
 

 
 
 

UNIVERSITI PUTRA MALAYSIA 
 
 

MODIFIED CENOSPHERES AS NON-SACRIFICIAL PORE-FORMING 
AGENT FOR DEVELOPMENT OF POROUS MULLITE CERAMICS 

ENTIRELY FROM INDUSTRIAL WASTES 
 

 
 
 
 
 
 
 
 
 

CHOO THYE FOO 

 
 
 
 
 
 
 
 
 
 
 

ITMA 2021 7 



 
i 

 
 
 

MODIFIED CENOSPHERES AS NON-SACRIFICIAL PORE-FORMING 
AGENT FOR DEVELOPMENT OF POROUS MULLITE CERAMICS 

ENTIRELY FROM INDUSTRIAL WASTES 
 
 
 
 
 
 
 
 
 
 
 
 
 

By 
 
 

CHOO THYE FOO 
 
 
 
 
 
 
 

 
 
 
 
 
 
 

Thesis Submitted to the School of Graduate Studies, Universiti Putra 
Malaysia, in Fulfilment of the Requirements for the Degree of  

Doctor of Philosophy 
 
 

August 2021 

 

© C
OPYRIG

HT U
PM



 
ii 

COPYRIGHT 
 
 

All material contained within the thesis, including without limitation text, logos, 
icons, photographs, and all other artwork, is copyright material of Universiti Putra 
Malaysia unless otherwise stated. Use may be made of any material contained 
within the thesis for non-commercial purposes from the copyright holder. 
Commercial use of material may only be made with the express, prior, written 
permission of Universiti Putra Malaysia. 
 
Copyright © Universiti Putra Malaysia  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

© C
OPYRIG

HT U
PM



 
i 

Abstract of thesis presented to the Senate of Universiti Putra Malaysia in 
fulfilment of the requirement for the degree of Doctor of Philosophy 

 
 

MODIFIED CENOSPHERES AS NON-SACRIFICIAL PORE-FORMING 
AGENT FOR DEVELOPMENT OF POROUS MULLITE CERAMICS 

ENTIRELY FROM INDUSTRIAL WASTES 
 
 

By 
 

 
CHOO THYE FOO 

 
 

August 2021 
 
 

Chairman : Associate Professor Mohamad Amran bin Mohd Salleh, PhD 
Institute : Advanced Technology  
 
 
Mullite is a widely used ceramic because it exhibits some advantageous 
properties such as thermal shock resistance, chemical resistance, creep 
resistance, high hot strength and low coefficient of thermal expansion. Driven by 
the need for low-cost and environmentally friendly alternatives, extensive 
research on the utilization of low-cost materials to produce mullite ceramics is 
crucial. In this study, mullite ceramics were produced entirely from aluminum 
dross (AD) and coal fly ash (CFA) industrial wastes. Both wastes were mixed 
together in different weight ratio, subsequently compacted and sintered. The 
effects of the sintering temperature, acid leaching and Al2O3/SiO2 ratio on the 
chemical, physical, thermal expansion properties of the samples were 
characterized in detail. The results showed that appropriate mixing ratio and acid 
leaching had positive effects on the mineralogy, crystallinity, and 
macromorphology of sintered samples. At sintering temperature of 1500 °C, high 
mullite content ceramics with good crystallinity were produced. The resultant 
ceramics exhibited excellent thermal expansion properties with coefficient of 
thermal expansion (CTE) values ranging from 4.0 to 5.9 ×10−6 °C−1. Modified 
cenospheres were used as non-sacrificial pore-forming agent to produce porous 
mullite ceramics. The results showed that addition of modified cenospheres 
leads to the increment of both total porosity and closed porosity, with the 
reduction of open porosity. Addition of 40 wt% of modified cenospheres to the 
mullite precursor, the resultant porous mullite ceramic has a total porosity of 
50.2%, thermal conductivity of 1.28 Wm-1K-1, linear shrinkage of 4%, and biaxial 
flexural strength of 45.9 MPa. The mullite precursor was also used to produce 
high-temperature porous mullite washcoat. Results showed that the precursor 
transformed to a hierarchical porous microstructure assembled by large 
interlocked acicular mullite crystals. The specific surface area of the washcoat 
was 4.85 m2g-1, which comparable to the other high-temperature washcoats. 
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This study offers the potential of using these industrial wastes as a sustainable 
alternative raw material in the development of mullite ceramics. 
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CENOSPHERES TERUBAHSUAI SEBAGAI AGEN PEMBENTUKAN LIANG 
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Ogos 2021 
 
 

Pengerusi : Profesor Madya Mohamad Amran bin Mohd Salleh, PhD  
Institut : Teknologi Maju  
 
 
Mulit adalah seramik yang digunakan secara meluas kerana ia mempunyai ciri-
ciri kelebihan seperti ketahanan kejutan terma, ketahanan kimia, ketahanan 
rayapan, kekuatan panas yang tinggi dan pekali pengembangan haba yang 
rendah. Didorong oleh permintaan bahan alternatif yang murah dan mesra alam, 
penyelidikan yang mendalam mengenai penggunaan bahan kos rendah untuk 
penghasilan mulit adalah sangat penting. Dalam kajian ini, Seramik mulit 
dihasilkan sepenuhya daripada sisa-sisa industri seperti serdak aluminum dan 
abu terbang arang batu. Kedua-dua sisa ini dicampurkan dengan nisbah 
keberatan yang berbeza, kemudian dipadat dan disinter. Kesan-kesan suhu 
sinter, rawatan asid dan nisbah Al2O3/SiO2 terhadap sifat kimia, fizikal, dan 
pengembangan haba sampel dikaji dengan terperinci. Hasil kajian menunjukkan 
bahawa nisbah campuran yang sesuai dan rawatan asid memberi kesan positif 
terhadap mineralogi, kehabluran, dan makromorfologi sampel yang disinter. 
Pada suhu sinter 1500 °C, seramik berkandungan mulit yang tinggi dengan 
tahap kehabluran yang baik telah dihasilkan. Seramik tersebut mempamerkan 
sifat pengembangan haba yang sangat baik dengan nilai pekali pengembangan 
haba dari 4.0 hingga 5.9 ×10−6 °C−1. Cenospheres terubahsuai telah digunakan 
sebagai agen pembentukan liang tanpa lesap untuk menghasilkan seramik mulit 
berliang. Hasil kajian menunjukkan bahawa penambahan cenospheres 
terubahsuai meningkatkan jumlah liang dan liang tertutup, di samping itu 
mengurangkan liang terbuka. Penambahan 40 wt% cenospheres terubahsuai 
menghasilkan seramik mulit berliang yang mempunyai jumlah liang sebanyak 
50.2%, kekonduksian haba sebanyak 1.28 Wm-1K-1, pengecutan linear 
sebanyak 4%, dan kekuatan lenturan biaksial sebanyak 45.9 MPa. Prekursor 
mulit juga telah digunakan untuk menghasilkan pembawa mangkin mulit 
berliang suhu-tinggi. Hasil kajian menunjukkan bahawa prekursor bertukar 
kepada satu mikrostruktur berliang hierarki yang dibentukkan oleh kristal mulit 
asikular besar yang berpautan. Keluasan permukaan spesifik pembawa 
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mangkin mulit adalah 4.85 m2g-1, dimana setanding dengan pembawa mangkin 
suhu tinggi yang lain. Kajian ini menawarkan potensi menggunakan sisa-sisa 
industri ini sebagai bahan mentah alternatif yang mampan dalam penghasilan 
seramik mulit. 
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CHAPTER 1 

INTRODUCTION 

1.1 Brief introduction 

Mullite (3Al2O3·2SiO2) is the chemically stable intermediate phase in the silica – 
alumina system. It is a widely used ceramic because it exhibits some 
advantageous properties such as thermal shock resistance, chemical attack 
resistance, creep resistance, high hot strength and low coefficient of thermal 
expansion. Driven by the need for low-cost and environmentally friendly 
alternatives, many research efforts have used a variety of industrial wastes as 
starting materials to produce mullite ceramics.  

One of the industrial wastes being used as starting materials to produce mullite 
ceramics is coal fly ash (CFA). Most of the past efforts on CFA utilization in 
mullite production have been focused on the preparation of mullite ceramic and 
its composites with addition of other aluminum sources such as alumina, 
aluminum hydroxide, aluminum sulfate and bauxite. This is because the SiO2 
content in CFA is often excessive for the amount required for the preparation of 
mullite. Furthermore, excessive SiO2 associated with impurities can lead to a 
sample deformation or meltdown in high-temperature sintering. Generally, 
percentage of mullite in CFA can be increased by introducing additional 
aluminum source before mullitization phase transformation takes place; this 
aluminum source will then combine with the remaining free SiO2 in CFA to form 
additional mullite. Although all these processes from the previous studies are 
feasible, they utilized CFA as an alternative silica source, but the aluminum 
source they utilized is not a waste, which defeats the purpose of using industrial 
waste in the first place. Aluminum Dross (AD) is a waste product, which 
produced from secondary aluminum refining. This waste product has high 
content of Al2O3. This makes AD a good candidate waste material to mix with 
CFA to produce mullite. 

Past and current development of porous mullite have been focused on producing 
mullite ceramics with high permeability, in other words, the majority of the pores 
are technically open, functioning as small channels. The open pores and pore 
channels formation are related to pyrolysis; burnout; sublimation of sacrificial 
pore-forming agent and binder. Generally, close pores are difficult to form and 
control using these methods. A so-called non-sacrificial pore-forming agent is 
different from the traditional sacrificial pore-forming agent. This type of pore-
forming agent is based on its ability to increase the porosity of the matrix by its 
internal hollow volumes, and with little or no disintegration in the process. 
Therefore, non-sacrificial pore-forming agent is more suitable to produce porous 
mullite ceramic with majority closed pores. Coal fly ash cenospheres are 
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aluminosilicate hollow spheres with high silica and alumina content. 
Cenospheres have been utilized as non-sacrificial pore-forming agent in some 
low-temperature applications. However, it has not yet been successfully proven 
to be used in high-temperature applications. Therefore, it is crucial to understand 
the thermal behaviors of the cenospheres at high temperatures, so that it can be 
used as a non-sacrificial pore-forming agent for the porous mullite ceramics 
fabrication. 

Monolith washcoat is the crucial component of a catalyst support. It is where the 
catalytic reactions take place, as the main function of the washcoat is to provide 
high contact surface area between the catalyst and reacting gases for high 
reaction rates. Additionally, the washcoat has to be thermally stable at working 
temperatures. Mullite appears to be promising candidate for this high-
temperature (>1000 °C) washcoat application. Therefore, it is also important to 
investigate the feasibility of using aluminum dross and coal fly ash derived 
mullite precursor in the production of mullite washcoat.  

1.2 Problem statements 

Mullite is a promising advanced ceramic material. It can be produced from a 
variety of raw materials, namely chemicals, natural minerals, industrial wastes, 
or a combination of them. Over the years, manufacturing cost reduction efforts 
have gained much attention. The utilization of low-cost raw materials for 
ceramics production has become more desirable. Although some studies 
concerning about the use of low-cost materials to produce mullite ceramic had 
been published. But the utilization of 100% wastes to produce high-content 
mullite ceramic is still unachievable. 

Coal fly ash (CFA) is a by-product in coal-fired powerplant. CFA is utilized in 
industry as a substitute for fine aggregates in cement and concrete, in bricks and 
ceramic tiles, as filler in plastics and paints. But the utilization rate of the fly ash 
is rather low. In general, CFA has pozzolanic properties and its major mineral 
phases are silica and alumina in the form of quartz and mullite. Aluminum Dross 
(AD) is also a waste product, it produced from secondary aluminum refining. 
Currently, AD is processed in rotary kilns to recover the Al, and the resultant salt 
cake is sent to landfills. Although it is sealed to prevent from leaching, the 
potential for leaching still exists. Illegal dumping of this toxic waste can lead to 
serious environmental problem which could harm human health and the 
environment due to the fluorides and other salts contents in the salt cake. Owing 
to the high content of useful minerals in CFA and AD, it is economically viable to 
recover these minerals for useful industrial applications. Furthermore, energy 
consumed in the waste treatment can be saved if the wastes could be developed 
as a new material. © C
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Most of the porous mullite ceramics have high permeability, in other words, the 
majority of the pores are technically open, functioning as smallb channels. This 
type of porous ceramics is not suitable for refractory. The penetration of hot 
flowing gases and liquid melt in the pores may cause refractory failure, and toxic 
gas at high pressure that leak through the pores may cause safety hazard. 
Therefore, the development of porous mullite ceramics with less open pores is 
crucial for refractory. 

1.3 Scope of study 

In first part of this study, coal fly ash (CFA) and aluminum dross (AD) were 
investigated as the sole raw materials in the production of mullite-based 
ceramics. Both of the industrial wastes were mixed together in different weight 
ratio, subsequently compacted and sintered. The effects of the sintering 
temperature, acid leaching and Al2O3/SiO2 ratio on the chemical, physical, 
thermal expansion properties of the samples were characterized in detail. The 
chemical composition was determined by energy dispersive X-ray fluorescence 
(EDXRF) using a Shimadzu EDX-7000. X-ray diffraction (XRD) pattern at room 
temperature for the sample was recorded by using PANalytical X'Pert PRO using 
monochromated CuKα radiation (λ = 1.54184 Å) and phase composition was 
analyzed by Rietveld refinement method. The evaluation of relative degree of 
crystallinity of the samples was estimated from the measured X-ray intensity. 
The microstructure was characterized using a GeminiSEM 500 FESEM (Zeiss, 
Germany) equipped with an X-Max EDS detector (Oxford Instruments, UK). A 
Netzsch DIL 402C Dilatometer was used to measure linear thermal expansion 
of the sintered samples from room temperature to 1000 °C.  

In second part of the study, the influence of temperature on morphology, phase 
transformations and thermal expansions of coal fly ash cenospheres was 
investigated. The cenospheres were extracted from coal fly ash and heat-treated 
at 800, 1000, 1200 and 1400 °C for 2 hours. The cenospheres and heat-treated 
cenospheres (1000, 1200 and 1400 °C) were characterized by X-ray diffraction 
using PANalytical X'Pert PRO. The cenospheres were also characterized by a 
STA-449-F3 Jupiter simultaneous thermal analyzer (Netzsch, Germany) for 
their temperature-dependent phase transitions. The cenospheres and heat-
treated cenospheres (1000, 1200 and 1400 °C) were characterized using a 
GeminiSEM 500 FESEM (Zeiss, Germany) equipped with an X-Max EDS 
detector (Oxford Instruments, UK). The differences between particle 
morphology, shape and size were analyzed. The Al2O3/SiO2 ratio of mullite 
crystallites was computed based on the EDS results. A Netzsch DIL 402C 
Dilatometer was used to measure the linear thermal expansion of the powder 
samples in an alumina sample container from 100 to 1000 °C at a heating rate 
of 5 °C/min. The length change was recorded with a dense α-alumina as 
reference sample. © C
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In third part of the study, porous mullite ceramics were synthesized using the 
mullite precursor produced from the first part of the study together with modified 
cenospheres as a non-sacrificial pore-forming agent. In this part of the study, 
the effects of surface modification on cenospheres and the performance of the 
resultant porous mullite ceramics will be investigated. The microstructures of the 
samples were characterized using a Zeiss GeminiSEM 500 field emission 
scanning electron microscope (FESEM). Chemical composition was determined 
by energy dispersive X-ray fluorescence (EDXRF) using a Shimadzu EDX-7000. 
X-ray diffraction (XRD) patterns were recorded by using PANalytical X'Pert PRO 
using monochromated CuKα radiation (λ = 1.54184 Å) and phase composition 
were analyzed by Rietveld refinement method. The degree of crystallinity was 
estimated from the measured X-ray intensity. Thermal conductivity was 
measured at room temperature using Hot Disk TPS 2500S thermal conductivity 
analyzer via transient plane source method.  

In fourth and last part of the study, the feasibility of the aluminum dross and coal 
fly ash derived mullite precursor in the production of mullite washcoat was 
investigated. The precursor was made into slurry using deionized water and dip 
coated on flat alumina substrates and fired at 1200 °C and 1500 °C for 4 hours. 
The chemical composition of the starting materials was determined by energy 
dispersive X-ray fluorescence (EDXRF) using a Shimadzu EDX-7000. Particle 
size distributions of the powders were measured with the aid of a laser particle 
size analyzer (Microtrac X100). Zeiss GeminiSEM 500 FESEM was used for the 
study of the morphology of the starting mullite precursor and the sintered mullite 
washcoat on alumina substrates. The X-ray diffraction (XRD) pattern at room 
temperature for the samples were recorded by using PANalytical X'Pert PRO 
using monochromated CuKα radiation (λ = 1.54184 Å), and the phase 
composition was analyzed by Rietveld refinement method. N2 physical 
adsorption-desorption isotherm of the washcoat was obtained with a surface 
area analyzer (Quantachrome Autosorb-1-C) at 77 K.  

1.4 Objectives of Study  

This study is conducted to accomplish some predefined objectives. These 
objectives are: 

 
I. To synthesize and characterize mullite ceramics developed from coal fly 

ash (CFA) and aluminum dross (AD), and investigate the effects of the 
sintering temperature, acid leaching and Al2O3/SiO2 ratio on the 
chemical, physical, thermal expansion properties of the samples.  
 

II. To investigate the morphology, phase transformations and thermal 
expansions of the cenospheres at high temperatures, and assess the 
potential of cenospheres as a non-sacrificial pore-forming agent for 
porous ceramic fabrication.  
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III. To synthesize and characterize porous mullite ceramics using the waste 
derived mullite precursor and modified cenospheres as a non-sacrificial 
pore-forming agent, and investigate the effects of cenospheres surface 
modification on the pore characteristic and thermal conductivity of the 
resultant porous mullite ceramics.  
 

IV. To synthesize mullite washcoat using the waste derived mullite 
precursor, and characterize the surface properties and pore size 
distribution of the mullite washcoat.  
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