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Bisphenol A is considered one of the most prominent endocrine disrupting 
chemicals worldwide. Upon entering aquatic environments, BPA can adsorb 
onto solids or colloidal particles which play a significant role in determining its 
behaviour, distribution and fate due to their unique characteristics, and may 
inhibit its degradation in water and aid in its transport to distant places posing a 
severe threat to the ecosystem. This issue was highlighted in Bentong River, 
which is exposed to sewerage discharge and is a main water supply for the 
Semantan water intake, a part of the Pahang-Selangor Raw Water Transfer 
(PSRWT) project that provides millions of people with potable water across the 
two states, rendering this river a critical importance for public safety. The 
emphasis was directed toward the possibility of colloidal-bound BPA reaching 
the water intake downstream of Bentong River. Analytical work consisted of 
identifying particle size distribution in water while BPA analysis involved isolation 
from water samples through solid phase extraction followed by analysis using 
LC-MS/MS. Experimental work involved illustrating the interaction and 
relationship between BPA and colloidal particles in terms of recovery and 
competitive sorption. The final step was incorporating the obtained figures and 
results into an environmental model (WASP) to simulate the fate and transport 
of colloidal-bound BPA in Bentong River. Results showed that BPA levels in 
Bentong River varied between 1.13-5.52 ng L-1 in the soluble phase while the 
highest BPA concentration in the colloidal phase was 2.06 ng L-1. 
Experimentally, BPA recovery rate declined by 17% with increasing colloidal 
organic concentration, and BPA’s extraction via SPME was hampered by 
inhibition interactions with colloidal particles causing an apparent decrease of 
16% in recovery rate. Modelling results demonstrated the significance of spatial 
detail and highlighted the effects of colloidal particles’ concentration and density 
on BPA’s removal from the water column. All scenarios showed that after 7.5-10 
km mark BPA’s concentration started to reach a steady state with very low 
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concentrations which indicated that a downstream transport of colloidal-bound 
BPA was less likely due to minute BPA levels. The various model scenarios 
implied that particles with low densities, flowing in aqueous conditions that 
generate low attachment efficiency milieus and with low colloids, while SPM 
concentrations have a higher tendency to stay suspended within the water 
column, and consequently have higher propensity to get transported or relocated 
to farther distances away from the emission point. Even though a downstream 
transport of colloidal-bound BPA was less likely due to minute BPA levels as 
proven in this study, the possibility still exists especially if these levels were to 
increase later on. 
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Bisphenol A dianggap sebagai salah satu bahan kimia gangguan endokrin yang 
paling terkenal di seluruh dunia. Setelah memasuki persekitaran akuatik, BPA 
dapat dijerap kepada pepejal atau zarah koloid yang berperanan penting dalam 
menentukan tingkah laku, taburan dan nasibnya kerana ciri-ciri uniknya, 
terhalang daripada didegradasi dalam air serta membantu pengangkutannya ke 
tempat yang lebih jauh, menimbulkan ancaman terhadap ekosistem. Isu ini 
diketengahkan di Sungai Bentong, yang terdedah kepada pembuangan air 
pembetungan dan merupakan sumber bekalan air utama untuk pengambilan air 
Semantan, iaitu sebahagian daripada projek Pemindahan Air Mentah Pahang-
Selangor (PSRWT) untuk bekalan kepada berjuta penduduk di kedua-dua 
negeri, menjadikan sungai ini sangat penting untuk keselamatan orang ramai. 
Penekanan kajian adalah bagi analisis kemungkinan BPA terikat-koloid tiba di 
titik pengambilan air di hilir Sungai Bentong. Pengenalpastian taburan saiz zarah 
di dalam air dijalankan menerusi kajian analitik sementara analisis BPA 
melibatkan pengasingan dari sampel air melalui pengekstrakan fasa pepejal 
diikuti dengan analisis menggunakan LC-MS / MS. Eksperimen yang dijalankan 
menunjukkan interaksi dan hubungan antara partikel BPA dan koloid dari segi 
pemulihan dan penjerapan yang kompetitif. Langkah terakhir adalah kemasukan 
data ke dalam model alam sekitar (WASP) bagi memodelkan nasib dan 
pengangkutan BPA yang terikat-koloid di Sungai Bentong. Hasil kajian 
menunjukkan bahawa tahap kepekatan BPA di Sungai Bentong berjulat antara 
1.13-5.52 ng L-1 pada fasa larut sementara kepekatan BPA tertinggi dalam fasa 
koloid adalah 2.06 ng L-1. Secara eksperimen, kadar pemulihan BPA menurun 
sebanyak 17% dengan peningkatan kepekatan organik koloid, dan 
pengekstrakan BPA melalui SPME terhambat oleh interaksi perencatan dengan 
zarah koloid menyebabkan penurunan ketara dalam kadar pemulihan 16%. 
Hasil pemodelan menunjukkan kepentingan perincian ruang dan menyoroti 
kesan kepekatan dan ketumpatan zarah koloid pada penyingkiran BPA dari 
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badan air. Semua senario menunjukkan bahawa setelah mencapai jarak 7.5-10
km, kepekatan BPA mula mencapai keadaan stabil dengan kepekatan yang 
sangat rendah yang menunjukkan bahawa pengangkutan BPA di hilir sungai 
tiada berkaitan dengan kepekatan BPA yang terlalu kecil. Berbagai senario 
model menyiratkan bahawa zarah dengan ketumpatan rendah, mengalir dalam 
keadaan akues akan menghasilkan tahap kecekapan jerapan milius yang 
rendah, dengan kepekatan koloid rendah, manakala kepekatan pepejal 
terampai mempunyai kecenderungan yang lebih tinggi untuk tetap terampai 
dalam jasad air, dan akibatnya memiliki kecenderungan yang lebih tinggi untuk 
diangkut atau dipindahkan ke jarak yang lebih jauh dari titik pelepasan. 
Walaupun pengangkutan BPA terikat-koloid tidak dapat dikaitkan dengan 
kepekatan BPA yang sangat rendah seperti yang dibuktikan dalam kajian ini, 
kemungkinan masih ada terutama jika tahap ini akan meningkat di kemudian 
hari.
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CHAPTER 1 

1 INTRODUCTION 

1.1 Emerging Pollutants and Endocrine Disrupting Compounds  

Water is one of the most indispensable elements of life’s existence and 
continuation on earth. The demand for clean and safe water is constantly on the 
rise especially today with the massive increase of world population and the 
growing necessities of the modern world. Water demand management, water 
resource planning and ensuring minimum water for daily consumption are the 
most common concerns in urbanized regions around the globe. The 
management of water resources comes across many obstacles that arise due 
to the critical importance of water and its many applications. These various 
applications and practices are regularly in conflict with one another and the 
fulfilment of one usually impedes the realization of the other. One of the 
challenging problems that obscures all these applications and management 
practices is water pollution. Water pollution is a global issue that causes scarcity 
of useful water all around the world. 

For many decades, heavy metals were the topic of interest for most researchers 
in the aquatic environment. However, the focus has somewhat shifted toward 
other types of substances that have had less awareness about them and had 
emerged with some environmental problems, these substances are commonly 
known as emerging pollutants. Emerging pollutants are substances not 
presently monitored or censored in the environment nor regulated by law, but 
are believed to bring about severe effects on human health and ecosystems. 
These pollutants comprise a wide array of compounds that are not unknown 
necessarily and might actually have been in use for years, but have not been 
identified till novel detection techniques were employed (Ragav et al., 2013). 
These compounds are chiefly industrial products that are used every day, such 
as detergents, cosmetic products, pesticides, plasticizers, etc. One of their 
distinctive characteristics is persistency in the environment due to their 
resistance to degradation. Still, some of these compounds may not be as 
persistent as others, but their incessant introduction poses a possible risk to the 
environment (Pignotti, 2018). 

Emerging pollutants include various compounds that exhibit different features. 
Therefore, they are often categorized into several classes according to their 
characteristics and use. Among these classes are the Endocrine Disrupting 
Compounds (EDCs), which represent a major concern due to the threat and 
danger they pose to the endocrine system of organisms. World Health 
Organization (WHO) defines endocrine disruptors and potential endocrine 
disruptors as “an exogenous substance of mixture that alters function(s) of the 
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endocrine system and consequently causes adverse effects in an intact 
organism, or its progeny, or (sub) population” (Damstra et al., 2002). Despite the 
limited current knowledge regarding the actual effects of these compounds on 
human health and aquatic species, there is evidence that EDCs can cause 
harmful effects at extremely low concentrations. Moreover, there have been 
growing concerns recently regarding the potential harmfulness of these 
compounds posed on human health and organisms (Ribeiro et al., 2017). These 
chemicals can disrupt the endocrine system and interfere with its functions in 
different forms. EDCs have the ability to mimic typical hormone functions by 
binding with and ultimately triggering endocrine receptors in a certain cell or 
tissue, which leads to unpredicted endocrine stimulation. By contrast, other 
EDCs have the ability to bind to certain receptors without activating them which 
prevents natural hormones from binding with these receptors and results in a 
lack of endocrine response. 

1.2 Bisphenol A (BPA) 

Among those emerging pollutants, also considered as one of the most 
environmentally prevalent chemicals is Bisphenol A (BPA). BPA, one of the 
endocrine disruptors, is a high manufactured chemical used extensively today 
in plastics’ production and in epoxy resins. BPA is an organic chemical 
comprised of two phenolic rings linked by a single carbon carrying two methyl 
groups. Originally identified as a possible synthetic estrogen in the 1930s, it is 
currently considered a potential endocrine disrupting chemical and is used 
extensively nowadays in plastics’ production (Allard, 2014). This compound is 
found in everyday consumer goods from water bottles to can linings and is 
considered a cause for public health concern due to its extensive human 
exposure (Collica et al., 2018). Due to the growing demand for plastic products, 
BPA’s production has increased steadily in past years, making it one of the most 
produced volume substances worldwide. In fact, the global demand has risen 
from 3.9 million metric tonnes in 2006 to 5.5 million metric tonnes in 2011 (Flint 
et al., 2012), and was estimated at 7.7 million metric tonnes in 2015 (Almeida et 
al., 2018). Accordingly, the global market for BPA is forecast to reach 10.6 million 
metric tons by 2022 (Research and Markets, 2016). BPA’s release into the 
environment is attributed to many sources such as disposal of industrial 
wastewater from industrial production facilities, breakdown and leaching of many 
domestic products containing BPA and burning of plastics (Clarke and Smith 
2011). It may as well be released into the environment along with 
untreated landfill leachates (Masoner et al., 2014). This compound is often 
detected in sewage effluent from industrial and urban sources at concentrations 
varying between 0.23-149 μg L-1 (Höhne & Püttmann, 2008; Sanchez-Avila et 
al., 2009). Research work conducted in Spain and Greece has revealed that only 
around 68-87% of BPA is removed in conventional sewage treatment processes 
(Stackelberg et al., 2007; Stasinakis et al., 2008) while the rest ends up in 
receiving coastal and surface waters posing a probable risk to these receiving 
waters (Sanchez-Avila et al., 2009). Thus, BPA’s investigation in water, 
particularly when it's linked with human consumption is extremely vital. Rivers in 
Malaysia supply over 98% of the country's potable water which gets typically 
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treated by conventional water treatment processes. Yet, many of these rivers 
are still exposed to untreated sewage discharge, industrial waste and municipal 
effluents (Fulazzaky et al., 2010).  

Furthermore, biomonitoring studies indicated that humans are at hazard from 
internal exposure to BPA, even though this chemical is biotransformed quickly 
and excreted in urine (Vandenberg et al., 2010). Although BPA has a low affinity 
for estrogen receptors in comparison with other compounds such as 17β-
estradiol, it still causes similar alternations in some cell functions. Moreover, BPA 
in nanogram ranges was found to be more effective at preventing the release of 
a vital adipokine that shields human beings from metabolic syndrome (Menale 
et al., 2008). Chronic health conditions such as cardiovascular disease and 
diabetes in people may also be associated with higher exposure to BPA 
compounds (Mercogliano & Santonicola, 2018). Several studies have also 
reported adverse health complications in wildlife exposed to BPA including 
changes in reproductive systems and sexual behaviour, but only few studies 
tackled BPA’s effect on human sexual functions (Collica et al., 2018). 

The presence of emerging pollutants such as personal care products, 
pharmaceuticals, pesticides and EDCs in water bodies is a critical issue in many 
countries. However, the environmental fate of emerging pollutants including BPA 
and their behaviour are largely unknown. These pollutants primarily enter the 
aquatic environment, specifically rivers via industrial and domestic wastewater 
effluent. The conventional treatment plants are ineffective in removing these 
compounds entirely, resulting in their release undegraded or partially degraded 
into the aquatic environment (Sarkar et al., 2019). Certain species of these 
emerging pollutants can undergo partial degradation due to sunlight influence or 
bioactivity, however, the resulting product can be even more hazardous than the 
original compound (Naidu et al., 2016). Runoff from agricultural areas sprayed 
with pesticides or containing biosolids and landfill leachate is considered among 
the secondary sources of these chemicals (Ragav et al., 2013). 

Once introduced into river environments, these pollutants take several paths 
within the water system due to their physiochemical characteristics (Yan et al., 
2015a). BPA biodegrades rather quickly in receiving waters and partially 
adsorbs onto solid particles. These suspended solid particles associated with 
BPA may settle down in deposition zones subjected to extra 
biodegradation under oxic conditions (Staples et al., 2018). However, less 
degradation is expected to occur in anoxic conditions, though recent research 
has shown that abiotic processes facilitate mineralization and transformation 
when oxygen is unavailable, which suggests that BPA is susceptible to 
degradation under these conditions (Staples et al., 2018). Furthermore, 
photolysis is another route of degradation for BPA which depends on a specific 
waveband lengths (Im and Loeffler, 2016).  © C
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Despite all the latest efforts in reducing the exposure to BPA and using BPA-
free plastics, recent studies state that BPA levels in human beings are actually 
underestimated (Gerona et al., 2020). Lately, several studies have focused 
particularly on the occurrence and behaviour of BPA in riverine aquatic 
environments, which is attributed in part to rivers being often severely impacted 
by human activities due to the large population densities around rivers and the 
rapid pollutant transport down the river’s hydrologic gradients (Yan et al., 
2015a). BPA has been reported in surface water, runoff, urban snow, 
wastewater and landfill leachate. The ubiquitous occurrence of this pollutant in 
municipal streams reflects its extensive production and use in society. 
Ultimately, this compound can be released to aquatic systems either directly or 
indirectly wherein interactions with other water constituents are to be expected 
(Ribeiro et al., 2017). BPA can migrate and move about among river 
compartments and matrices. It can get adsorbed onto sediments or suspended 
particles, reach groundwater, or accumulate in aquatic organisms and intensify 
through the food chain until it eventually reaches humans (Ragav et al., 2013). 

Table 1.1 : Main characteristics of Bisphenol A 
 

 
Chemical structure 

 
Solubility (mg/L) 300 
Molecular Weight (g/mol) 228.3 
logKow 3.4 
pKa 9.6 

 
 
1.3 Pollutants’ Transport  

The fate and transport of pollutants in river systems are controlled by their 
reactivity and hydrodynamic transport. Rivers have distinct hydrodynamic 
characteristics that are different compared to estuaries and lakes. Pollutants’ 
transport in water takes place under dissolved or particulate forms. In surface 
waters, solid particles introduced into streams can move either in a particulate 
state downstream (bed-load transport) and get deposited farther downstream, 
or move in a suspended form within the water column. This transport depends 
on the particle’s size, shape and density, as well as flow rate, velocity, and 
turbulence (Durães et al., 2018). The speed and turbulence of currents enable 
transportation of particles with different sizes. When the river flow or riverbed 
gradient diminishes, particles tend to settle down and this often occurs when 
river flow reaches reservoirs (Auel et al., 2017). Moreover, the dissolved 
transport in water is also significant since it is related with more available forms 
of contaminants with substantial environmental concern. This relates mainly to 
leaching or detachment processes, by which contaminants are released from 
the solid phase into the aqueous phase under the effect of desorption and 
dissolution of contaminants from their support-phases. This relies on numerous 
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factors including pH, redox conditions, temperature, biotic action, partition 
constant, etc. (Ji, 2012).  

1.4 Pollutants’ Transport Mechanisms  

1.4.1 Advection, Dispersion, and Diffusion  

Dissolved contaminants may be transmitted by advection, dispersion, and 
diffusion in water. Advection involves movement along the direction of flow, 
which is related to the fluid's average velocity. Darcy's Law which links the 
hydraulic gradient with the bulk properties of the materials (porosity) 
explains this form of transport. Advection is the easiest way to describe the 
transport of contaminants, which can be viewed as a chemical transport induced 
by a hydraulic gradient. On the other hand, pollutants can be spread and 
dispersed during flow movement due to changes in fluid velocity. This spreading 
is the result of dispersion, which is comprised of mechanical dispersion when 
water velocity is high, and diffusion when the water velocity is low. Diffusion is a 
process where contaminants move under the effect of kinetic energy in the 
direction of the concentration gradient (Durães et al., 2018). 

1.4.2 Colloid-Facilitated Transport  

This term describes a transport process by which colloidal particles serve as a 
transport vector for various pollutants in surface water and in underground water 
circulating in fissured rocks (Bedrikovetsky et al., 2011). This relates to the 
movement of small size particles (<1μm) to which pollutants are attached to by 
sorption or ionic exchange. Such particles are distributed in the aqueous phase 
and may act as mobile sorbents, thus allowing pollutants to disperse easily and 
move to other locations or environmental compartments away from the source 
of pollution (Durães et al., 2018). Colloids may be of organic or inorganic origin, 
and they do not tend to settle out of suspensions due to their small size, 
succumbing to the Brownian motion effect and minor currents in the bulk 
solutions (Pédrot et al. 2008). The fate of pollutants and their impact on the 
environment are strongly dependant on the nature and behaviour of mobile 
colloids, whose fate is affected by their size and stability and the size and 
connectivity of its pores. Following mobilization, the lifetime of colloidal particles 
is mostly determined by convective transport, particle deposition or 
resuspension and aggregation behaviour, which may take place simultaneously 
(Ilina et al. 2008). However, the significance of each one of these processes 
highly depends on the chemical and physical characteristics of the aquatic 
system. 
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Experimental and analytical evidence illustrated that many pollutants in water 
are not only transported in a dissolved form, but also sorbed to mobile colloidal 
particles. That has led to numerous studies centred around colloidal facilitated 
transport of many pollutants such as heavy metals, pesticides, pharmaceuticals, 
radionuclides and hormones (Gavrilescu, 2014). This demonstrates the 
importance of this topic since failure to account for colloid-facilitated solute 
transport can severely underestimate the transport potential and risk 
assessment of these contaminants (Bradford et al. 2011). Pollutants can move 
faster and farther in the presence of mobile colloids than they do in their 
absence, and these colloids can inhibit the degradation or availability of 
pollutants, thereby contributing to their transport downstream onto distant sites 
and other environmental compartments away from their original source 
(Gavrilescu, 2014). 

1.5 Colloids in Aquatic Environments 

1.5.1 Colloidal Particles’ Impact in Aquatic Environments 

Generally, all particles affect natural water by forming associations with 
pollutants and affecting the transport process of these pollutants throughout the 
waterbody. Colloidal particles are available abundantly in aquatic environments 
and they have different compositions, shapes, structure, coatings and surface 
chemistry (Wilkinson and Lead, 2007). As a result of their small sizes, these 
particles typically possess a long residence time and considerably influence the 
transparency of water. Colloids originate commonly from natural processes, for 
instance weathering, volcanic explosions and bacterial activity, as well as 
anthropogenic practices such as effluent from wastewater treatment plants or 
direct sewage discharge and livestock wastewater from farms and ranches 
(Hartland et al., 2013). Their high reactivity, specific surface area and high 
organic content render them a strong adsorption capacity to countless 
substances including emerging pollutants, and consequently, affect their 
behaviour, chemical composition and environmental fate (Gibson et al., 2009). 
Ribeiro et al. (2017) stated that interactions between these pollutants and 
colloidal particles are to be expected. Accordingly, the toxicity, bioaccumulation, 
concentration and speciation of EDCs are ultimately controlled and co-regulated 
by the influence of colloids. Besides, persistency of colloids in river water affects 
these aquatic ecosystems and may as well lead to microorganism toxicity 
(Pokhrel et al., 2013). The major impact on the transport and fate of pollutants 
and also on ecosystem balance has garnered increased consideration lately 
regarding aquatic colloids. 
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1.5.2 Colloidal Particles’ Association with Pollutants  

Colloidal particles are considered a suitable medium for pollutants’ adsorption, 
having a high surface area compared to all the natural components in water 
(below 10 m2/g). Thus, these particles can be associated with different types of 
pollutants. This robust sorptive capacity of colloidal particles has been well 
established and it relies mainly on their size, concentration, solution pH and 
reaction time (Yan et al., 2016). Inorganic colloidal particles are particularly 
effective in pollutant adsorption due to their high surface reactant area. This 
association can take place through different mechanisms such as ion exchange 
or surface interactions. Moreover, colloidal particles associated with pollutants 
can undergo different transformation processes which can be stimulated by 
sunlight and presence of oxides or other compounds (Yan et al., 2015a). Several 
studies have illustrated that the transformation behaviour of pollutants is in part 
reliant on their adsorption tendencies and river hydrodynamics (Wang et al., 
2016; Liu et al., 2017). Hydrophobicity was also stated as a significant factor that 
influences the sorption of phenolic xenoestrogens, such as BPA, onto particulate 
and dissolved organic carbon (Gong et al., 2016). Recently, studies have started 
to account for EDCs’ occurrence in other phases such as the colloidal phase, 
which is formed by the interaction of organic or inorganic particles with EDCs. 
Huang et al. (2019a) stated that colloidal-bound EDCs were notable and varied 
between 7.80 & 44.3% in municipal secondary effluents. Zhou et al. (2007b) 
reported that EDCs’ adsorption onto aquatic colloids of diverse origins varied 
considerably as well. Furthermore, it has been suggested that EDCs’ sorption 
onto colloidal humic acid particles has a major significance in aquatic 
environments as it reduces the bioavailable concentration and toxicity to aquatic 
creatures (Kim et al., 2016).  

In addition, most studies look at the presence and distribution of pollutants in 
aquatic environments with a specific focus on the so-called “dissolved phase”, 
which is defined though arbitrarily, but conveniently as any substances that pass 
through a membrane filter with pores from 0.22 μm to 0.70 μm (Duan et al. 2013). 
However, it has become well known that small colloids, which are abundant in 
aquatic environments, actually pass through these membrane filters and are 
thus often neglected for their role in pollutant behaviour and distribution. 
Therefore, this conventional dissolved phase can be divided further into a 
spectrum of colloidal particles, known as the “colloidal phase”, as well as a 
further filtrate that is termed as the “soluble phase” (Lead & Wilkinson, 2009). 
Prior studies though limited proposed that colloidal particles can be a significant 
sink for certain pharmaceuticals (Yang et al., 2011), and lately, they have 
attracted more consideration due to their high pollutant reactivity and mobility 
implications (Graham et al., 2014). For instance, polycyclic aromatic 
hydrocarbons (PAHs) were found to be predominantly attached to smaller 
colloids rather than larger particulate matter in stormwaters and landfill leachates 
(Kalmykova et al., 2013). Hofmann and von der Kammer (2009) reported that 
the engineered carbonaceous nanoparticles could increase pollutants’ transport 
relying mainly on their size, sorption kinetics and residence time. Colloidal 
particles have different origins, chemical compositions, atomic structures and 
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physicochemical properties. These characteristics highlight and underline their 
significance and impact in pollutants’ adsorption transport (Lead et al., 2018). 

 

Figure 1.1 : Particle size domains of component phases in waters 
(Ketkoom, 2011) 
 
 
1.5.3 Colloidal Particles’ Transport in Water 

Currently, several researchers view colloidal particles as a principal agent and 
transport carrier of organic pollutants, heavy metal and radioisotopes in water 
bodies. As mentioned above, the high surface area and low settling velocity of 
colloidal particles and the state of near continuous suspension in water columns 
make colloidal particles very efficient mediums that adsorb dissolved pollutants 
readily (Miller & Karathanasis, 2014). Ideally, pollutants can be sorbed onto an 
immobile surface and remain bound to this medium, thus posing little danger in 
water. However, with the presence of colloidal particles these pollutants can get 
attached to these particles which in turn increase their mobility. Besides, the 
partition of EDCs onto colloidal particles has been shown to be relatively 
independent from the physio-chemical characteristics of these compounds, 
especially their octanol water partition coefficient (Kow) (Liu et al., 2005). Also, 
the sorption of polar EDCs by colloidal particles might be credited to the physio-
chemical characteristics of these colloids, and BPA is considered a moderate 
hydrophobic chemical that attaches readily to colloidal particles and dissolved 
organic matter as well (Petrie et al., 2019). The binding interactions between 
colloidal particles and BPA considerably affect the transformation and migration 
of BPA in aquatic environments (Bhatnagar and Anastopoulos, 2017). 

Field studies and lap tests have showed that colloidal particles have the ability 
to carry pollutants to long distances and increase their distribution in aquatic 
systems (Kalmykova et al., 2013). Colloidal facilitated transport, a well-known 
concept especially in soil porous medias and land fractures, can increase the 
extent and range of pathogens and pollutants travelling through waterways. The 
presence of metals associated with colloidal particles has been widely reported, 
these reports emphasised the role of colloidal particles as carriers and their 
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influence in enhancing the mobility of contaminants. One of the decisive factors 
in colloidal facilitated transport of pollutants in water is that colloids must be 
present amply in order to adsorb a substantial amount of pollutants, a fact that 
is underestimated in laboratory tests (Ketkoom, 2011). 

Temperature, pressure, pH and ionic strength are among the key factors 
dictating colloidal particles’ mobility and distribution. The movement of colloidal 
particles increases with high flow rates and with increasing pH values (Casanova 
et al., 2018). On the other hand, ionic strength has an inverse relation with 
colloids’ mobility, since solutions with high ionic strength enhance aggregation 
kinetics and hinder colloidal mobility (Gan et al., 2019). Studies on colloidal 
particles’ mobility and facilitated transport have focused on particles and 
contaminants’ movement through soil zones and their effect on groundwater.  

To this date, there are insufficient studies that display and illustrate the role of 
colloids in natural waters. Therefore, characterizing colloidal particles and 
understanding their behaviour in water is essential in trying to predict their 
movement and influence on pollutants’ reactions and transport in water. This 
work includes an investigation on the relationship between colloidal particles and 
BPA, as a predominant emerging pollutant and endocrine disruptor. The effects 
of colloidal particles’ behaviour and characteristics (size distribution, 
concentration, zeta-potential & molecular weight) on BPA’s fate and behaviour 
in river water are analysed and illustrated both analytically and experimentally, 
and are further described and depicted using computational modelling. The aim 
is to gain a better insight on the role of natural and man-made colloidal particles 
in pollutant transport in the aquatic environment. 

1.6 River and Water Quality Modelling  

Mathematical models are governed by conservation laws of mass and 
momentum. These models are used to illustrate the spatial and temporal 
variation of different physical processes in the hydrologic system along with 
extra information regarding land use and cover, climate and hydrology. 
Modelling the hydrologic response to natural or anthropogenic induced changes 
offers a unique understanding of these physical processes such as stream flow, 
fluid and pollutant transport in the surface and subsurface and the interaction 
between the atmosphere and land surface (Yu, 2015). Models are robust 
instruments for illustrating the behaviour of pollutants in complex natural 
systems, and thus are indispensable for scientific and regulatory intentions. 
Models can offer a framework that is essential for a clear and well-defined 
scientific understanding of environmental fate and behaviour of pollutants in 
water. The fate and transport of pollutants in rivers are very intricate processes 
that involve physical transport along with chemical and biological kinetics. Thus, 
it is vital that mathematical models employed to estimate and elucidate 
pollutants’ fate and related processes are flexible, reliable and accurate (Ji, 
2012). These fate and behaviour models can add value to scientific efforts by 
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exploring the relative effects of the processes contributing to pollutants and 
particles’ fate and behaviour in complex ecosystems, thereby identifying 
dominant processes. 

Additionally, a complete environmental fate assessment of any pollutant or 
variable involves four elements. The first element is the environmental fate 
model that outlines the environmental system undertaken and the processes 
occurring within this system that govern the fate of its components and 
pollutants. The second factor is pollutant's physicochemical properties, 
which include the rate of degradation and partition coefficients. The third item 
involves details about the emission levels of the pollutant in various regions and 
at different stages. The latter two elements constitute entry variables to the 
environmental model, and the model results are derived from the combination of 
these three elements. Lastly, the fourth element of the overall assessment is 
field data. This element is independent from the overall process and it shows 
levels of the pollutant measured in the environment. Model results should be 
compared to the field data whenever it is available, and any kind of disagreement 
needs to be analysed (Scheringer et al., 2014). The term “fate” contains three 
principal types of processes: (i) transformation and degradation, (ii) circulation 
or exchange of pollutants between various environmental compartments inside 
one spatial domain or region of the model, and (iii) transport, either from one 
section of the model system to an adjacent one or out of the model system with 
moving water, sediment, soil or air (Scheringer et al., 2014). 

In order to illustrate pollutants’ environmental fate, it is necessary to gain insight 
regarding what type of transformation and transportation processes these 
compounds undergo, what are the time scales for these processes, what 
happens when certain environmental conditions change and how will these 
different processes affect the mass balance of these pollutants in a connected 
environmental system such as water. Environmental fate models are useful and 
practical tools that offer solutions and explanations to these inquiries. They make 
it possible to predict the levels of pollutants in different environmental 
compartments, compare the effects of competing processes, and identify the 
processes and parameters that require more detailed investigation via laboratory 
experiments. 

1.7 Environmental Fate and Modelling of Colloidal Particles and 
BPA  

Generally, when organic pollutants enter aquatic environments, their adsorption 
and attachment onto suspended particles undoubtedly come to be one of the 
most critical factors determining their behaviour, transport and fate. Several 
studies have demonstrated that the transformation behaviour and transportation 
of pollutants rely on their adsorption characteristics in the aquatic environment. 
Therefore, it is important to understand the adsorption mechanism of organic 
pollutants on natural colloids. Hence, a considerable amount of information has 
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been gathered in the last decade or so regarding the environmental fate of nano 
chemicals in association with colloidal and nano particles in aquatic systems. 
However, some difficulties remain unmitigated (Scheringer et al., 2014). Klaine 
et al. (2008) even stated that colloidal particles are a critical factor that affect the 
behaviour and fate of nano pollutants in general. Therefore, a better 
characterization of colloids and how they interact with nano pollutants is 
essential to further understand their fate in the environment. Moreover, these 
interactions and relationships must be incorporated into environmental fate 
models for nano pollutants.  

As mentioned earlier, colloidal particles have been shown to play a significant 
role in determining the behaviour, distribution and fate of BPA in aquatic 
environments, which is commonly attributed to their unique characteristics such 
as high surface area, concentrated organic carbon content and their high affinity 
toward pollutants (Kalmykova et al., 2013). Additionally, BPA’s fate in water has 
been shown to be highly affected by the physicochemical characteristics of 
colloids such as particle size, zeta-potential and fluorescence intensity (Yan et 
al., 2015a), thus their colloidal adsorption should significantly affect their 
reactivity, bioavailability and mobility (Yan et al., 2015b). However, the precise 
influence of colloids on BPA and their relationships are still inadequately 
described. Furthermore, recent studies have run into some bottlenecks in 
exposure assessment due to the immense complexity of nanomaterial fate 
processes. An aspect of this complexity is the enormous variety of types and 
forms of nano particles and natural colloids, interacting chemical substances and 
reactive particle surfaces (Praetorius et al., 2013). Another dimension of 
uncertainty derives from the environmental transformations of nano chemicals 
and particles, which are known to take place at unpredictable spatial and 
temporal scales (Nowack et al., 2012).  

In aquatic environments, determining the transformation, fate and transport of 
emerging pollutants, especially pollutants bound to colloidal and nano particles 
is a challenging process and depends greatly on a wide spectrum of intrinsic and 
extrinsic parameters (Sani-Kast et al., 2015; Clavier et al., 2019). Water 
characteristics such as temperature, pH, ionic composition and water hardness 
strongly affect the transport mechanisms and chemical reactivity of organic 
pollutants and nanoparticles (Koelmans et al., 2015; Ellis et al., 2016). Presence 
of living organisms (Carnal et al., 2015) and suspended particulate matter can 
also influence these processes a great deal (Praetorius et al., 2014). Often, slight 
changes in water chemistry can profoundly affect pollutants’ characteristics as 
well as interactions and bindings with other substances surrounding them. 
Furthermore, these changes impact key processes such as degradation and 
dissolution of pollutants as well as settling, aggregation and sedimentation of 
particles, and consequently the distribution and transport of both within river 
sections (Ellis et al., 2016). The presence of natural organic matter specifically, 
even in modest concentrations is expected to have an important impact on 
pollutants’ behaviour in water (Praetorius et al., 2014). © C
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Consequently, modelling colloidal facilitated transport of pollutants becomes 
even more complex. Due to their particular size and nature, colloidal particles’ 
behaviour in riverine systems is investigated using concepts that have been 
recently used in nanoparticle transport models (Sani-Kast et al., 2015; Quik et 
al., 2015). Most of environmental colloids and nanoparticles consist of the low 
molecular weight breakdown products of biological decay (humic matter), 
numerous fibrillar and mesh-like organic compounds, and minerals generated 
during the chemical weathering of rocks, mainly the oxides and oxyhydroxides 
of manganese, iron, aluminium and aluminosilicates. These types of compounds 
have the effect of generally increasing the size of colloids and nanoparticles 
via aggregation (Hartland et al., 2013). Both colloidal and nano particles have 
certain similarities besides the overlap in size range, and the fundamental 
concepts of surfaces and interfaces are essential for these particles (Wang et 
al., 2015). Furthermore, the DLVO theory is applicable to both colloidal and nano 
particles, this theory describes the balance between van der Waals attractions 
and electrostatic repulsions in a liquid medium (Hornyak & Rao, 2016). 
Therefore, it is feasible to assume that colloidal particles associated with BPA 
will aggregate with other colloidal or nanoparticles, or that colloidal aggregates 
will directly adsorb BPA forming complexes with varying hydrodynamic 
diameters, as it was implied in several research articles (Baalousha et al., 2011; 
Wang et al., 2015; Besseling et al., 2017; Lead et al, 2018). 

The potential hazards of this association and linkage between emerging 
pollutants such as BPA with colloidal particles to humans and ecosystems, even 
in minute concentrations, are highly dependable on the transport pathways of 
colloids in natural systems, and on the concentration of both components in 
different environmental compartments. Furthermore, the risk magnitude may as 
well hinge on whether the particle is freely dispersed or aggregated. The 
behaviour of colloidal particles in aquatic environments is controlled by their 
stability and aggregation tendencies, which in turn are significantly reliant on the 
surrounding environmental conditions (Xu et al., 2018). Akin to organic 
pollutants, several parameters have also been stated to have an impact on the 
stability of colloidal particles, for instance natural organic matter, pH, electrolytes 
and ionic strength (Philippe & Schaumann, 2014).  

Therefore, to have a comprehensive insight on the effects of colloidal particles 
on emerging pollutants and their concentration in aquatic systems, it is 
imperative to illustrate their transport and fate in water in order to properly assess 
any risks or hazards posed by any pollutant associated with these particles. 
Subsequently, new environmental fate models have emerged as a valuable tool 
in examining the relationships between colloidal particles and emerging 
pollutants such as BPA.  

One of the most popular environmental programs is The Water Quality Analysis 
Simulation Program (WASP). WASP is a dynamic, mass-balance, transport and 
fate model that enables users to simulate pollutant concentration and movement 
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in surface water and sediment (Knightes et al., 2019). WASP allows for time-
varying processes of advection, dispersion, point and diffuse mass loading, 
boundary conditions and exchange. Moreover, it can be linked to other 
hydrodynamic models and import data from different databases. It is one of the 
most widely used water quality models in the US and throughout the world. 

WASP includes two specific modules: The Eutrophication Module and The 
Toxicant Module. WASP developers in the past years have concentrated on the 
eutrophication module (Wool et al., 2013), and many modelling studies have 
focused on conventional pollutants and eutrophication (Sadeghian et al., 2018; 
Nguyen et al., 2018; Gargallo et al., 2018). The Toxicant module, on the other 
hand, received less work over the years with limited development since the 
1990s. Most recently, WASP8 (version 8.2) was released (April 2, 2019), which 
included an overhaul of WASP’s framework and made evident restructures and 
upgrades on the toxicant module. One of the clear motives for this effort was the 
explicit interest in emerging pollutants and their potential exposure 
concentrations, particularly nanomaterials, once released into the environment 
(Knightes et al., 2019). Subsequently, WASP8 Advanced Toxicant module 
received a total makeover that redesigned its state variables in distinctive arrays 
to allow simulations of any number of solid particles, chemical solutes and nano 
particles. Furthermore, Additional functionality options have been added to 
incorporate nano and colloidal particles’ specific processes, distinctively particle 
attachment kinetics and aggregation. This new version of the Advanced Toxicant 
Module has been applied in limited research works. Bouchard et al. (2017) 
estimated the fate and transport of multi-walled carbon nanotubes in Brier Creek, 
Georgia (US), while Camacho et al. (2018) employed it as part of an uncertainty 
and risk analysis for a margin of safety of a nutrient TMDL in Sawgrass Lake, 
Florida (US). WASP’s Advanced Toxicant Module resembles other novel 
environmental programs employed in this field of study (NanoDUFLOW & 
SimpleBox4Nano) in having similar elements, functions and flexibility.  

Regarding this research, after estimating and characterizing colloidal particles 
and BPA concentrations in water samples and illustrating their interactions and 
related variables, WASP will be applied to simulate these interactions and 
relationships between BPA and colloidal particles in water as well as their 
transport and fate along the river course. The purpose is to make a prediction 
on where these colloidal-bound BPA molecules will end up in the river and their 
level in different sections, since several processes influence the form in which 
they exist and how they are transported in surface water. 

1.8 Landscape Patterns & Land Use Impact on River Water  

Ecological integrity of rivers and streams has been shown to be fundamentally 
connected with the surrounding landscapes and land applications (Staponites et 
al., 2019). River water composition is significantly influenced by numerous 
natural & anthropogenic activities and with the growth of world population and 
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the incessant urbanization, landscape alterations have had an evident impact in 
recent times. Landscape ecologists define spatial patterns as the structure, 
arrangement and placement of objects within any particular landscape. This can 
range from river banks, to patches of forestry, to man-made settlement 
landscapes such as cities and towns. Each one of these environmental settings 
are organized and planned in a discernible pattern that can offer a lot of data 
pertaining to its history, composition, and ecosystem (Turner & Gardner, 2015). 
Meanwhile, land use is regarded as one of the components of landscape that 
has a significant role in generating and spreading pollution. Land use is defined 
in general terms as a series of practices on land, implemented by individuals in 
order to obtain benefits from its amassed resources. Moreover, Land use is 
related to the service that the land provides, it is not concerned with the surface 
cover on the ground. In short, land use indicates how people are managing the 
terrain and utilizing the land (Giri & Qiu, 2016). 

Land use patterns have a significant impact on aquatic environments and river 
water quality (Bu et al., 2014), and they influence water systems through non-
point pollutants which pose a significant risk to water quality, particularly in 
residential areas (Jia et al., 2013). Furthermore, natural landscapes have long 
been fragmented and transformed into impervious areas, which often lead to a 
surge in surface runoff. This continuous transformation alters the hydrological 
processes and makes it easier for pollutants to reach river networks, leading to 
additional strain and degradation in water quality (Barbosa et al., 2012). 
Typically, land use types dictate the sort of pollutants generated on land and 
carried via runoff into waterbodies. Water quality variables have been strongly 
related with the configuration and proportion of land uses inside multiple areas. 
In fact, US EPA (2015) mentioned that the significant increase in urban 
population since establishing the Clean Water Act has made stormwater 
contaminants become the chief reason of impairment in Colorado’s urban 
surface waters. Furthermore, recent studies offered a strong evidence that 
urbanization generates excessive amounts of nutrients, sediments and metals 
that affect ecological characteristics and stability of surface waters (Son et al., 
2015; Park & Park, 2015). 

Similarly, the relationship between landscape patterns and water quality 
deterioration is considered to be a pattern-process relationship, in which energy, 
nutrients and material in a landscape are influenced by permeability, 
connectivity, aggregation and configuration (Mitchell et al., 2013). Several 
studies have highlighted the impact of landscape patterns on water chemistry 
and quality variation, and particularly the significant bearing of landscape 
features on stream health (Beckert et al., 2011; Zhang et al., 2013; Zhang et al., 
2019a). Griffith (2002) even mentioned that the association between landscapes 
and water quality is area specific and non-stationary and above all complex. The 
spatial structure of landscapes in particular is essential for assessing the 
connection between landscapes and water quality at different scales (Zhang et 
al., 2019a). Furthermore, landscape composition and configuration may well be 
a key factor that have some bearing on hydrological processes, chemical cycles, 
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energy flows and natural habitats (Mitchell et al., 2013). Hence, it has become 
extremely imperative to identify and illustrate the impacts stemming from the 
surrounding environment on water quality parameters with specific emphasis on 
land use patterns and landscape metrics in order to implement sustainable water 
management strategies. 

Landscape metrics are defined as quantitative indices that illustrate the spatial 
and structural aspects of landscapes based on information gathered from 
remotely sensed images, maps and GIS coverages. Landscape elements, as 
entities, are defined as discrete units or patches. Landscape patterns are 
described or interpreted via metrics developed to quantify a patch in terms of 
size, isolation and shape, and also regarding its makeup and mosaic 
characteristics such as patch richness, connectivity, diversity and contagion. 
Typically, the aim of landscape analysis is to link measures and configuration of 
landscape structure to specific effects on ecological processes, instead of 
treating these numerical descriptions of spatial pattern as independent 
estimations (Kupfer, 2012). Lately, studies have dedicated extra focus on spatial 
configuration of land uses and on different landscape metrics in an attempt to 
further understand the association and interconnection between them and water 
characteristics in watersheds. Incorporating advanced statistical analysis and 
spatial analysis techniques have made a notable progress in these studies (Bu 
et al., 2014).  

Rivers in Malaysia are extremely turbid. Deforestation and land use changes, 
particularly the conversion of forests into oil palm plantations, have adversely 
impacted the water quality in rivers and contributed to the high volume of 
suspended solids in rivers. Also, the distinct rainy season in Malaysia usually 
generates considerable runoff volumes that travel across different land surfaces 
and carry various substances into waterbodies. Therefore, it is essential to 
examine the relationships of land use and landscape with water quality in any 
river basin from potential point and non-point pollution sources. Although it is still 
challenging to relate the numerous water quality variables to landscapes and 
land uses in urbanized areas with high heterogeneity. 

In addition to illustrating colloidal-bound BPA fate and transport in Bentong 
River, we tried to illustrate the significance of spatial land uses and landscape 
patterns on water quality. Normally, it is somewhat difficult to assert and clarify 
these relationships in rivers, due to the continuous input from upstream. 
Nevertheless, we operated on the basic concept that surface settings and spatial 
composition will categorically change or have some bearing on water quality in 
adjacent water systems. 
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1.9 Problem Statement  

Endocrine disrupting chemicals (EDCs) have received growing attention recently 
due to the endocrine disrupting effects on humans, fish and other aquatic 
vertebrate species, even at concentrations as low as the ng L-1 level. Bisphenol 
A, one of the most prominent EDCs, is widely utilized in industrial production and 
is found in daily used products. This compound is only partially removed in 
wastewater treatment plants and ultimately ends up in ambient waters via 
effluent discharge, runoff and landfill leachate. Upon entering the water system, 
this compound can be absorbed by aquatic organisms, or adsorb onto solids or 
colloidal particles which inhibit its degradation in water and may aid in its 
transport to distant places posing a severe threat to the ecosystem.  

The impacts of current land development and effluent discharge from sewerage 
systems within the Bentong catchment area are a major concern to the 
waterbody, especially with the Semantan water intake situated downstream of 
Bentong River. This water intake is being tapped by many people in the Bentong 
region and around it, which may ultimately expose them to BPA among other 
chemical compounds and cause some health concerns in the future due to the 
accumulative characteristic of these compounds. Moreover, with the projected 
development plan for Bentong area, the pollution load will definitely escalate with 
population surge. Consequently, the damage is bound to get much worse and 
emergence of different pollutants will ultimately cause novel problems. 

1.10 Objectives of the Study 

The overall objective of this study is to gain insight on the potential release of 
Bisphenol A, its transport and fate in the aquatic environment in association with 
colloidal particles. The emphasis is directed toward the possibility of these 
pollutants reaching the Pahang-Selangor Raw Water Transfer (PSRWT) intake 
downstream of Bentong River. 

Therefore, the focus will be on both natural and synthetic colloidal and nano 
particles and on BPA compounds in Bentong River with the following specific 
aims: 

1. Illustrate the relationship and correlation of water quality variables, land 
use types and landscape spatial metrics, also identify pollution factors 
and most polluted sites. 

2. Illustrate the interactions of BPA in association with colloidal and nano 
particles. © C
OPYRIG

HT U
PM



 
17 

3. Quantify BPA’s concentration in the colloidal and soluble fractions in 
Bentong River. 

4. Characterize the relevant colloidal and nano particles’ properties in 
Bentong River  

5. Simulate the influence of different environmental & hydrological 
parameters on the colloidal-bound BPA’s fate & transport in the river 
using WASP simulation program. 

 
 
1.11 Scope and Limitations of the Study 

The study will take place in Bentong District, samples will be circumscribed to 
Bentong River only starting just before it enters the main district and ending after 
it departs just before it reaches the water intake. The study will be limited to only 
colloidal particles excluding the particulate suspended solids bed sediments. 
Moreover, the focus will be mainly on Bisphenol A, a widely spread endocrine 
disrupting compound, and its association with colloidal particles in Bentong 
River. This relationship will be illustrated with experimental work as well as 
simulation processes using an environmental model to demonstrate further the 
extent of this association and possible risks along the river course. BPA will be 
measured in both colloidal and soluble phases without expanding to other 
phases such as the total, particulate or the traditional dissolved phase. Sediment 
samples were left out of the study which would have given an insight into BPA’s 
accumulation in the river bed. BPA samples were also limited to seven samples 
instead of the 22 sites planned for other water variables.   
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