UNIVERSITI PUTRA MALAYSIA

CYTOTOXICITY OF GONIOthalamin ON THE HUMAN HEPATOCYcLLAR CARCINOMA HEPG2 CELL LINE

MOTHANNA SADIQ OBAID AL-QUBAISI
FBSB 2009 31
CYTOTOXICITY OF GONIOTHALAMIN ON THE HUMAN HEPATOCYTOPLASMIC CARCINOMA HEPG2 CELL LINE

By

MOTHANNA SADIQ OBAID AL-QUBAISI

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfilment of the Requirements for the Degree of Masters of Science

October 2009
DEDICATION

I wish to dedicate this thesis to my mother and father for their love and giving me the genes for research. They have always believed in me and have always encouraged me not only during this master period but throughout life.
Goniothalamin is a biologically active styrylpyrone derivative isolated from various Goniothalamus sp., belonging to the Annonaceae family. This plant extract has been reported to be cytotoxic towards several tumor cell lines such as pancreas carcinoma (PANC-1), gastric carcinoma (HGC-27) and breast carcinoma (MCF-7). The purpose of this study was to examine and characterize the *in vitro* cytotoxicity effect of goniothalamin on the human hepatocellular carcinoma HepG2 cells and normal liver Chang cells and also to study the morphological and biochemical changes of goniothalamin-treated HepG2 and Chang cells. Goniothalamin (2.3 -150 µM; 24, 48 and 72 hours) treatment to HepG2 and Chang cells resulted in a dose and time dependent inhibition of cell growth as assessed by MTT and LDH assays. The data suggest that goniothalamin selectively inhibits HepG2 cells (IC$_{50}$ of MTT= 4.6(±0.23) µM; IC$_{50}$ of LDH= 5.20(±0.01) µM for 72 hours) with less inhibition of growth in Chang cells (IC$_{50}$ of MTT= 35.0(±0.09) µM; IC$_{50}$ of LDH= 32.5(± 0.04) µM for 72 hours. The cytotoxic activity of goniothalamin on HepG2 cells was confirmed by Trypan blue dye exclusion
assay. Goniothalamin reduced the number of viable cells (non-stained) associated with an increase on the number of non-viable cells (stained) and the Viability Indexes were 52 ± 1.73% for HepG2 cells and 62 ± 4.36% for Chang cells at IC50 after 72 hours. Cells were exposed to goniothalamin at lowest concentration (2.3 µM), IC50 (of MTT results), and highest concentration (150 µM) for 24, 48, or 72 hours and then examined for effects on cell cycle (using the flow cytometry) or proliferation (using the BrdU ELISA assay). The cytotoxic activity of goniothalamin was related to the inhibition of DNA synthesis, as revealed by the reduction of BrdU incorporation. At 72 hours with the lowest goniothalamin concentration of 2.3 µM, the normal liver Chang cells retained 97.6% of control proliferation while the liver cancer HepG2 cells were reduced to 19.8% of control proliferation. Goniothalamin caused the accumulation of hypodiploid apoptotic cells in cell cycle analysis by flow cytometry. Goniothalamin arrested HepG2 and Chang cells in the G2/M phase with different degrees. Light microscopy examination of HepG2 and Chang cells exposed to different concentrations of goniothalamin up to 72 h demonstrated changes in cellular morphology; i.e. cell rounding followed by a loss of adherence with subsequent cell shrinkage and blebbing. In addition, the apoptotic cells were more abundant in goniothalamin-treated HepG2 cells (84 ± 4.58%) for 72 hours than in untreated cell (4 ± 2.65%) upon measurement by TUNEL staining. In view of the toxicity of goniothalamin, the kind of cell death, namely apoptosis or necrosis, was assessed. Therefore, staining with fluorescence labeled annexin V in combination with propidium iodide was performed on HepG2 and Chang cells exposed to goniothalamin. The laser scanning cytometry of propidium iodide and annexin V-stained cells indicated that the growth inhibiting effect of goniothalamin was consistent with a strong induction of apoptosis at late stage. This is because the cellular
membrane integrity was lost, so the cells exhibited annexin V- and propidium iodide-
double positive up to 85.87 ± 0.78 and 57.69 ± 1.12 in HepG2 and Chang cells after 24
hours, respectively. In order to confirm apoptotic mechanism in the goniothalamin-
treated cells, caspase 3 activity upon the same treatment conditions was carried out. The
results indicate that caspase 3 activity was significantly elevated early in IC₅₀ treated
Chang cells (574% of control) after 24 hours and late in IC₅₀ treated cells after 72 hours
in HepG2 cells (879% of control). Our findings suggest a potential mechanism for the
strong growth inhibitory effect of goniothalamin on this HepG2 liver cancer cells.
However, less sensitivity to normal liver Chang cell line was observed by this
compound. An important feature of the cytotoxicity by goniothalamin is that it is
mediated through apoptosis.
SITOTOKSISITI GONIOthalamin TERHADAP SEL ASAS KARSINOMA HEPAR HepG2 PADA MANUSIA

Oleh

MOThANNA SADIQ OBAID AL-QUBAISI

Oktober 2009

Pengerusi: Noorjahan Banu Mohamed Alitheen, Ph.D

Fakulti: Bioteknologi dan Sains Biomolekul

Goniothalamin adalah molekul aktif terbitan styrylpyrone secara biologi yang telah diasingpisahkan daripada spesies Goniothalamus dari Famili Annonacea. Ekstrak tumbuhan ini dilaporkan memberi kesan sitotoksik terhadap beberapa sel tumor asas seperti sel karsinoma pankreas (PANC-1), sel karsinoma gastrik (HGC-27) dan sel karsinoma payudara (MCF-7). Tujuan kajian ini adalah untuk memeriksa dan mencirikan kesan sitotoksiti goniothalamin pada sel karsinoma hepar manusia (HepG2) dan sel Chang secara in vitro dan juga mengkaji morfologi dan perubahan biokimia pada sel HepG2 dan sel Chang yang dirawat dengan goniothalamin. Rawatan goniothalamin (2.3-150 µM; 24, 48 dan 72 jam) pada sel HepG2 dan sel Chang dengan menggunakan pengujuan MTT dan LDH, menghasilkan keputusan perencatan pertumbuhan sel yang berkadar dengan dos dan masa. Data mencadangkan goniothalamin merencatkan sel HepG2 (IC50 MTT=4.6 (±0.23) µM; IC50 LDH=5.20(µM) untuk 72 jam) dengan sedikit perencatan pertumbuhan pada sel Chang (IC50 MTT=35.0 (±0.09) µM; IC50 LDH=32.5(±0.04) µM untuk 72 jam. Aktiviti sitotoksiti goniothalamin pada sel HepG2 telah
juga dipastikan menggunakan pengujian pewarna biru Trypan. Goniothalamin telah mengurangkan bilangan sel hidup (tidak berwarna) yang berhubung dengan pertambahan bilangan sel mati (berwarna) dan indek viabiliti pada pengukuran IC₅₀ adalah 52 ± 1.73% bagi sel HepG2 dan 62 ± 4.36 % untuk sel Chang selepas 72 jam. Sel-sel yang didedahkan pada goniothalamin pada kepekatan terendah (2.3 µM), IC₅₀ (keputusan MTT), dan kepekatan tertinggi (150 µM) pada 24, 48 atau 72 jam dan kemudian diperiksa kesan pada kitaran sel (menggunakan aliran sitometrik) atau pertumbuhan sel (menggunakan pengujian BrdU ELISA). Aktiviti sitotoksik goniothalamin adalah berkait dengan perencatan sintesis DNA, seperti yang ditunjukkan oleh pengurangan penggabungan BrdU. Pada 72 jam terakhir untuk goniothalamin berkepekatan 2.3 µM, peningkatan sel normal hati Chang kekal pada 97.6% berbanding pertumbuhan sel kawalan, sementara sel kanser hati HepG2 telah menurun kepada 19.8% berbanding pertumbuhan sel kawalan. Goniothalamin menyebabkan pengumpulan sel apoptotik hipodiploid pada kitaran sel yang dianalisis menggunakan aliran sitometri. Goniothalamin menghentikan sel HepG2 dan sel Chang pada fasa G₂/M pada darjah yang berbeza. Pemeriksaan melalui mikroskop cahaya pada sel HepG2 dan sel Chang yang terdedah terhadap goniothalamin pada kepekatan yang berbeza hingga 72 jam menunjukkan perubahan pada morfologi sel; i.e. sel membulat dan diikuti dengan kehilangan sifat pelekatan antara sel seterusnya menghasilkan sel yang kecut dan mengerut. Tambahan pula, sel apoptotik adalah lebih banyak dalam sel HepG2 yang dirawat dengan goniothalamin (84 ± 4.58%) untuk 72 jam berbanding sel-sel yang tidak dirawat (4 ± 2.65%) yang diukur dengan teknik warnaan TUNEL. Melalui kajian toxsisiti goniothalamin, jenis kematian sel iaitu apoptosis atau nekrosis perlu dinilai. Oleh itu, pewarnaan dengan fluoresen yang dilabelkan dengan annexin V dengan
gabungan propidium iodida telah dilakukan pada sel HepG2 dan sel Chang yang terdedah pada goniothalamin. Imbasan pancaran laser sitometri propidium iodida dan annexin V pada sel yang diwarnakan telah menunjukkan bahawa perencatan pertumbuhan akibat goniothalamin adalah konsisten dengan aruhan kuat proses apoptosis pada peringkat akhir disebabkan oleh kehilangan intergriti membran, maka sel-sel tersebut telah mempamerkan peningkatan bacaan dwi-positif untuk annexin V dan propidium iodida sehingga 85.87 ± 0.78 dan 57.69 ± 1.12 untuk sel HepG2 dan sel Chang masing-masing selepas 24 jam. Dalam menastikan mekanisma apoptotik bagi sel yang dirawat dengan goniothalamin, pengukuran aktiviti caspase 3 telah dijalankan dengan keadaan ujikaji yang sama. Keputusan ujikaji menunjukkan aktiviti caspase 3 adalah meningkat awal dengan signifikan dalam sel Chang yang dirawat IC₅₀ (574% berbanding kawalan) iaitu selepas 24 jam dan akhir pada sel HepG2 yang dirawat IC₅₀ iaitu selepas 72 jam (879 % berbanding kawalan). Hasil kajian ini mencadangkan suatu mekanisma yang mungkin untuk perencatan kuat pertumbuhan akibat goniothalamin pada sel cancer hati (HepG2) dengan sensitiviti yang rendah pada sel asas hati normal Chang terhadap bahan ini. Suatu ciri penting sitotoksiti goniothalamin adalah pengantaraannya adalah melalui proses apoptosis.
ACKNOWLEDGEMENTS

Praise be to Allah the Almighty, and peace be upon our prophet Mohammed,

At the beginning, I must thank ALLAH swt for His numerous blessings among which the completion of this thesis.

I would like to express my sincerest gratitude to my mentor and advisor, Dr. Noorjahan Banu Mohamed Alitheen. Her support, guidance, and especially her patience throughout this project were invaluable. I would also like to thank Prof. Dr. Abdul Manaf Ali and Dr. Abdul Rahman Omar, who have provided valuable guidance and support for both this project and my education.

My deepest thanks to Dr. Rozita Rosli for providing the equipment, facilities, for supporting me and my work through these years, for helpful discussions, suggestions and ideas of how to improve my work. I would never have been able to finish my dissertation without her guidance.

Special thanks to Ms. Rohaya bt Ibrahim, Mr. Yeap Swee Keong, Mrs. Norhaszalina Md Isa and Ms. Nurfarhana bt Ferdaos for all of their technical help, friendship, and valuable comments during this project. I would also like to thank my fellow students, especially Azwan B Aziz, for their support during my time at Universiti Putra Malaysia.

Thank you.
I certify that a Thesis Examination Committee has met on 12 October 2009 to conduct the final examination of Mohamma Sadiq Obaid Al-Qubaisi on his thesis entitled "Cytotoxicity of Goniothalamin on the Human Hepatocellular Carcinoma HepG2 Cell Line" in accordance with the Universities and University Colleges Act 1971 and the Constitution of the Universiti Putra Malaysia [P.U.(A) 106] 15 March 1998. The Committee recommends that the student be awarded the Master of Science.

Members of the Thesis Examination Committee were as follows:

Tan Soon Guan, PhD
Professor
Faculty of Biotechnology and Biomolecular Sciences
Universiti Putra Malaysia
(Chairman)

Shuhaimi Mustafa, PhD
Associate Professor
Institute of Halal Products Research
Universiti Putra Malaysia
(Internal Examiner)

Muhajir Hamid, PhD
Associate Professor
Faculty of Biotechnology and Biomolecular Sciences
Universiti Putra Malaysia
(Internal Examiner)

Kamarudin Mohd Yusoff, PhD
Professor
Faculty of Medicine
Universiti Malaya
Malaysia
(External Examiner)

BUJANG BIN KIM HUAT, PhD
Professor and Deputy Dean
School of Graduate Studies
Universiti Putra Malaysia

Date: 15 January 2010
This thesis submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfilment of the requirement for the degree of Master of Sciences.

The members of the Supervisory Committee were as follows:

Noorjahan Banu Mohamed Aliheen, PhD
LECTURER
Faculty of Biotechnology and Biomolecular Sciences
University Putra Malaysia
(Chairperson)

Abdul Manaf Ali, PhD
Professor
Faculty of Biotechnology and Biomolecular Sciences
University Putra Malaysia
(Member)

Abdul Rahman Omar, PhD
Associate Professor
Faculty of Veterinary Medicine
University Putra Malaysia
(Member)

Rozita Rosli, PhD
Associate Professor
Faculty of Medicine and Health Sciences
University Putra Malaysia
(Member)

HASANAH MOHD. GHAZALI, PhD
Professor and Dean
School of Graduate Studies
Universiti Putra Malaysia

Date: 11 February 2010
DECLARATION

I hereby declare that the thesis is based on my original work except for quotations and citations, which have been duly acknowledged. I also declare that it has not been previously or concurrently submitted for any other degree at UPM or other institutions.

MOTHANNA AL-QUBAISI

Date: 3 March 2010
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>DEDICATION</td>
<td>ii</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>iii</td>
</tr>
<tr>
<td>ABSTRAK</td>
<td>vi</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>ix</td>
</tr>
<tr>
<td>APPROVAL</td>
<td>x</td>
</tr>
<tr>
<td>DECLARATION</td>
<td>xii</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>xvi</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xvii</td>
</tr>
<tr>
<td>LIST OF APPENDICES</td>
<td>xviii</td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
<td>xix</td>
</tr>
</tbody>
</table>

CHAPTERS

I INTRODUCTION

1

II LITERATURE REVIEW

2.1 Cancer 4

2.2 Liver Cancer 5

2.2.1 Intrahepatic cholangiocarcinoma 5

2.2.2 Extrahepatic bile duct and gallbladder cancer 6

2.2.3 Hepatoblastoma 7

2.2.4 Angiosarcoma 7

2.3 Hepatocellular Carcinoma 8

2.3.1 Background 8

2.3.2 Epidemiology and frequency 8

2.3.3 Malaysian Experiments 10

2.3.4 Molecular basis of Hepatocellular Carcinoma 11

2.3.5 HepG2 and Chang cell lines 12

2.3.6 Drugs 13

2.4 Drug- resistance 14

2.5 The turning toward plant extracts 14

2.6 Goniothalamus macrophyllus 16

2.7 Goniothalamin 17

2.7.1 Activities 18

2.7.2 Anti-cancer role of goniothalamin 18

2.8 Cell Death Pathways 19

2.9 In Vitro Methods for Detecting Cytotoxicity 19

2.9.1 Cytototoxicity tests 21

2.9.2 Proliferation tests 23

2.9.3 Cellular metabolic Tests 25

2.9.4 Quantification of Caspase-3 activity 27
III MATERIAL AND METHODS

3.1 Materials and Reagents 28
3.2 Cell Lines 28
3.3 Medium Preparation 29
3.4 Inactivation of fetal bovine serum FBS 29
3.5 Buffer Preparation 29
3.6 Trypsin/EDTA solution 30
3.7 Cryopreservation 30
3.8 Maintenance of Cell Culture 31
3.9 Recovery and Thawing 31
3.10 MTT Cytotoxicity Assay 31
3.11 Lactate Dehydrogenase (LDH) Assay 32
3.12 Cell Cycle Analysis 33
3.13 Bromodeoxyuridine (BrdU) Cell Proliferation Assay 34
3.14 Viable Cell Counts Using Trypan Blue 34
3.15 Microscopic examination of nuclei and cell morphology 35
3.16 Annexin V–FITC Assay 36
3.17 Caspase-3 Assay 37
3.18 Statistical analysis 37

IV RESULTS

4.1 Cellular sensitivity of HepG2 and Chang cells to goniothalamin 38
4.2 Cell cycle analysis 47
4.3 Goniothalamin and Cell Proliferation (BrdU ELISA) 53
4.4 Trypan blue dye exclusion 56
4.5 Measurements of apoptosis by morphology and TUNEL assay 59
4.6 Characterization of cell death 66
4.7 Detection of caspase-3 activity 70

V DISCUSSION

5.1 Cellular sensitivity of HepG2 and Chang cells to goniothalamin 72
5.2 Cell cycle analysis 76
5.3 Goniothalamin and Cell Proliferation (BrdU ELISA) 80
5.4 Trypan blue dye exclusion 84
5.5 Measurements of apoptosis by morphology and TUNEL assay 86
5.6 Characterization of cell death 91
5.7 Detection of caspase-3 activity 93
5.8 General discussion 96

VI CONCLUSION

REFERENCES 102
APPENDICES
Appendix A MTT assay 115
Appendix B LDH assay 119
Appendix C Cell Cycle analysis 123
Appendix D BrdU assay 129
Appendix E Trypan blue dye exclusion 131
Appendix F Cellular membrane PS externalization 133
Appendix G Caspase-3 activity 135

BIODATA OF STUDENT 137
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Risk factors (carcinogens and cocarcinogens) regarding hepatocellular carcinoma</td>
<td>10</td>
</tr>
<tr>
<td>2.2</td>
<td>Features of Apoptosis and Necrosis</td>
<td>20</td>
</tr>
<tr>
<td>4.1</td>
<td>The IC$_{50}$ values after different intervals of drug treatment in HepG2 cells</td>
<td>41</td>
</tr>
<tr>
<td>4.2</td>
<td>The IC$_{50}$ values after different intervals of goniothalamin and doxorubicin treatment in Chang cells</td>
<td>41</td>
</tr>
<tr>
<td>4.3</td>
<td>The selective index (SI) of goniothalamin and doxorubicin treatment</td>
<td>44</td>
</tr>
<tr>
<td>4.4</td>
<td>Comparison of IC$_{50}$ values for HepG2 and Chang cells</td>
<td>46</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Pictures a and b show the plant and leaves of Goniothalamus macrophyllus.</td>
<td>17</td>
</tr>
<tr>
<td>2.2</td>
<td>The structure of goniothalamin</td>
<td>17</td>
</tr>
<tr>
<td>4.1</td>
<td>Effects of goniothalamin treatment in the human hepatocellular carcinoma cell line, HepG2</td>
<td>39</td>
</tr>
<tr>
<td>4.2</td>
<td>Effects of doxorubicin treatment in the human hepatocellular carcinoma cell line, HepG2</td>
<td>40</td>
</tr>
<tr>
<td>4.3</td>
<td>Effects of goniothalamin treatment in the normal human Chang liver cell line</td>
<td>42</td>
</tr>
<tr>
<td>4.4</td>
<td>Effects of doxorubicin treatment in the normal human Chang liver cell line</td>
<td>43</td>
</tr>
<tr>
<td>4.5</td>
<td>LDH leakage in HepG2 cells treated with goniothalamin</td>
<td>45</td>
</tr>
<tr>
<td>4.6</td>
<td>LDH leakage in Chang cells treated with goniothalamin</td>
<td>46</td>
</tr>
<tr>
<td>4.7</td>
<td>Effect of goniothalamin on cell-cycle distribution in HepG2</td>
<td>48</td>
</tr>
<tr>
<td>4.8</td>
<td>Effect of doxorubicin on cell-cycle distribution in HepG2 cells</td>
<td>49</td>
</tr>
<tr>
<td>4.9</td>
<td>Effect of goniothalamin on cell-cycle distribution in Chang cells</td>
<td>51</td>
</tr>
<tr>
<td>4.10</td>
<td>Effect of doxorubicin on cell-cycle distribution in Chang cells</td>
<td>52</td>
</tr>
<tr>
<td>4.11</td>
<td>Effect of goniothalamin and doxorubicin on the proliferation of HepG2 cells in vitro</td>
<td>54</td>
</tr>
<tr>
<td>4.12</td>
<td>Effect of goniothalamin and doxorubicin on the proliferation of Chang cells in vitro</td>
<td>55</td>
</tr>
<tr>
<td>4.13</td>
<td>Cell viability (HepG2 cells)</td>
<td>56</td>
</tr>
<tr>
<td>4.14</td>
<td>Cell viability (Chang cells)</td>
<td>58</td>
</tr>
<tr>
<td>4.15</td>
<td>Morphological changes of HepG2 cells after the exposure to goniothalamin</td>
<td>62</td>
</tr>
<tr>
<td>4.16</td>
<td>Typical fluorescence images of apoptotic cell in goniothalamin-treated HepG2 cells</td>
<td>63</td>
</tr>
<tr>
<td>4.17</td>
<td>Percentages of HepG2 cell death via apoptosis after goniothalamin treatment</td>
<td>64</td>
</tr>
<tr>
<td>4.18</td>
<td>Morphological changes of HepG2 cells after the exposure to goniothalamin</td>
<td>65</td>
</tr>
<tr>
<td>4.19</td>
<td>Flow cytometry analysis of apoptosis in HepG2 cells treated with goniothalamin</td>
<td>68</td>
</tr>
<tr>
<td>4.20</td>
<td>Flow cytometry analysis of apoptosis in Chang cells treated with goniothalamin</td>
<td>69</td>
</tr>
<tr>
<td>4.21</td>
<td>Treatment of HepG2 and Chang cells with goniothalamin results in activation of caspase 3</td>
<td>71</td>
</tr>
</tbody>
</table>
LIST OF APPENDICES

<table>
<thead>
<tr>
<th>Appendix</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. MTT assay</td>
<td>115</td>
</tr>
<tr>
<td>B. LDH assay</td>
<td>119</td>
</tr>
<tr>
<td>C. Cell Cycle analysis</td>
<td>123</td>
</tr>
<tr>
<td>D. BrdU assay</td>
<td>129</td>
</tr>
<tr>
<td>E. Trypan blue dye exclusion</td>
<td>131</td>
</tr>
<tr>
<td>F. Cellular membrane PS externalization</td>
<td>133</td>
</tr>
<tr>
<td>G. Caspase-3 activity</td>
<td>135</td>
</tr>
</tbody>
</table>
LIST OF ABBREVIATIONS

<table>
<thead>
<tr>
<th>Abbrivation</th>
<th>Full name</th>
</tr>
</thead>
<tbody>
<tr>
<td>AFB1</td>
<td>Aflatoxin B1</td>
</tr>
<tr>
<td>ATCC</td>
<td>The American Type Culture Collection</td>
</tr>
<tr>
<td>BrdU</td>
<td>Bromodeoxyuridine</td>
</tr>
<tr>
<td>Chang cells</td>
<td>Normal liver cell line</td>
</tr>
<tr>
<td>CO₂</td>
<td>Carbon Dioxide</td>
</tr>
<tr>
<td>DMEM</td>
<td>Dulbecco’s modified Eagle’s medium</td>
</tr>
<tr>
<td>DMSO</td>
<td>Dimethyl Sulphoxide</td>
</tr>
<tr>
<td>DNA</td>
<td>Deoxyribonucleic acid</td>
</tr>
<tr>
<td>DTT</td>
<td>Dithiothreitol</td>
</tr>
<tr>
<td>dUTP</td>
<td>2’-deoxyuridine 5’-triphosphate</td>
</tr>
<tr>
<td>EDTA</td>
<td>Ethyldiaminetetraacetic acid</td>
</tr>
<tr>
<td>ELISA</td>
<td>Enzyme-linked Immunosorbent Assay</td>
</tr>
<tr>
<td>EtOH</td>
<td>Ethanol</td>
</tr>
<tr>
<td>FACS</td>
<td>Fluorescence-Activated Cell Sorting</td>
</tr>
<tr>
<td>FCS</td>
<td>Fetal Calf Serum</td>
</tr>
<tr>
<td>FITC</td>
<td>Fluorescein isothiocyanate</td>
</tr>
<tr>
<td>Go</td>
<td>Resting phase</td>
</tr>
<tr>
<td>G₁</td>
<td>Gap between mitosis and DNA synthesis</td>
</tr>
<tr>
<td>G₂</td>
<td>Gap between DNA synthesis and mitosis</td>
</tr>
<tr>
<td>HBV</td>
<td>Hepatitis B virus</td>
</tr>
<tr>
<td>HCC</td>
<td>Hepatocellular carcinoma</td>
</tr>
<tr>
<td>HCV</td>
<td>Hepatitis C virus</td>
</tr>
<tr>
<td>HCl</td>
<td>Hydrochloric acid</td>
</tr>
<tr>
<td>HepG2</td>
<td>Human hepatocellular liver carcinoma cell line</td>
</tr>
<tr>
<td>HRP</td>
<td>Horseradish Peroxidase</td>
</tr>
</tbody>
</table>
IC$_{50}$ Inhibition concentration at 50 percent
ICAM-1 Inter-Cellular Adhesion Molecule 1
KCl Potassium Chloride
KH$_2$PO$_4$ Potassium dihydrogen phosphate
LDH Lactate Dehydrogenase
LDL Low-density lipoproteins
M Mitosis
mL Mililiter
MTT 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide
NaCl Sodium Chloride
NADH Nicotinamide adenine dinucleotide
NaHPO$_4$ Disodium hydrogen phosphate anhydrous
NaOH Sodium Hydroxide
Nm Nanometer
PBS Phosphate buffer saline
pH Minus the decimal logarithm of the hydrogen ion activity in an aqueous solution
PI Propidium iodide
PS Phosphatidyl serine
RB 1 Retinoblastoma protein 1
S DNA synthesis
SI Selective Index
STAT Signal Transducers and Activators of Transcription
TDT Deoxynucleotidyl Transferase
TP53 Tumor protein p53
TUNEL TdT-mediated dUTP Nick End Labeling
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>VCAM-1</td>
<td>Vascular cell adhesion molecule-1</td>
</tr>
<tr>
<td>VLDL</td>
<td>Very low-density lipoproteins</td>
</tr>
<tr>
<td>WNT</td>
<td>Proteins have roles in embryogenesis, cancer and in normal physiological processes</td>
</tr>
<tr>
<td>µg</td>
<td>Microgram</td>
</tr>
</tbody>
</table>
CHAPTER I

INTRODUCTION

Goniothalamus macrophyllus (locally named "Gajah beranak") is used traditionally as health tonic during pregnancy and to treat cold as well as fever (Burkill, 1953). The screening of this plant for bioactive compounds has resulted in the isolation of a large number of cytotoxic compounds, notably styryl-lactone derivatives, acetogenins, aporphine alkaloids and related alkaloids (Blasquez et al., 1999). These compounds have also been found to possess strong antimicrobial (Khan et al., 1999), larvicidal (Ee, 1998), antimalarial (Likhitwitayawuid et al., 1997) and embryotoxic activities (Sam et al., 1987).

Goniothalamin is a styryl-lactone compound isolated from the root and stem of Goniothalamus macrophyllus (Sam et al., 1987). Cytotoxicity of goniothalamin was reported in a number of carcinoma cell types isolated from a variety of tissues such as colon cancer cell line (Ângelo et al., 2005), breast cancer cell lines (Chen et al., 2005) and lung carcinoma (Chatchai et al., 2005). Skin fibroblast, human fibroblast and bovine kidney are normal cell lines that showed resistant to this compound (Chatchai et al., 2005).

More than 80% of Hepatocellular carcinoma HCC cases occur in the Far East and Southeast Asia. Although immunization has been successful against hepatitis B virus (HBV), a changing disease burden of HCC has been observed in many parts of the
world because of the increasing prevalence and duration of hepatitis C virus (HCV) infection in these countries (Kao and Chen, 2005).

Hepatocellular carcinoma (HCC) is refractory to chemotherapy because of tumor heterogeneity and the development of multidrug resistance phenotypes (Huang et al., 1992; Legoix et al., 1999). The Hepatocellular Carcinoma HCC cells are presenting mutations of p53 (transcription factor works as a tumor suppressor that is involved in preventing cancer), which lead to more aggressive resistance to chemotherapy (Heinze et al., 1999)

Doxorubicin is the best systemic chemotherapy with a variety of agents, including, epirubicin, mitoxantrone, cisplatin, and etoposide, either alone or in combination (Shah et al., 1998). It is often used in patients with HCC disseminated beyond the liver, although the response rates are generally of the order of only 15 %. In addition to that, doxorubicin is expensive and has serious side effects such as nausea, vomiting, mucositis, ulceration, necrosis of the colon and acute myeloid leukemia with a preleukemic phase and may cause heart failure (British Medical Association and Royal Pharmaceutical Society of Great Britain RPSGB, 2006).

Plant bioactive compounds have fewer side effects with low-cost when used in chemotherapy. Thus, the gearing of compounds, extracted from plants, for medicinal purposes becomes a workable thing. Based on this, the objectives of the study are:
1. To assess toxicity and selectivity of goniothalamin against Hepatocellular Carcinoma HepG2 cell line in comparison with normal liver (Chang) cell line.

2. To determine the mechanism of cytotoxicity, the treated cells with goniothalamin, have behaved.