DETERMINATION OF GENETIC RELATEDNESS AMONG SELECTED RICE CULTIVARS USING MICROSATELLITE MARKERS FOR CULTIVARS IMPROVEMENT THROUGH MARKER ASSISTED BREEDING

ALI ETEMAD
FBSB 2009 33
Determination of Genetic Relatedness among Selected Rice Cultivars using Microsatellite Markers for Cultivars Improvement Through Marker Assisted Breeding

Ali Etemad

Degree of Master of Science
Universiti Putra Malaysia
2009
Determination of Genetic Relatedness among Selected Rice Cultivars using Microsatellite Markers for Cultivars Improvement Through Marker Assisted Breeding

By

Ali Etemad

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfilment of the Requirements for the Degree of Master of Science

November 2009
This Thesis is Dedicated to

You

MY Wife,

MY Mother,

And also to

My kind father which was my best teacher and friend also, I have a memory of him in my heart during my lifetime which was like a treasure, but unfortunately he passed away during my Master study and I miss him so much, God bless him
Rice is grown in diverse environmental conditions. In this study, genetic variation among thirteen Iranian and thirteen Malaysian rice cultivars was determined using Microsatellite markers. Microsatellites are polymerase chain reaction (PCR) based and deoxyribonucleic acid (DNA) markers which are abundant, co-dominant and widely used in various organisms. This study consisted of two parts, the first part was DNA extraction, which consisted of comparing between four different DNA extraction methods, namely the Dellaporta and CTAB as conventional methods also, Promega and Axyprep as commercial protocols kits. Comparison was also made on the effect of different leaf age as well as leaf position on different quality and yield of DNA obtained. The results of the study showed significant difference (P<0.05) between different extraction methods in relation to optical density OD \(260/280\) nm and DNA yield from each method. The Dellaporta method (OD\(260/280=2\pm0.07\) nm and DNA yield 2073±196 ng) gave the best results. The positions of different leafs (from top to bottom leaf number 4 to 1)
and the ages of leafs (2, 4, 6 and 8 weeks) were also monitored for optimum DNA extraction. The results of the Duncan test showed that there was no significant difference (P>0.05) between leaf positions for 2 to 4 weeks old leaf. However, the age of leaves in young and fresh stages of tissue showed significant difference (P<0.05) in ratio of \(\text{OD}_{260/280} \pm 0.03 \) and DNA yield (1373±70 ng). The results (based on method of extraction, leaf age and position) were used for subsequent DNA extraction of the 26 rice cultivars. The second part consisted of molecular work using twenty one microsatellite primer pairs which were selected from the Gene Bank. The estimation of genetic diversity among two rice groups (Iranian and Malaysian cultivars) were done with the assistance of two softwares UVIdoc (ver.98) and POPGENE (ver.1.31). A total of 21 loci (75 alleles) were observed, of which 20 loci (95.24 %) were polymorphic, except RM338. Microsatellite loci RM1 and RM271 showed the highest polymorphism (between 94 to 136 bp in size). The Polymorphism Information Content (PIC) value was (0.578±0.170). The dendogram constructed based on genetic distance values (UPGMA) grouped the cultivars into five clusters. All of the Iranian rice cultivars were placed in cluster I and III while Malaysian rice cultivars were in clusters IV and V. However cluster II consisted of both Iranian and Malaysian rice cultivars. The results of genetic diversity among selected cultivars in this study can be used for screening of the high grain quality rice accession for backcrossing and breeding programs.
Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk ijazah Master of Science

Persaman Genetik di Antara Kultivar Padi Terpilih Dikesan Menggunakan penanda Mikrosatelit Untuk Penambahbaikan Kultivar Secara Pembiakbakaan Berpandukan Penanda

Oleh

Ali Etemad

Pengerusi: Maziah Mahmood, PhD

Fakulti Bioteknologi dan Sains Biomolekul

Padi ditanam pelbagai jenis keadaan perselitaran. Dalam kajian ini, variasi genetik di antara tiga belas kultivar padi Iran and tiga belas kultivar padi Malaysia (berjumlah dua puluh enam) dikesan menggunakan penanda mikrosatelit. Mikrosatelit adalah berasaskan tindakbalas rantai polimerase (PCR) dan penanda asid deoksi ribonukleik (DNA) yang mana ianya mudah diperolehi, ko-dominan, dan digunakan secara meluas dalam pelbagai organisma. Kajian ini mengandungi dua bahagian. Bahagian pertama ialah membezakan pengekstrakan DNA di antara empat jenis pergekstrakan DNA iaitu Dellaporta dan CTAB sebagai kaedah konvensional serta kaedah penggunaan kit Promega dan Axyprep. Perbandingan turut dilakukan bagi kesan umur daun, kedudukan daun ke atas kualiti dan hasil DNA yang diperolehi. Keputusan menunjukkan perbezaan yang ketara (P<0.05) di antara kaedah pergekstrakan yang berbeza di mana OD 260/280 nm dan kepekatan diukur untuk DNA setiap kaedah. Kaedah Dellaporta (OD 260/280 nm 2±0.07 nm dan kepekatan 2073±196 ng) menunjukkan hasil yang terbaik.
Kedudukan daun yang berbeza (dari atas ke bawah, daun dinomborkan 4 kepada 1) dan umur daun (2, 4, 6 dan 8 minggu) juga dipantau untuk pengekstrakan DNA yang optimum. Keputusan ujian Duncan menunjukkan tidak ada perbezaan yang ketara (P>0.05) di antara kedudukan daun yang berumur antara 2 dan 4 minggu menunjukkan perbezaan yang ketara (P<0.05) bagi nisbah OD 260/280 nm 2±0.03 dan kepekatan DNA (1372±70 ng). Keputusan dari kajian pergekstrakan DNA (berasaslai kaedah pergekstrakan, umur dan kedudukan daun) digunakan untuk pengekstrakan DNA bagi dua puluh enam kultivar padi. Bahagian kedua, ialah bahagian molekul yang menggunalai dua puluh satu pasaugan primer mikrosatelit yang dipilih daripada Gene Bank. Anggaran diversiti genetik antara dua kumpulan padi (kultivar Iran dan Malaysia) dianalisis dengan menggunakan dua perisian iaitu UVIdoc (ver. 98) dan POPGENE (ver. 1.31). Sejumlah 21 lokus (75 alel) telah dikesan, di mana 20 lokus (95.24%) dainipadanya aolalah polimorfik, kecuali lokus RM 338. Lokus mikrosatelit (lokus RM1 dan RM271) menunjukan polimorfisma yang tertinggi (bersaiz 94 hingga 136 bp). Purata nilai PIC dalam analisis ini ialah 0.578± 0.170. Dendogram berdasarkan nilai jarak genetik (UPGMA) mengumpulkan kultivar ini ke dalam lima kluster yang berlainan. Seuwa kultivar padi Iran digolongkan dalam kluster I dan III, manakala kultivar padi Malaysia dalam kultivar IV dan V. Walau bagaimanapum, kluster II menganolungi gabungan kedua- dua kultivar padi Iran dan Malaysia. Keputusan kepelbagaian genetik di antara kultivar terpilih dalam kajian ini boleh digunakan untuk pemilihan assesi padi yang berkualiti tinggi bagi program pembiakan silang dan pembiakbakaan.
ACKNOWLEDGEMENTS

Beauty and Admire to Allah (SWT), the Omnipotent, Omniscient and Omnipresent, for opening doors of opportunity to me throughout my life and for giving me the strength and health to achieve what I have so far.

First and foremost, my deepest gratitude to my mother and father (God bless them) who advised and supported me emotionally and financially in my pursuit for higher education and academic excellence and expressed understanding and consideration towards me. Words cannot express my gratitude for their love, support, and patience that have sustained me during my life and study. What can I say, except thank you and I shall never forget your kindness and sacrifice.

My heart felt thanks and appreciation goes to my understanding wife, Marsa and her family, whom I am thankful to their patience and understanding throughout the course of my study.
I would like to express my greatest gratitude to my respected supervisor, Prof. Dr. Maziah Mahmood, chairman of my supervisory committee, for her advice and invaluable guidance towards the period of the study.

I would like to express my deepest thanks and gratitude to my co-supervisor Assoc. Prof. Dr. Siti Khalijah Daud, for her suggestions, guidance and encouragement throughout this study.

Also I would also like to extend my thanks to the Department Head and all of the staff members, the Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences and Department of Biology, Faculty of Science followed by the staff of School of Graduate studies of University Putra Malaysia for helping me in one way or another during the course of my study at UPM.

I would like to acknowledge Mr. Reza Ostadsaraee in Rasht Gilan Iran Rice Research Institute and Mr. Abduollah Mohd Zain in Malaysian Agriculture Research and Development Institute MARDI for their kind cooperation and help in collection, support and delivery the rice seeds as the experimental materials samples for this study.
Special thanks to my friends, Iranians, Malaysians, and those from other places, in particular to Arash Javanmard, Majid Masoumian, Arash Asadzade, Fariborz Momayez, Mostafa Norozi, Yousef Emami poor, Fateme Mahdavi, Ayyob Akbari, Hassan Moini, Kourosh jome Khaledi, Tan Suat Hian, Mohd Hakiman Awang Mansor, Chong Haw Eong, Vijendren Krishnan and others for their help.
I certify that a Thesis Examination Committee has met on 23 November 2009 to conduct the final examination of Ali Etemad on his Thesis entitled “Determination of Genetic Relatedness among Selected Rice Cultivars using Microsatellite Markers for Cultivar Improvement Through Marker-Assisted Breeding” in accordance with the Universities and University Colleges Act 1971 and the Constitution of the Universiti Putra Malaysia [P.U. (A) 106] 15 March 1998. The Committee recommends that the student be awarded the Master of Sciences.

Members of the Examination Committee were as follows:

Mohd Arif Seyd, PhD
Professor
Faculty of Biotechnology and Biomolecular Sciences
Universiti Putra Malaysia
(Chairman)

Tan Soon Guan, PhD
Professor
Faculty of Biotechnology and Biomolecular Sciences
Universiti Putra Malaysia
(Internal Examiner)

Ho Chi Ling, PhD
Associate Professor
Faculty of Biotechnology and Biomolecular Sciences
Universiti Putra Malaysia
(Internal Examiner)

Wickneswari Ratnam, PhD
Professor
Faculty of Science and Technology
Universiti Kebangsaan Malaysia
Country Malaysia
(External Examiner)

BUJANG BIN KIMHUAT, PhD
Professor and Deputy Dean
School of Graduate Studies
Universiti Putra Malaysia

Date: 15 January 2010
This thesis was submitted to the Senate of Universiti Putra Malaysia has been accepted as fulfilment of the requirement for the degree of Master of Sciences. The members of the Supervisory Committee are as follows:

Maziah Mahmood, PhD
Professor
Faculty of Biotechnology and Biomolecular Sciences
Universiti Putra Malaysia
(Chairman)

Siti Khalijah Daud, PhD
Associate Professor
Faculty of Science
Universiti Putra Malaysia
(Member)

HASANAH MOHD. GHAZALI, PhD
Professor and Dean
School of Graduate Studies
Universiti Putra Malaysia
Date: 11 February 2010
DECLARATION

I declare that the thesis is based on my original work except for quotations and citations, which have been duly acknowledged. I also declare that it has not been previously, and is not concurrently, submitted for any other degree at Universiti Putra Malaysia or other institutions.

(Signature)

Ali Etemad

Date:
<table>
<thead>
<tr>
<th>CHAPTER</th>
<th>INTRODUCTION</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Background</td>
<td>1</td>
</tr>
<tr>
<td>1.2</td>
<td>Rice Consumption in Iran and Malaysia</td>
<td>2</td>
</tr>
<tr>
<td>1.3</td>
<td>Iranian and Malaysian Rice</td>
<td>2</td>
</tr>
<tr>
<td>1.3.1</td>
<td>Iranian Rice</td>
<td>2</td>
</tr>
<tr>
<td>1.3.2</td>
<td>Malaysian Rice</td>
<td>4</td>
</tr>
<tr>
<td>1.4</td>
<td>Importance of Genetic Diversity</td>
<td>5</td>
</tr>
<tr>
<td>1.5</td>
<td>Molecular Markers</td>
<td>5</td>
</tr>
<tr>
<td>1.6</td>
<td>Significance of the Study</td>
<td>6</td>
</tr>
<tr>
<td>1.7</td>
<td>Objectives</td>
<td>6</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>2 LITERATURE REVIEW</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1 Rice</td>
<td>8</td>
</tr>
<tr>
<td>2.1.1 Rice Origins and Domestication</td>
<td>8</td>
</tr>
<tr>
<td>2.1.2 Oryza sativa L. (indica and japonica)</td>
<td>9</td>
</tr>
<tr>
<td>2.1.3 The Future of Rice in Next Century</td>
<td>9</td>
</tr>
<tr>
<td>2.2 Germplasm Relationships</td>
<td>10</td>
</tr>
<tr>
<td>2.2.1 Choosing Parents and Developing the Individual Base</td>
<td>11</td>
</tr>
<tr>
<td>2.2.2 Optimizing the Number of Recombination Cycles</td>
<td>14</td>
</tr>
<tr>
<td>2.3 Morphological and Molecular Markers</td>
<td>15</td>
</tr>
</tbody>
</table>
2.4 Molecular Breeding is an Effective Strategy to Achieve Better Rice Cultivars 17

2.5 Polymerase Chain Reaction (PCR) 18

2.6 Comparison of DNA Based Markers 19

2.7 Microsatellites 20
 2.7.1 Classification of Microsatellite 22
 2.7.2 The Evolution of Microsatellite 23
 2.7.3 Potential Problems Associated With Microsatellite Marker 24
 2.7.4 Application of Microsatellite Marker 25

2.8 Genetic Variation 26

2.9 Marker Assisted Selection (MAS) 28

3 MATERIALS AND METHODS 31

3.1 Chemicals 31
 3.1.1 Origins of Selected Rice Cultivars 31
 3.1.2 Plant Preparation 32

3.2 Genomic DNA Extraction 33
 3.2.1 DNA Extraction Method by Dellaporta et al., (1983) 33
 3.2.2 DNA Extraction by CTAB Method (Doyel and Doyel, 1987) 35
 3.2.3 AxyPrep™ Multisource Genomic DNA Miniprep Kit 37
 3.2.4 Promega Genomic DNA Extraction kit 38

3.3 Effects of Different Leaf Position on DNA Quality and Quantity 39

3.4 Effect of Leaf Age on DNA Quality and Quantity 40

3.5 DNA Quantification 41
 3.5.1 Spectrophotometer Method 41
 3.5.2 Concentration of DNA 41
 3.5.3 Electrophoresis of Genomic DNA 42

3.6 Microsatellite Primers 43

3.7 PCR Procedures and Optimization 44

3.8 Electrophoresis of PCR Products 47
3.9 Statistical Analysis

3.9.1 Completely Random Design (CRD) 48
3.9.2 Effective Number of Alleles (n_e) 49
3.9.3 Allele Frequency 50
3.9.4 Polymorphic Information Content PIC 50
3.9.5 Genetic Distance 50

3.10 Cluster analysis 51

4 RESULTS AND DISCUSSION 54

4.1 Phenotypic Characteristics of Selected Rice Cultivars Based on Their Origins 54

4.2 Effects of Different Extraction Methods on DNA Purity 54

4.3 The Influence of Different Leaf Position on DNA Quality and Quantity 59

4.4 Effect of Leaf Age on DNA Extractions 64

4.5 Amplification of Microsatellite in Selected Iranian and Malaysian Rice Cultivars 67

4.6 Genetic Variability Among Rice Cultivars 76

4.6.1 Number of Alleles 76
4.6.2 Frequency of Alleles 78
4.6.3 Polymorphism Information Content (PIC) 80

4.7 Genetic Distance 81

4.7.1 Genetic Relationships 82
4.7.2 Cluster Analysis 86

5 SUMMARY AND CONCLUSIONS 87

REFERENCES 91
APPENDICES 114
BIODATA OF STUDENT 117
LIST OF TABLES

Table 2.1: Main Characteristics of Major Types of Molecular Markers 19

Table 3.1: List of Iranian and Malaysian Rice Cultivars Used in the Study 32

Table 3.2: Dellaporta DNA Lysis Buffer for 100 ml 34

Table 3.3: Preparation of Tris EDTA (TE) Buffer for One Liter 35

Table 3.4: CTAB DNA Extraction Buffer for 50 ml 35

Table 3.5: CTAB Washing Buffer for 50 ml 36

Table 3.6: Final Concentration for PCR Reaction 44

Table 3.7: Microsatellite Primers and Distributions on 12 Rice Chromosomes 45

Table 4.1: Different DNA Extraction Methods and Their Optical Density (OD) in 260\text{nm} and 280\text{nm} Detected by Spectrophotometer Followed by the DNA Yield 56

Table 4.2: DNA Extraction for Different Leaf Positions and Their Optical Densities (OD) in 260\text{nm} and 280 \text{nm} Detected by Spectrophotometer Followed by the DNA Yield 61

Table 4.3: Different Leaf Ages and Their Optical Density (OD) in 260\text{nm} and 280 \text{nm} Detected by Spectrophotometer 65

Table 4.4: Polymorphism and Monomorphism at the Microsatellite Loci Amplified for the Iranian and Malaysian Rice Cultivars. 68

Table 4.5: Allele Frequency at 21 Loci Examined of 26 Iranian and Malaysian Cultivars 72

Table 4.6: Observed and Effective Number of Alleles, and PIC for the Polymorphic Microsatellite Loci in Iranian and Malaysian Rice Cultivars. 77

Table 4.7: Genetic Similarity Distance Between 26 Rice Cultivars Originating From Iran and Malaysia 84
LIST OF FIGURES

Figure 3.1. Rice seedling at four weeks old, leaf position was labeled according to the age from top to bottom leaf number four to one

Figure 3.2. The leaf position of rice after four weeks old from top to bottom leaf number four to one

Figure 3.3. The leaf position of rice after eight weeks old from top to bottom leaf number four to one

Figure 4.1. Different amount of genomic DNA related to four extraction methods on 0.8 % agarose gel. Four rice cultivars namely HashemyІ cultivar lanes [1, 5, 9 and 13], Sadry cultivar lanes [2, 6, 10 and 14], MR219 Line4 cultivar lanes [3, 7, 11 and 15] and MR219 line9 cultivar lanes [4, 8, 12 and 16] from Iran and Malaysia respectively, were used for four extraction method. Lane M: 25 bp DNA marker ladder.

Figure 4.2. Effects of four different genomic DNA extraction methods on DNA purity detected by the ratio of OD 260/280 nm in four different rice cultivars based on Duncan analysis (a and b are different groups).

Figure 4.3. The total amount of genomic DNA products (ng) obtained from samples of fresh leaves by four different genomic DNA extraction methods in four different rice cultivars based on Duncan analysis (a, b, c and d are different groups).

Figure 4.4. The genomic DNA extracted from different leaf positions, number four to one (from top to bottom) by 0.8 % agarose gel tested. Four rice cultivars namely HashemyІ cultivar lanes [1, 5, 9 and 13], Sadry cultivar lanes [2, 6, 10 and 14], MR219 Line4 cultivar lanes [3, 7, 11 and 15] and MR219 line9 cultivar lanes [4, 8, 12 and 16] from Iran and Malaysia respectively, were used for four leaf positions of DNA extraction. Lane M: 25 bp DNA marker ladder.

Figure 4.5. Effects of four different leaf positions on DNA purity as indicated by the ratio of OD 260/280 nm in four different rice cultivars (NS non significant means same group) based on Duncan analysis.

Figure 4.6. The influence of four different leaf positions in the total amount of genomic DNA yields (ng) in four different rice cultivars based on Duncan analysis (a and b are different groups).
Figure 4.7. DNA extracted from leaves number four and three from the top at four different ages by 0.8% agarose gel. Four rice cultivars namely HashemyI cultivar lanes [1, 5, 9 and 13], Sadry cultivar lanes [2, 6, 10 and 14], MR219 Line4 cultivar lanes [3, 7, 11 and 15] and MR219 line9 cultivar lanes [4, 8, 12 and 16] from Iran and Malaysia respectively, were used for four DNA extraction of leaf age. Lane M: 25 bp DNA step ladder.

Figure 4.8. Effects of four different ages of leaves on DNA purity as indicated by the ratio of OD 260/280 nm in four different rice cultivars based on Duncan analysis (a, b and c are different groups).

Figure 4.9. The influence of four different seedling ages of leaves in the final amount of genomic DNA yield (ng) in four different rice cultivars based on Duncan analysis (a, b, c and d are different groups).

Figure 4.10. Electrophoresis banding pattern for locus RM1, the size of PCR products were from 88 to 132 bp. Lane M: 25 to 766 bp DNA marker ladder

Figure 4.11. Electrophoresis banding pattern for locus RM 283, the size of PCR products were from 152 to 166 bp. Lane M: 25 to 766 bp DNA marker ladder

Figure 4.12. Electrophoresis banding pattern for locus RM 312, the size of PCR products were from 92 to 110 bp. Lane M: 25 to 766 bp DNA marker ladder

Figure 4.13. Electrophoresis banding pattern for locus RM 11, the size of PCR products were from 126 to 154 bp. Lane M: 25 to 766 bp DNA marker ladder

Figure 4.14. Electrophoresis banding pattern for locus RM 25, the size of PCR products were from 120 to 136 bp. Lane M: 25 to 766 bp DNA marker ladder

Figure 4.15. Electrophoresis banding pattern for locus RM 316, the size of PCR products were from 168 to 210 bp. Lane M: 25 to 766 bp DNA marker ladder

Figure 4.16. Electrophoresis banding pattern for locus RM 271, the size of PCR products were from 94 to 136 bp. Lane M: 25 to 766 bp DNA marker ladder

Figure 4.17. Electrophoresis banding pattern for locus RM 287, the size of PCR products were from 98 to 122 bp. Lane M: 25 to 766 bp DNA marker ladder
Figure 4.18. Electrophoresis banding pattern for locus RM 277, the size of PCR products were from 114 to 128 bp. Lane M: 25 to 766 bp DNA marker ladder

Figure 4.19. The allele frequency related to 21 microsatellite, ranged from one to five alleles per locus

Figure 4.20. Estimation membership coefficients for each individual in each cluster based on genetic similarity distance, Nei and Li similarity index (Dice 1945) UPGMA dendogram.
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Full Form</th>
</tr>
</thead>
<tbody>
<tr>
<td>µl</td>
<td>microliter</td>
</tr>
<tr>
<td>µM</td>
<td>micromole</td>
</tr>
<tr>
<td>°C</td>
<td>Centigrade Celsius</td>
</tr>
<tr>
<td>1X</td>
<td>one time</td>
</tr>
<tr>
<td>AFLP</td>
<td>Amplified Fragment Length Polymerase</td>
</tr>
<tr>
<td>bp</td>
<td>Base Pair</td>
</tr>
<tr>
<td>CRD</td>
<td>Completely Random Design</td>
</tr>
<tr>
<td>CSB</td>
<td>Clone Sequence based</td>
</tr>
<tr>
<td>CTAB</td>
<td>Cetyl Trimethyl Ammonium Bromide</td>
</tr>
<tr>
<td>DDI H₂O</td>
<td>Distilled De-Ionized Water</td>
</tr>
<tr>
<td>DNA</td>
<td>Desoxy Nucleic Acid</td>
</tr>
<tr>
<td>dNTP</td>
<td>dinucleotide triphosphate</td>
</tr>
<tr>
<td>DC</td>
<td>Direct Current</td>
</tr>
<tr>
<td>EDTA</td>
<td>ethylene diamine tera acetic Acid</td>
</tr>
<tr>
<td>EtBr</td>
<td>ethidium bromide</td>
</tr>
<tr>
<td>F</td>
<td>Fixation Index</td>
</tr>
<tr>
<td>FAO</td>
<td>Food and Agriculture Organization</td>
</tr>
<tr>
<td>GDP</td>
<td>Gross Domestic Products</td>
</tr>
<tr>
<td>GLM</td>
<td>General Linear Method</td>
</tr>
<tr>
<td>H₀</td>
<td>observed Heterozygosity</td>
</tr>
<tr>
<td>Hₑ</td>
<td>Heterozygosity</td>
</tr>
<tr>
<td>HWE</td>
<td>Hardy-Weinberg Equilibrium</td>
</tr>
<tr>
<td>IRRI</td>
<td>International Rice Research Institute</td>
</tr>
<tr>
<td>MARDI</td>
<td>Malaysian Agriculture Research and Development Institute</td>
</tr>
<tr>
<td>MAS</td>
<td>Marker Assisted Selection</td>
</tr>
<tr>
<td>MgCl₂</td>
<td>Magnesium Chloride</td>
</tr>
<tr>
<td>ml</td>
<td>milliliter</td>
</tr>
<tr>
<td>mM</td>
<td>millimole</td>
</tr>
<tr>
<td>Na</td>
<td>Observed Number of Alleles</td>
</tr>
<tr>
<td>Ne</td>
<td>Effective Number of Alleles</td>
</tr>
<tr>
<td>ng</td>
<td>nanogram</td>
</tr>
<tr>
<td>OD</td>
<td>Optical Density</td>
</tr>
<tr>
<td>PCR</td>
<td>Polymerase Chain Reaction</td>
</tr>
<tr>
<td>PIC</td>
<td>Polymorphism Information Content</td>
</tr>
<tr>
<td>QTL</td>
<td>Quantitative Trait Loci</td>
</tr>
<tr>
<td>RAHM</td>
<td>Random Amplified Hybridization Microsatellite</td>
</tr>
<tr>
<td>RAMPO</td>
<td>Random Amplified Microsatellite Polymorphism</td>
</tr>
<tr>
<td>RAPD</td>
<td>Random Amplification of Polymorphic DNA,</td>
</tr>
<tr>
<td>RFLP</td>
<td>Restriction Fragment Length Polymorphism</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Definition</td>
</tr>
<tr>
<td>--------------</td>
<td>--</td>
</tr>
<tr>
<td>SNP</td>
<td>Single Nucleotide Polymorphism</td>
</tr>
<tr>
<td>SSR</td>
<td>Simple Sequence Repeats</td>
</tr>
<tr>
<td>STR</td>
<td>Short Tandem Repeats</td>
</tr>
<tr>
<td>TBE</td>
<td>Tris Borate Ethylene Diamine Tetra Acetic Acid</td>
</tr>
<tr>
<td>TE</td>
<td>Tris Ethylene Diamine Tera Acetic Acid</td>
</tr>
<tr>
<td>Tm</td>
<td>Melting Temperature</td>
</tr>
<tr>
<td>U/µL</td>
<td>Unit Per Microlitter</td>
</tr>
<tr>
<td>UN</td>
<td>United Nations</td>
</tr>
<tr>
<td>UPGMA</td>
<td>Unweighted Pair Group Method with Arithmetic Mean</td>
</tr>
<tr>
<td>UPM</td>
<td>Universiti Putra Malaysia</td>
</tr>
<tr>
<td>UV</td>
<td>Ultraviolet</td>
</tr>
<tr>
<td>V</td>
<td>Volt</td>
</tr>
<tr>
<td>Ver</td>
<td>Version</td>
</tr>
</tbody>
</table>
CHAPTER 1
INTRODUCTION

1.1 Background

Developing countries are facing the challenge to quickly increase the productivity of agriculture sources to feed their growing populations. Rice is one of the most important and strategic crops in the world. Approximately, 50% to 80% of the world people receive their calories from rice (Khush, 2005).

Rice is the most important crop directly consumed by humans. With around 689 million tons produced annually on 149 million hectares of area in 2008, most of the rice (90%) is grown in Asia (IRRI, 2008). Also, rice needs specific climate to have optimum growth. Sometimes the plant has challenges during its growth period to survive through the environmental limitations such as water availability. Rice production increased by 130% between 1966 and 2000, while the population of low income countries increased by an average of 90% over the same period (Khush, 2005). The world’s population is predicted to reach approximately eight billion by 2030, (UN, 2007) and therefore, there is a need to further increase rice production by 40% in the next 25 years (Khush, 2005). The studying of genetic diversity between selected Iranian and Malaysian rice cultivars, on which no research was carried out so far, might help to access the high potential and
tolerant cultivars. The majority of selected rice cultivars have acceptable phenotypic characteristics which were collected from Malaysian Agriculture Research and Department Institute (MARDI) and Rasht, Gilan Rice Research Institute in Iran.

1.2 Rice Consumption in Iran and Malaysia

In Iran, the rice yield from 1961 till 2006 has increased from 2.14 (t/ha) to 5.81 (t/ha) with the rice production of 709,000 (ton) and reaches 3,300,000 (ton) per year (IRRI, 2008). The populations, however, increase approximately three times in the same period of time resulting in high consumption of rice in Iran. Similar trends were observed in the rice consumption in Malaysia from 1961 to 2006 while the rice yields increased from 2.11 (t/ha) to 3.36 (t/ha) and the production also increased from 1,152,000 (ton) to 2,277,000 (ton) per year over 40 years. The Malaysian population also increased as well and the import of rice increased from 423,000 (ton) in 1961 to 700,000 (ton) in 2006 (IRRI, 2008).

1.3 Iranian and Malaysian Rice

1.3.1 Iranian Rice

Iran is a Middle Eastern country bordering the Gulf of Oman, the Persian Gulf and the Caspian Sea, between Iraq and Pakistan, comprising 1.6 million km² of mainly deserts and fringing, arid mountainous areas (Appendix 3). There are also coastal places where crops such as rice are grown. Ten percent of the land is arable. One third of the