y} ; p^{\alpha}\right)$ as

$$
N\left(f_{x}, f_{y} ; p^{\alpha}\right) \leq\left\{\begin{array}{cc}
p^{2 \alpha} & \text { if } \alpha \leq \delta \\
100 p^{2\left(9 \delta+\frac{3}{2} \varepsilon_{0}+8 \varepsilon_{1}+10 q\right)} & \text { if } \alpha>\delta
\end{array}\right.
$$

for some $\varepsilon_{0}, \varepsilon_{1}, q \geq 0$ where $q=\max \left\{\varepsilon_{4}, \varepsilon_{5}\right\}$.

In Malaysia, research on exponential sums are focused on complete exponential sums by considering polynomials in $Q_{p}[x, y]$ and $Z_{p}[x, y]$ and employing the Newton polyhedron technique.

1.3 Problem Statement

In the earlier works concentration were on estimation of multiple exponential sums associated with polynomials $f(x, y)$ in $Z_{p}[x, y]$ of odd highest degrees. In our present work we will focus on estimation of multiple exponential sums associated with a similar polynomial where highest degree is even by employing Newton polyhedron technique. The three polynomials considered are $f(x, y)=a x^{4}+$ $b x^{3} y+c x y^{3}+d y^{4}+r x+s y+t \quad, \quad f(x, y)=a x^{4}+b x^{2} y^{2}+c x y^{3}+d y^{4}+$ $r x+s y+t$ and $f(x, y)=a x^{4}+b x^{3} y+c x^{2} y^{2}+d x y^{3}+e y^{4}+r x+s y+t$. The p-adic orders of common zeros of partial derivative polynomials associated with the polynomials will be obtained to estimate the cardinality and multiple exponential sums associated with each polynomial considered. Focus is given to cases where conditions are needed to ensure the existence of distinct common roots of partial derivative polynomials associated with the quartic polynomials.

1.4 Research Objectives

The main objective of this study are :

- To investigate cases where the p-adic orders of common zeros of partial derivatives occur on intersection point of indicator diagrams associated with partial derivative polynomials of three different quartic polynomials.
- To obtain the estimates of cardinality by examine the indicator diagrams.
- To obtain estimates of multiple exponential sums associated with three different quartic polynomials considered.

1.5 Organization of Thesis

In Chapter 2, we discuss Newton polyhedron technique which plays an important role as a tool to obtain the p-adic orders of common zeros of partial derivative polynomials associated with the polynomials considered. We begin by giving the definition of Newton polygon in Section 2.2. Two examples are given to illustrate the construction of Newton polygon and information of roots that can be obtained from it. Subsequently, the definitions and examples of Newton diagram and Newton polyhedron are given in Section 2.3 as Newton polyhedron is an analogue of Newton polygon. In Section 2.4, normal of Newton polyhedron will be discussed. The construction of indicator diagram will be discussed by giving the definition and example in Section 2.5. The existence of common roots to two polynomials and its p-adic orders on the associated indicator diagrams are also discussed.

In Chapter 3, the Newton polyhedron technique is applied to obtain p-adic orders of common zeros of partial derivative polynomials associated with quartic polynomial of the form $f(x, y)=a x^{4}+b x^{3} y+c x y^{3}+d y^{4}+r x+s y+t$. Firstly, p-adic orders of common zeros of partial derivative polynomials associated with $f(x, y)$ in the neighbourhood of $(0,0)$ are obtained in Section 3.2. Subsequently, p-adic orders of common zeros of partial derivative polynomials associated with $f(x, y)$ in the neighbourhood of $\left(x_{0}, y_{0}\right)$ are obtained in Section 3.3.

In Chapter 4, the quartic polynomial $f(x, y)=a x^{4}+b x^{2} y^{2}+c x y^{3}+d y^{4}+$ $r x+s y+t$ is investigated and p-adic orders of common zeros of partial derivative polynomials associated with $f(x, y)$ under certain two conditions are obtained by employing Newton polyhedron technique. In Section 4.2, p-adic orders of common zeros of partial derivative polynomials associated with $f(x, y)$ in the neighbourhood of $\left(x_{0}, y_{0}\right)$ subject to the condition $\operatorname{ord}_{p} a c^{2}>\operatorname{ord}_{p} b^{3}$ are obtained. In Section 4.3, p-adic distance of common zeros of partial derivative polynomials associated with $f(x, y)$ in the neighbourhood of (x_{0}, y_{0}) under condition $\operatorname{ord}_{p} b^{3}>\operatorname{ord}_{p} a c^{2}$ is obtained.

In Chapter 5, the complete quartic polynomial $f(x, y)=a x^{4}+b x^{3} y+c x^{2} y^{2}+$ $d x y^{3}+e y^{4}+r x+s y+t$ are considered and p-adic orders of common zeros of partial derivative polynomials associated with $f(x, y)$ under six conditions are obtained by employing Newton polyhedron technique. In Section 5.2, the condition $\operatorname{ord}_{p} \frac{b}{c}>\operatorname{ord}_{p} \lambda>\operatorname{ord}_{p} \frac{a}{b}$ are considered in obtaining the p-adic sizes of common zeros in the neighbourhood of $\left(x_{0}, y_{0}\right)$. In Section 5.3, the estimates of p adic sizes of common zeros in the neighborhood of $\left(x_{0}, y_{0}\right)$ are obtained under the condition $\operatorname{ord}_{p} \frac{a}{b}>\operatorname{ord}_{p} \lambda>\operatorname{ord}_{p} \frac{b}{c}$. In Section 5.4, p-adic sizes of common zeros in the neighbourhood of $\left(x_{0}, y_{0}\right)$ subject to condition $\operatorname{ord}_{p} \lambda>\operatorname{ord}_{p} \frac{b}{c}>\operatorname{ord}_{p} \frac{a}{b}$ are determined. In Section 5.5, the condition $\operatorname{ord}_{p} \lambda>\operatorname{ord}_{p} \frac{a}{b}>\operatorname{ord}_{p} \frac{b}{c}$ is considered
in obtaining the p-adic sizes of common zeros in the neighbourhood of $\left(x_{0}, y_{0}\right)$. In Section 5.6, the estimates of p-adic sizes of common zeros in the neighbourhood of $\left(x_{0}, y_{0}\right)$ are obtained under the condition $\operatorname{ord}_{p} \frac{b}{c}>\operatorname{ord}_{p} \frac{a}{b}>\operatorname{ord}_{p} \lambda$. In Section 5.7, p-adic sizes of common zeros in the neighbourhood of (x_{0}, y_{0}) subject to condition $\operatorname{ord}_{p} \frac{a}{b}>\operatorname{ord}_{p} \frac{b}{c}>\operatorname{ord}_{p} \lambda$ are determined.

In Chapter 6, the cardinality of the set of solutions to congruence equations of partial derivative polynomial associated with three polynomials investigated are obtained. For the first quartic polynomial $f(x, y)=a x^{4}+b x^{3} y+c x y^{3}+d y^{4}+$ $r x+s y+t$, results from Chapter 3 are applied to obtain cardinality of the set of solutions to congruence equations of partial derivative polynomial associated with $f(x, y)$ in Section 6.2. In Section 6.3, results from Chapter 4 are applied to obtain estimates of cardinality of set of solutions to congruence equations of partial derivative polynomial associated with $f(x, y)=a x^{4}+b x^{3} y+c x y^{3}+d y^{4}+$ $r x+s y+t$. Lastly, estimates of cardinality of set of solutions to congruence equations of partial derivative polynomial associated with $f(x, y)=a x^{4}+$ $b x^{3} y+c x^{2} y^{2}+d x y^{3}+e y^{4}+r x+s y+t$ are obtained in Section 6.4 by applying results from Chapter 5 .

In Chapter 7, estimates of multiple exponential sums associated with three quartic polynomials investigated are obtained by applying results from Chapter 6. In Section 7.2, estimates of multiple exponential sums associated with $(x, y)=a x^{4}+$ $b x^{3} y+c x y^{3}+d y^{4}+r x+s y+t$ are shown. In Section 7.3, the polynomial $f(x, y)=a x^{4}+b x^{3} y+c x y^{3}+d y^{4}+r x+s y+t$ are considered and the associated estimates of multiple exponential sums under the conditions ord $\mathrm{oc}^{2}>$ $\operatorname{ord}_{p} b^{3}$ and $\operatorname{ord}_{p} b^{3}>\operatorname{ord}_{p} a c^{2}$ are obtained. Lastly, 13 cases of estimation of multiple exponential sums associated with $f(x, y)=a x^{4}+b x^{3} y+c x^{2} y^{2}+$ $d x y^{3}+e y^{4}+r x+s y+t$ are shown in Section 7.4.

Finally, the major results, conclusion and future research are given in Chapter 8.

1.6 Conclusion

In this chapter, we have discussed the background of multiple exponential sums from earlier works until recent research. The estimates of upper bounds of exponential sums associated with the quartic polynomials that can be obtained are discussed in Section 1.3. The focuses of our research and method employed are mentioned in Section 1.4. Lastly, the summary of thesis are given in Section 1.5.

REFERENCES

Aminudin, S. S., Sapar, S. H., \& Atan, K. M. (2014). On the Cardinality of the set of Solutions to Congruence Equation Associated with Cubic Form.JP Journal of Algebra, Number Theory and Applications, 33(1), 1.

Burton, D. M. (2011). Elementary number theory. Tata McGraw-Hill Education.
Chalk, J. H. H. (1987). On Hua's estimates for exponential sums. Mathematika, 34(02), 115-123.

Chan, K.L. and Mohd. Atan, K.A. (1997). On the Estimate to Solutions of Congruence Equations Associated with a Quartic Form. Journal of Physical Science 8: 21-34.

Chen, J.R (1977). On Professor Hua's estimate of exponential sums, Sci. Sinica 20: 711-719.

Chubarikov, V. N. (1976). Multiple rational trigonometric sums and multiple integrals. Mathematical Notes, 20(1), 589-593.

Davenport, H. and Heilbronn, H. (1936). On an Exponential Sum. Proc. London Math. Soc. s2-41 (1): 449-453.

Ding, P. (1991). An improvement to Chalk's estimation of exponential sums. Acta Arithmetica, 59(2), 149-155.

Ding, P. (1997). On a conjecture of Chalk. Journal of Number Theory, 65(1), 116129.

Fesenko, I. B., \& Vostokov, S. V. (2002). Local fields and their extensions, Translations of Mathematical Monographs, vol. 121. American Mathematical Society, Providence, RI.
`Hardy, G.H. and Littlewood, J.E. (1919). A New Solution of Waring’s Problem. Quart. J. Math. 48: 272-293.

Heng, S.H. and Mohd. Atan, K.A. (1999). An Estimation of Exponential Sums Associated with a Cubic Form. Journal of Physical Science 10: 1-21.

Hua, L.K. (1938). On an exponential sum. J. London. Math. Soc. (13): 54-61.
Hua, L.K. (1940). On an exponential sums. J. Chinese Math. Soc., 2: 301-312.
Hua, L. K. (1951). On exponential sums over an algebraic number field. Canadian J. Math, 3, 44-51

Koblitz, N. (1977). p-adic Numbers, p-adic analysis and zeta Functions. New York: Springer-Verlag.

Korobov, N. M. (2013). Exponential sums and their applications (Vol. 80). Springer Science \& Business Media.

Lasaraiya, S., Sapar, S. H., \& Johari, M. A. M. (2015). Cardinality of Sets Associated to Certain Degree Seven Polynomials. Malaysian Journal of Science, 34(2), 214-221.

Lasaraiya, S., Sapar, S. H., and Mohamat Johari, M. A. (2016, June). On the cardinality of the set of solutions to congruence equation associated with polynomial of degree eleven. In S. Salleh, N. A. Aris, A. Bahar, Z. M. Zainuddin, N. Maan, M. H. Lee, ... \& Y. M. Yusof (Eds.), AIP Conference Proceedings (Vol. 1750, No. 1, p. 050015). AIP Publishing.

Loxton, J.H. and Smith, R.A. (1982a). On Hua's estimate for exponential sums. J. London. Math. Soc. (2)., 26: 15-26.

Loxton, J.H. and Smith, R.A. (1982b). Estimate for Multiple Exponential Sums. J. Aust. Math. Soc. 33: 125-134.

Loxton, J.H. and Vaughan, R.C. (1985). The Estimation of Complete Exponential Sums. Cand. Math. Bull. 28(4): 440-454.

Loxton, J.H. (2000). Estimates for complete multiple exponential sums. Acta Arithmetica XCII3: 277-290.

Min, S.H. (1947). On Systems of Algebraic Equations and Certain Multiple Exponential Sums. Quart. J. Math. 18 (1): 133-142.

Mohd. Atan, K.A. (1986a). Newton polyhedra and p-adic Estimates of Zeros of Polynomials in $\Omega_{p}[x, y]$. Pertanika 9(1): 51-56.

Mohd. Atan, K.A. (1986b). Newton Polyhedral Method of Determining p-adic Orders of Zeros Common to Two Polynomials in $Q_{p}[x, y]$. Pertanika 9(3): 375-380.

Mohd. Atan, K.A. (1988). A Method for Determining the Cardinality of the Set of Solutions to Congruence Equations. Pertanika 11(1): 125-131.

Mohd. Atan, K.A (1989). An estimate for multiple exponential sums in two variable. Sains Malaysia, 18, 129-135.

Mohd. Atan, K.A. (1995). An Explicit Estimate of Exponential Sums Associated with a Cubic Polynomials. Acta Math. Hungar 69(1-2): 83-93.

Mohd. Atan, K.A. and Abdullah, I.B. (1992). Set of Solution to Congruence equations associated with Cubic form. Journal of Physical Science 3: 1-6.

Mohd. Atan, K.A. and Abdullah, I.B. (1993). On the estimate to solutions of congruence equations associated with a cubic form. Pertanika Journal of Science \& Technology, 1(2), 249-260.

Mohd. Atan, K.A. and Loxton, J.H. (1986). Newton polyhedra and solutions of congruences. In Loxton, J.H. and Van der Pooteen, A.(ed) Diophantine Analysis. Cambridge: Combridge University Press.

Mohd. Atan, K.A. and Loxton, J.H. (2006). Newton polyhedra and Estimation to Exponential Sums. Proceedings of the $2^{\text {nd }}$ IMT-GT Regional Conference on Mathematics, Statistics and Applications. 1-21.

Mordell, L. J. (1932). On a sum analogous to a Gauss's sum. The Quarterly Journal of Mathematics, (1), 161-167.

Sapar, S.H. and Mohd. Atan, K.A (2002). Penganggaran Kekardinalan Set Penyelesaian Persamaan Kongruen. Jurnal Teknologi, 36(1), 13-40.

Sapar, S.H. and Mohd. Atan, K.A. (2006). Estimation of p-Adic Sizes of Common Zeroes of Partial Derivative Polynomials Associated with a Quintic Form. Jurnal Teknologi, 45(1), 85-96.

Sapar, S.H. and Mohd. Atan, K.A. (2009). A method of Estimating the p-adic Sizes of common Zeros of Partial Derivative Polynomials Associated with A Quintic Form. International Journal of Number Theory 5(3): 541-554

Sapar, S.H., Mohd. Atan, K.A. and M. R. Md Said (2006). On the Cardinality of the Set of Solutions to Congruence Equation Associated with Quintic Form. Proceedings of the $2^{\text {nd }}$ IMT-GT Regional Conference on Mathematics, Statistics and Applications.

Serre, J. P. (2013). Local fields (Vol. 67). Springer Science \& Business Media.
Smith, R. A. (1980). Estimates for exponential sums. Proceedings of the American Mathematical Society, 79(3), 365-368.

Weil, A. (1948). On some exponential sums. Proc. Nat. Acad. Sci. U.S.A. 34:204207.

