

UNIVERSITI PUTRA MALAYSIA

IMMUNOMODULATORY EFFECTS OF RHAPHIDOPHORA KORTHALSII METHANOL EXTRACT ON NATURAL KILLER CELL ACTIVATION AND CYTOLYTIC ACTIVITY

> YEAP SWEE KEONG FBSB 2010 2

IMMUNOMODULATORY EFFECTS OF *RHAPHIDOPHORA KORTHALSII* METHANOL EXTRACT ON NATURAL KILLER CELL ACTIVATION AND CYTOLYTIC ACTIVITY

By

YEAP SWEE KEONG

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfilment of the Requirements for the Degree of Doctor of Philosophy

January 2010

Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfilment of the requirement for the degree of Doctor of Philosophy

IMMUNOMODULATORY EFFECTS OF *RHAPHIDOPHORA KORTHALSII* METHANOL EXTRACT ON NATURAL KILLER CELL ACTIVATION AND CYTOLYTIC ACTIVITY

By

YEAP SWEE KEONG

January 2010

Chairperson: Noorjahan Banu Mohamed Alitheen, PhD

Faculty: Biotechnology and Biomolecular Sciences

Rhaphidophora korthalsii (Araceae) is a root-climber plant which has been previously identified as splenocyte immunostimulator. The purpose of this study was to examine the *in vitro* and *in vivo* immunomodulatory effect of *R. korthalsii* methanol extract on immune cell proliferation, cytokine expression and cytotoxicity. More specifically, immunomodulatory effects of *R. korthalsii* methanol extract on the stimulation of NK cells activity and cytotoxicity against HepG2 monolayer and spheroid culture were determined. Immune cells [peripheral blood mononuclear cells (PBMC) and mice splenocytes] treated with this extract resulted in stimulation of cell proliferation, cytokine expression and cytotoxicity in dose and time dependent manner. For the *in vivo* immunostimulatory effect study, unlike rIL-2 which degraded rapidly, the stimulatory effect from the extract managed to last until day 15. In order to understand the activation of NK cells by *R. korthalsii* methanol extract, NK cells were treated directly or indirectly. Both direct and indirect stimulated NK cells showed high-level expression of cell surface FasL, NKG2D, 16B4 and extra-cellular IFN- γ and TNF- α . These activations contributed to the killing of NK cells against HepG2

monolayer cells through Granzyme B mitochondria caspases dependent secretory apoptosis pathway where DNA fragmentation, phosphatidylserine (PS) externalisation, caspase 3, caspase 8, caspase 9 up-regulation and XIAP, Bid down-regulation were observed. Apart from that, extract stimulated NK cells which caused cell death on the HepG2 spheroid and inhibited the HepG2 cell invasion, suggesting that *R. korthalsii* methanol extract was a potential agent to inhibit liver tumour metastasis. Our findings indicated a potential IL-2 free immunotherapy through direct and indirect *R. korthalsii* activation on NK cells which can further induce apoptosis on the HepG2 monolayer and spheroid culture.

Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk Ijazah Doktor Falsafah

KESAN PEMODULASI-IMUN OLEH *RHAPHIDOPHORA KORTHALSII* PATI METANOL TERHADAP PENGAKTIFAN DAN AKTIVITI SITOLITIK SEL PEMBUNUH SEMULAJADI

Oleh

YEAP SWEE KEONG

Jun 2009

Pengerusi : Noorjahan Banu Mohamed Alitheen, PhD

Fakulti: Bioteknologi and Sains Biomolekul

Rhaphidophora korthalsii (Araceae) adalah sejenis tumbuhan pemanjat akar yang terdahulunya dikenali sebagai perangsang sel limpa. Tujuan kajian ini adalah untuk memeriksa kesan perangsangan-imun *in vitro* dan *in vivo* oleh *R. korthalsii* pati metanol terhadap pembiakan, ekspresi sitokin dan sitotoksisiti pada sel imun. Lebih khusus, kesan perangsangan-imun pada *R. korthalsii* pati metanol terhadap pengaktifan dan sitotoksisiti sel pembunuh semulajadi (NK cells) untuk menentang sel monolapisan dan sferoid HepG2 juga ditentukan. Sel imun (PBMC dan sel limpa tikus) yang dirawati dengan pati tersebut memberi kesan perangsangan terhadap pembiakan, ekspresi sitokine dan sitotosiksiti yang bergantung kepada dos dan tempoh perangsangan. Untuk ujikaji kesan perangsangan-imun secara *in vivo*, kesan yang terbaik dapat dicapai dengan kepekatan 350 and 700 µg/tikus. It berbeza dengan rIL-2 yang cepat mendegradasi di mana kesan perangsangan daripada pati dapat kekal sehingga hari ke-15. Bagi memahami pengaktifan sel NK oleh *R. korthalsii* pati metanol, sel NK telah dirawat dengan pati secara langsung atau tidak langsung didapati

mengekspresskan paras yang tinggi untuk FasL, NKG2D, 16B4 pada permukaan sel dan IFN- γ , TNF- α di luar sel. Pengaktifan ini menyumbang kepada pembunuhan sel NK terhadap sel monolapisan HepG2 melalui laluan apoptosis granzim B rembesan mitokondria berdasarkan caspase di mana peningkatan pengawalaturan penyepihan DNA, pengeluran phosphatidylserine (PS), caspase 3, caspase 8, caspase 9 dan penurunan pengawalaturan XIAP dan Bid telah diperhatikan. Selain daripada itu, sel NK yang dirangsang oleh pati juga menyebabkan kematian sel pada sferoid HepG2 dan merencatkan invasi sel HepG2 mencadangkan potensi rawatan ini untuk merencatkan metastasis tumor hati. Keputusan yang didapati kami mengesyorkan potensi rawatan imun tanpa IL-2 melalui pengaktifan NK sel secara langsung dan tidak langsung oleh *R. korthalsii* yang dapat merangsangkan apoptosis pada kultura monolapisan dan sferoid HepG2.

v

ACKNOWLEDGEMENTS

I would like to express my sincere gratitude and appreciation to my supervisor Dr. Noorjahan Banu Mohamed Alitheen and co-supervisors Professor Dr. Abdul Manaf Ali and Professor Dr. Abdul Rahman Omar for their valuable advice, technical guidance, encouragement and support for conversion and thesis improvement.

I wish to acknowledge the guidance and support from Dr. Kiew Li Chin and his father for supplying ideas and plant materials for this project; Mr. Lim and Uncle Chan from FRIM for plant identification; MKT staff Mr. Karim and my lab seniors; Mr. Fahmi and Mr. Teo. My gratitude also goes out to my colleagues; Miss Ho, Mr. Lam, Miss Ng, Miss Chuah and Miss Jane Liew who are always appreciated. I am indeed indebted to Miss Ho, Dr. Kiew, Mr. Loh, Mr. Kye, Mr. Thuc, Mr. Beh for sharing their knowledge and experience with me and my parents and my family for their unconditional sacrifice and love.

I wish to extend my appreciation to everyone, although not individually named here, who had contributed directly or indirectly to my project and thesis. Finally, I would like to thank the Ministry of Higher Education (MOHE) for providing FRGS grant no. 5523013 and University Putra Malaysia for providing RUGS grant no. 91194 for supporting this study. Without all of you, it would not be possible for me to complete my project and thesis. Thank you all for your support.

I certify that an Examination Committee met on 7th January 2010 to conduct the final examination of Yeap Swee Keong on his Doctor of Philosophy thesis entitled "Immunomodulatory Effects of *Rhaphidophora korthalsii* Methanol Extract on Natural Killer Cell Activation and Cytolytic Activity" in accordance with Universiti Pertanian Malaysia (Higher Degree) Act 1980 and Universiti Pertanian Malaysia (Higher Degree) Regulations 1981. The Committee recommends that the candidate be awarded the relevant degree. Members of the Examination Committee are as follows:

Muhajir Hamid, Ph.D

Associate Professor Faculty of Biotechnology and Biomolecular Sciences Universiti Putra Malaysia (Chairman)

Tan Wen Siang, Ph.D

Professor Faculty of Biotechnology and Biomolecular Sciences Universiti Putra Malaysia (Internal Examiner)

Shuhaimi Mustafa, Ph.D

Associate Professor Faculty of Biotechnology and Biomolecular Sciences Universiti Putra Malaysia (Internal Examiner)

Mustafa Ali Mohd, Ph.D

Professor Faculty of Medicine Universiti Malaya (External Examiner)

BUJANG KIM HUAT, Ph.D

Professor/Deputy Dean School of Graduate Studies Universiti Putra Malaysia

Date:

This thesis submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfill ment of the requirements for the Degree of Doctor of Philosophy. The members of the Supervisory Committee were as follows:

Noorjahan Banu Mohamed Alitheen, PhD

Senior Lecturer Faculty of Biotechnology and Biomolecular Sciences Universiti Putra Malaysia (Chairperson)

Abdul Manaf Ali, PhD

Professor Faculty of Agriculture and Biotechnology Universiti Darul Iman Malaysia (Member)

Abdul Rahman Omar, PhD

Professor Faculty of Veterinary Medicine Universiti Putra Malaysia (Member)

HASANAH MOHD GHAZALI, Ph.D

Professor and Dean School of Graduate Studies Universiti Putra Malaysia

Date: 8 April 2010

DECLARATION

I hereby declare that the thesis is based on my original work except for quotations and citations which have been duly acknowledged. I also declare that it has not been previously or concurrently submitted for any other degree in UPM or other institution.

YEAP SWEE KEONG

Date: 26th February 2010

TABLE OF CONTENTS

Page

	::
ABSTRACT	11
ABSTRAK	iv
ACKNOWLEDGEMENTS	vi
APPROVAL	vii
DECLARATION	ix
LIST OF TABLES	xiv
LIST OF FIGURES	xvi
LIST OF ABBREVIATIONS	xix

CHAPTER

1	INTRODUCTION	1
2	LITERATURE REVIEW	4
	2.1 Immunology	4
	2.1.1 Peripheral Blood Mononuclear Cell (PBMC)	5
	2.1.2 Natural Killer Cells	6
	2.2 Cancer	26
	2.2.1 Liver cancer	28
	2.3 Multicellular tumour spheroids (MCTS)	32
	2.4 Natural product with therapeutic value	34
	2.4.1 Rhaphidophora korthalsii	36
	2.5 Methods for evaluating immunoregulatory effect of natural product on immune cell	37
	2.5.1 Immune cell stimulation index	38
	2.5.2 Flow cytometry Immunophenotyping	39
	2.5.3 Immune cell cytotoxicity	40
3	CYTOTOXIC EFFECT OF <i>RHAPHIDOPHORA KORTHALSII</i> METHANOL EXTRACT	42
	3.1 Introduction	42
	3.2 Materials and Methods	44
	3.2.1 Chemicals	44
	3.2.2 Plant material	45
	3.2.3 Preparation of cell and cell lines	46
	3.2.4 Preparation of erythrocyte suspension and red blood cell assay	47
	3.2.5 Cell viability assay	49
	3.3 Results	50
	3.4 Discussion	52

4	IMMUNOMODULATORY EFFECT OF <i>RHAPHIDOPHORA</i> <i>KORTHALSII</i> METHANOL EXTRACT ON HUMAN PERIPHERAL BLOOD MONONUCLEAR CELLS (PBMC) PROLIFERATION, T/NK CELL POPULATION AND T HELPER 1 CYTOKINE SECRETION	56
	4.1 Introduction	56
	4.2 Materials and Methods	58
	4.2.1 Chemicals	58
	4.2.2 Mononuclear cell isolation	59
	4.2.3 Cell viability assay	60
	4.2.4 BrdU proliferation assay	60
	4.2.5 Cell cycle study	61
	4.2.6 Trypan Blue exclusion methood	62
	4.2.7 T cell and NK cell immunophenotyping for human PBMC	62
	4.2.8 Cytokine (IL-2, IL-12 and IFN- γ) determination	63
	4.2.9 Statistical analysis	64
	4.3 Results	64
	4.3.1 Proliferation effect of <i>R. korthalsii</i> activated PBMC	64
	4.3.2 Effect of <i>R. korthalsii</i> methanol extract on PBMC T cell and NK cell population	72
	4.3.3 Effect of <i>R. korthalsii</i> methanol extract on Th1 cytokine secretion	73
	4.4 Discussion	75
	IMMUNOMODULATORY EFFECT OF <i>RHAPHIDOPHORA</i> <i>KORTHALSII</i> METHANOL EXTRACT ON HUMAN PERIPHERAL BLOOD MONONUCLEAR CELLS (PBMC) CYTOTOXICITY AND GRANZYME B/ PERFORIN EXPRESSION	
	5.1 Introduction	79
	5.2 Materials and Methods	81
	5.2.1 Reagents and chemicals	81
	5.2.2 Cell lines and cell preparation	82
	5.2.3 PBMC cytotoxicity assay	82
	5.3 Results	87
	5.3.1 Co-culture cytotoxic effect of <i>R. korthalsii</i> activated PBMC	87
	5.3.2 Granzyme B and Perforin expression	95
	5.4 Discussion	98
6	<i>IN VITRO</i> AND <i>IN VIVO</i> IMMUNOMODULATORY EFFECTS OF <i>RHAPHIDOPHORA KORTHALSII</i> METHANOL EXTRACT ON MICE	102
	6.1 Introduction	102
	6.2 Materials and Methods	103
	6.2.1 Reagents and chemicals	103
	6.2.2 Animal	104
	6.2.3 Cell lines and cell preparation	104
	6.2.4 Preparation of mice splenocyte, thymocyte and bone marrow cell suspension	105
	6.2.5 <i>In vitro</i> splenocyte, thymocyte and bone marrow cell	106

richili

7

viability assay	
6.2.6 In vitro NK cells immunophenotyping for mice splenocytes	106
6.2.7 In vitro splenocyte cytokine (IL-2, IL-12 and IFN- γ)	107
determination	
6.2.8 <i>In vitro</i> splenocyte cytotoxicity activity determination	108
6.2.9 <i>In vivo</i> stimulation of mice with <i>R. korthalsii</i>	100
6.2.10 Ex vivo stimulation for the proliferation response of	110
splenocyte	
6.2.11 In vivo mice blood NK cell immunophenotyping	110
6.2.12 In vivo mice blood IL-2 and IFN- γ determination	111
6.2.13 In vivo induction of mice splenocyte cytotoxicity	111
6.2.14 Statistical analysis	111
6.3 Results	112
6.3.1 In vitro immune cell viability assay	112
6.3.2 In vitro NK cell immunophenotyping	115
6.3.3 <i>In vitro</i> mice splenocyte IL-2 and IFN- γ secretion	116
6.3.4 <i>In vitro</i> splenocyte cytotoxicity assay	118
6.3.5 <i>In vivo</i> stimulation of mice	120
	120
6.3.6 <i>Ex vivo</i> splenocyte and bone marrow proliferation	
6.3.7 <i>In vivo</i> blood NK cell immunophenotyping	123
6.3.8 <i>In vivo</i> blood cytokine ELISA test	124
6.3.9 In vivo mice splenocyte cytotoxicity assay	126
6.4 Discussion	128
KORTHALSII ON HUMAN NATURAL KILLER CELLS ACTIVATION AND CYTOTOXICITY AGAINST HEPG2 MONOLAYER AND SPHEROID CULTURE	
7.1 Introduction	133
7.2 Materials and Methods	135
7.2.1 Reagents and chemicals	135
6	
7.2.2 Cell culture and treatment	135
7.2.3 NK cell isolation	137
7.2.4 NK cell activation assay	137
7.2.5 NK cell cytotoxicity assay	139
7.2.6 Statistical analysis	143
7.3 Results	143
7.3.1 Rhaphidophora korthalsii methanol extract upregulated	145
the expression of East NVC2D 16D4 JEN wand TNE a	
the expression of FasL, NKG2D, 16B4, IFN- γ and TNF- α	
through direct and indirect activation	
-	148
through direct and indirect activation	148
through direct and indirect activation 7.3.2 NK cells activated by <i>R. korthalsii</i> methanol extract	148
through direct and indirect activation7.3.2 NK cells activated by <i>R. korthalsii</i> methanol extract effectively kill HepG2 monolayer and spheroid culture as compared to human rIL-2	
 through direct and indirect activation 7.3.2 NK cells activated by <i>R. korthalsii</i> methanol extract effectively kill HepG2 monolayer and spheroid culture as compared to human rIL-2 7.3.3 NK cells activated by <i>R. korthalsii</i> methanol extract 	148 160
 through direct and indirect activation 7.3.2 NK cells activated by <i>R. korthalsii</i> methanol extract effectively kill HepG2 monolayer and spheroid culture as compared to human rIL-2 7.3.3 NK cells activated by <i>R. korthalsii</i> methanol extract effectively inhibit the HepG2 cell invasion 	160
 through direct and indirect activation 7.3.2 NK cells activated by <i>R. korthalsii</i> methanol extract effectively kill HepG2 monolayer and spheroid culture as compared to human rIL-2 7.3.3 NK cells activated by <i>R. korthalsii</i> methanol extract effectively inhibit the HepG2 cell invasion 7.3.4 NK cells activated by <i>R. korthalsii</i> methanol extract 	
 through direct and indirect activation 7.3.2 NK cells activated by <i>R. korthalsii</i> methanol extract effectively kill HepG2 monolayer and spheroid culture as compared to human rIL-2 7.3.3 NK cells activated by <i>R. korthalsii</i> methanol extract effectively inhibit the HepG2 cell invasion 7.3.4 NK cells activated by <i>R. korthalsii</i> methanol extract mediated HepG2 cell death through multiple apoptosis 	160
 through direct and indirect activation 7.3.2 NK cells activated by <i>R. korthalsii</i> methanol extract effectively kill HepG2 monolayer and spheroid culture as compared to human rIL-2 7.3.3 NK cells activated by <i>R. korthalsii</i> methanol extract effectively inhibit the HepG2 cell invasion 7.3.4 NK cells activated by <i>R. korthalsii</i> methanol extract 	160

8	SUMMARY AND GENERAL CONCLUSION	180
REFERE	NCES	183
APPEND	ICES	205
BIODAT	A OF STUDENT	208
LIST OF	PUBLICATIONS	209

LIST OF TABLES

Table 2.1	NK cell inhibitory receptors and their ligands	Page 10
2.2	NK cells activating receptors and their ligands	12
2.3	Differential features and significance of necrosis and apoptosis	16
2.4	Synergistic effect of cytokines on NK cell activity	22
2.5	Immunomodulators that stimulate and suppress NK cell activity	25
3.1	The IC_{50} values after 72h of extract or drug treatment in various cells	51
4.1	Effects of <i>R. korthalsii</i> methanol extract (25 μ g/mL) on PBMC cell cycle progression	71
4.2	T cell and NK cell immunophenotyping on human PBMC after treated with various concentration of <i>R. korthalsii</i> methanol extract or positive control for 72 h.	72
5.1	FACS analysis of Annexin V and PI binding of a different culture system for mixed population of PBMC and K562 cells in a ratio 2:1	92
5.2	FACS analysis of Annexin V and PI binding of a different culture system for mixed population of PBMC and HepG2 cells in a ratio 2:1	94
6.1	NK cell immunophenotyping on mice splenocyte after treated with various concentration of <i>R. korthalsii</i> methanol extract or mice rIL-2 for 24, 48 and 72 hours	116
6.2	Mice splenocytes harvested after day 5 or day 15 of treatment were allowed to proliferate with or without the treatment of <i>R. korthalsii</i> (25 μ g/mL) or mouse rIL-2 (50 U/mL). The rate of cell viability was evaluated by using MTT cell viability assay	122
6.3	NK cell immunophenotyping on mice blood after treated with various concentration of <i>R. korthalsii</i> methanol extract or mice rIL-2 for 5 days and 15 days <i>in vivo</i>	123
7.1	Flow cytometry analysis of Annexin V-FITC and CD56-PE binding of a different co-culture system for mixed population of NK cells and HepG2 cells in a ratio 2:1	157

Table

Page 159

 7.2 Flow cytometry analysis of dUTP-FITC and CD56-PE binding of a different co-culture system for mixed population of NK cells and HepG2 cells in a ratio 2:1

LIST OF FIGURES

Figure 2.1	Human NK cell subsets.	Page 8
2.2	Granzyme B mediated apoptosis pathway	15
2.3	Pathway for human cell apoptosis	18
2.4	Pathway for human NK cell mediated cytotoxicity.	19
2.5	Photos of R. korthalsii	37
4.1	Effect of <i>R. korthalsii</i> methanol extract or mitogens on Human PBMC viability at 24, 48 and 72 hours.	66
4.2	Effect of <i>R. korthalsii</i> methanol extract or mitogens on Human PBMC proliferation in BrdU proliferation assay compared to the untreated culture at 24, 48 and 72 hours.	68
4.3	Effect of <i>R. korthalsii</i> methanol extracts on human PBMC total cell number in trypan blue dye exclusion assay for 48 and 72 hours.	69
4.4	ELISA cytokine assay of <i>R. korthalsii</i> methanol extract or mitogens stimulated Human PBMC (a) IL-2 (b) IL-12 (c) IFN- γ at 24, 48 and 72 hours.	74
5.1	Percentage of K562 killing after co-cultured with different ratio of extract or rhIL-2 activated PBMC quantified by using LDH microcytotoxicity assay	88
5.2	Viability of HepG2 cell after co-cultured with different ratio of extract or rhIL-2 activated PBMC quantified by using MTT microcytotoxicity assay	90
5.3	CD 56 and Perforin expression of (a) untreated, (b) rhIL-2 treated or (c) <i>R. korthalsii</i> methanol extract treated PBMC	96
5.4	CD 56 and Granzyme B expression of (a) untreated, (b) rhIL-2 treated or (c) <i>R. korthalsii</i> methanol extract treated PBMC	97
6.1	The general time course of the <i>in vivo</i> studies. The time of repletion and immune response assays varied somewhat among experiments	109
6.2	Effect of <i>R. korthalsii</i> methanol extract or mouse rIL-2 on mice (a) thymocytes, (b) bone marrow cell and (c) splenocytes viability at 24 hours, 48 hours and 72 hours.	114

Figure		Page
6.3	ELISA cytokine assay of <i>R. korthalsii</i> methanol extract or mouse rIL-2 stimulated mice splenocytes (a) IL-2 concentration <i>in vitro</i> (b) IFN- γ concentration <i>in vitro</i> at 24 hours, 48 hours and 72 hours	117
6.4	Viability of Yac-1 after treated with different ratio of <i>R. korthalsii</i> extract or mouse rhIL-2 activated splenocytes <i>in vitro</i>	119
6.5	Effects of <i>R. korthlasii</i> methanol extract on cytokine production <i>in vivo</i> . The serum concentrations of IL-2 and IFN- γ were tested by ELISA assay. (a) Concentration of IL-2 <i>in vivo</i> . (b) Concentration of IFN- γ <i>in vivo</i>	125
6.6	Viability of Yac-1 after treated with different ratio of <i>R. korthalsii</i> extract or mouse rhIL-2 activated splenocytes <i>in vivo</i> (a) after 5 days of treatment (b) after 15 days of treatment	127
7.1	Brief description of NK cells treatment.	136
7.2	Flow cytometry analysis of CD56 and CD16 expression of NK cells isolated from treated or non-treated PBMC by using immunomagnetic negative selection NK cell isolation kit (Milteny Biotech, Germany)	144
7.3	Flow cytometry analysis of FasL, NKG2D, 16B4 and Granulysin stimulation on human rIL-2 and direct or indirect <i>R. korthalsii</i> methanol extract activated NK cells	146
7.4	ELISA Grazyme B, TNF- α and IFN- γ detection of untreated, human rIL-2 treated, direct or indirect <i>R. korthalsii</i> methanol extract stimulated Human NK cells	148
7.5	Formation of HepG2 spheroid from day 2 to day 4 after culture in the liquid overlay agarose coated 6 well plate.	150
7.6	Morphological assessment of treated and non-treated NK cells against HepG2 monolayer cells and spheroid culture	152
7.7	Cytotoxicity of treated or non-treated NK cells toward (a) HepG2 monolayer culture (b) HepG2 spheroid culture after 6 or 24 hours co-culture evaluated by LDH microcytotoxicity assay	154
7.8	Flow cytometry analysis for identification of NK cells in the HepG2 co-culture population based on the $CD56^+$ population	156
7.9	Effect of treated and nontreated NK cells on HepG2 cell invaded through Matrigel after 24 hours of co-culture	161

xvii

Figure

Page

- 7.10 Flow cytometry analysis of caspases 3 apoptotic pathway related 163 protein expression on HepG2 monolayer cells co-cultivated with untreated, human rIL-2 and direct or indirect *R. korthalsii* methanol extract activated NK cells
- 8.1 Summary of activation of HepG2 apoptosis pathway induced by 182 direct or indirect *R. korthalsii* methanol extact activated NK cells after 24 hours of co-cultivation.

LIST OF ABBREVIATIONS

AICL	Activation-induced C-type lectin
ADME	administration, distribution, metabolism or excretion
ASCT	Autologous stem cell transplantation
BAT3	HLA-B-Associated Transcript 3
BH3	Bcl-2 homology domain 3
Bid	BH3 interacting domain death agonist
Bid	Bcl-2 interacting domain
BrdU	Bromodeoxyuridine
BSA	Bovine serum albumin
cIAP	Cellular Inhibitor of apoptosis
CLL	Chronic lymphocytic leukemia
CML	Chronic myelogenous leukemia
Con-A	Concanavalin A
CTL	Cytolytic T lymphocyte
DHI	5,6-dihydroxyindole
DMEM	Dulbecco's modified eagle media
DMSO	Dimethylsulphoxide
DNA	Deoxyribonucleic acid
EDTA	Ethylenediaminetetraacetic acid
ELISA	Enzyme Link Immunosorbent assay
erbB2	Erythroblastic leukemia viral oncogene homolog 2, neuro/glioblastoma derived oncogene homolog (avian)
FADD	Far associating protein with death domain
FasL	Fas ligand
FBS	Fetal bovine serum

FITC	Fluorescein
FLICE	FADD like interleukin-7 beta converting enzyme
FLT3	FMS-like tyrosine kinase 3
FRIM	Forest Research Institute Malaysia
g	Gravity
G	Gap
G1	Gap 1
G2	Gap 2
GLCD	Granzyme B leakage-induced cell death
GM-CSF	Granulocyte-macrophage colony stimulating factor
HBSS	Hanks balance salt solution
HCC	Hepatocellular carcinoma
HDL	High-density lipoprotein
IC ₅₀	Inhibition concentration that reduces 50% of cell viability compared to control
ICAM-1	Inter-Cellular Adhesion Molecule-1
IFN	Interferon
IL	Interleukin
ILP	IAP like protein
ITAM	Immunoreceptor tyrosine-based activation motif
U	International unit
kDa	Kilo Dalton
KIR	Killer cell immunoglobulin-like receptors
KLF	Kruppel-like factor
LAK	Lymphokine-activated killer

LDH	Lactate dehydrogenase
LDL	Low-density lipoprotein
LFA-3	Leukocyte function-associated antigen-3
LPS	Lipopolisaccharide
МАРК	Mitogen activated protein kinase
MCTS	Multicellular tumor spheroids
МНС	Major histocompatibility complex
MIC	MHC class I related chains
mL	Milliliter
MTT	3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide
NF-κB	Nuclear factor kappa-light-chain-enhancer of activated B cells
NK	Natural killer
NKT	Natural Killer T
NPC	Nasopharyngeal carcinoma
OxyHb	Oxyhaemoglobin
PBMC	Peripheral blood mononuclear cell
PBS	Phosphate buffer saline
PE	Phycoerythrin
pg	Piko gram
PI	Propidium Iodide
PGE2	Prostaglandin E2
PMEA	9-(2-phosphonylmethoxyethyl) adenine
PS	Phospholipids phosphatidylserine
PVPF	Polyvinylpyrrolidone-free polycarbonate
PVR	Polyoma virus receptor

xxi

PWM	Pokeweed mitogen
Pyk2	Proline-rich tyrosine kinase 2
Rac1	Ras-related C3 botulinum toxin substrate 1
RBC	Red blood cell
rIL-2	Recombinant interleukin 2
S	Synthesis
SDS	Sodium lauryl sulfate
SSC	Side scatter
tBid	Truncated Bid
Th	T helper
TMB	3,3',5,5' tetramethylbenzidine
TNF	Tumor necrosis factor
TP53	Tumor protein 53
TRAIL	TNF related apoptosis inducing ligand
Tunel	Terminal dUTP nick-end labeling to detect apoptotic cells
ULBP	UL16-binding protien
UPM	University Putra Malaysia
UV	Ultraviolet
VCAM-1	Vascular cell adhesion molecule-1
VLA-4	Very late antigen-4
VLDL	Very low-density lipoprotein
WHO	World Health Organization
XIAP	X-link IAP
α	Alpha
β	Beta

γ	Gamma
μ	Micro
FcγRIII CD16	Fragment, crystallizable gamma region III
16B4 ITGAL	Integrin α2β1
⁵¹ Cr	Chromium-51

CHAPTER 1

INTRODUCTION

Immune system is one of the most important glossaries when the issue of health is discussed. It protects us from infectious diseases. Generally, immune system can be defined as a network of lymphoid organs, tissues and cells and also the products of these cells. The main function of immune system is to protect the body against infectious microbes or foreign substances (Abbas and Lichtman, 2005). Natural killer (NK) cells are the key component of the innate arm of the immune system which plays an important role in first line defense against tumor and viral infections (Titanji et al., 2008).

Malignant diseases are always associated with decreased immune competence (Ordemann et al., 2002). However, level of immune system is always reduced whenever influenced by anthropogenic factors such as polluted environment, malnutrition, seasonal changes and etc. (Keller et al., 2005). For such reason, people nowadays have increased their awareness towards building a healthy immune system. Guidelines such as reducing life stresses, maintaining balance diet and sufficient of exercise as well as obtaining adequate sleep and rest have been suggested to maintain individual's healthy and to protect them against pathogens (Nieman, 2000).

