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Attitude accuracies of a three-axis satellite are highly influenced by space environment 
disturbances and uncertainties. Similar to actuators, an attitude controller also plays an 
important role and must be robust enough to cope with any disturbances and 
uncertainties. Various controllers have been used for satellite attitude controls either 
linear or nonlinear control theories. This thesis presents an enhanced attitude control 
structure for a small satellite with reaction wheels (RWs) and the wheel angular
momentum unloading control using magnetic torquers (MTQs). In order to improve 
the attitude control performances, a proportional derivative-active force control (PD-
AFC), and a Fuzzy PD-AFC are developed. For the momentum unloading control, a 
Fuzzy-proportional integral (Fuzzy-PI) is developed to remove the excess wheel 
momentum. Using the PD-AFC and Fuzzy PD-AFC, the actual disturbances torques 
are considered totally rejected by the system without having to have any direct prior 
knowledge on the actual disturbances itself. These days, however, satellites have 
become increasingly more complex, with many additional components, such as 
antennas, cameras, solar panels and mechanical manipulators. These components 
introduce flexible mode which results in a satellite dynamic system becoming highly 
nonlinear. Therefore, a robust nonlinear controller such as sliding mode control (SMC) 
is highly desirable. Besides, a number of studies have shown that, fractional order 
controller (FOC) could enhance the control system performance due to its extra 
degrees of freedom. In this thesis, a fractional order sliding mode control (FOSMC) is 
developed. In fact, this current work will be one of the maiden works on FOSMC for 
small satellites. All the proposed controllers were also tested for a satellite with only 
two functional RWs, in which the control allocation technique is proposed to solve the 
underactuated satellite attitude control problem. All the relevant attitude control 
architectures are developed together with their governing equations. Eventually, all 
control algorithms are numerically treated and analysed. The research results obtained 
proved that the PD-AFC, Fuzzy PD-AFC and FOSMC to be successful in achieving 
the overall stability attitude control system in the presence of external disturbances and 
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uncertainties, i.e., PD-AFC ( ; Fuzzy PD-AFC (
; FOSMC , and with the Fuzzy-PI for momentum unloading 

control whereby, the wheel momentum can be well maintained. Finally, the research 
for underactuated satellite attitude control performances using two RWs have been 
also successfully demonstrated and the research results proved that the control 
allocation technique provides a good performance in controlling the satellite attitude. 
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Ketepatan attitud satelit tiga paksi sangat dipengaruhi oleh gangguan persekitaran 
angkasa dan ketidakpastian. Sama seperti penggerak, pengawal attitud juga 
memainkan peranan penting dan mesti cukup mantap untuk mengatasi sebarang 
gangguan dan ketidakpastian. Pelbagai pengawal telah digunakan untuk mengawal 
attitud satelit sama ada teori kawalan linear atau tidak linear. Tesis ini membentangkan 
struktur kawalan attitud yang dipertingkatkan untuk satelit kecil dengan roda reaksi 
dan kawalan  momentum roda reaksi menggunakan tork magnet. Untuk meningkatkan 
prestasi attitud, PD-AFC dan Fuzzy PD-AFC direka bentuk. Untuk kawalan 
momentum roda reaksi, Fuzzy-PI direka untuk mengurangkan momentum yang 
berlebihan. Menggunakan PD-AFC dan Fuzzy PD-AFC, tork gangguan boleh 
dibatalkan oleh sistem tanpa memerlukan pengetahuan terlebih dahulu mengenai 
gangguan sebenar tersebut. Kini, sistem satelit semakin kompleks, dengan banyak 
komponen tambahan, seperti antena, kamera, panel solar dan manipulator mekanik. 
Komponen ini memperkenalkan mod fleksibel yang mengakibatkan sistem dinamik 
satelit menjadi sangat tidak linear. Oleh itu, pengawal bukan linear yang mantap 
seperti pengawal mod gelongsor SMC amat sesuai. Selain itu, beberapa kajian telah 
menunjukkan bahawa, fractional order control (FOC) dapat meningkatkan prestasi 
sistem kawalan. Dalam tesis ini, gabungan FOC dan SMC (FOSMC) direka. Malah, 
kajian ini akan menjadi salah satu kajian sulung untuk FOSMC diaplikasikan di satelit-
satelit kecil. Semua pengawal yang dicadangkan juga telah diuji untuk satelit yang 
hanya ada dua roda reaksi yang berfungsi, di mana teknik peruntukan kawalan 
dicadangkan untuk menyelesaikan masalah pengendalian attitude satelit yang 
kegagalan roda reaksi. Kesemua arkitektur kawalan atitud yang relevan dibangunkan 
bersama dengan persamaan asas. Seterusnya, semua algoritma kawalan diuji secara 
berangka dan keputusan dianalisisa. Keputusan kajian yang diperoleh membuktikan 
bahawa PD-AFC, Fuzzy PD-AFC dan FOSMC berjaya mencapai kestabilan 
keseluruhan walaupun adanya gangguan luar dan ketidakpastian sebagai contoh; PD-
AFC (±0.0040°-0.0055°); Fuzzy PD-AFC (±0.0010°-0.0015°); FOSMC (±0.00020), 
dan dengan Fuzzy-PI untuk kawalan momentum, momentum roda reaksi dapat 
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dikawal dengan baik. Akhir sekali, kajian yang hanya ada dua roda reaksi yang 
berfungsi telah berjaya ditunjukkan dan keputusan kajian membuktikan bahawa teknik 
peruntukan kawalan memberi prestasi yang baik dalam mengawal attitude satelit. 
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CHAPTER 1 

1INTRODUCTION 

1.1 General Overview 

A satellite is a space vehicle launched by a rocket and placed in an orbit around the 
Earth. It is designed for various applications such as Earth observation, weather 
forecasting, communications, scientific exploration, defence purposes, and also for 
university experiments. In recent years, the development of small satellites has gained 
more attention than that of the larger satellite because it can be developed to actualise 
advanced space missions at low cost in short amount of time, with less complexity and 
the ability to provide valuable scientific returns (Inamori, 2012).  

According to International Academy of Astronautics (IAA), small satellites can be 
categorised into four groups based on their weight which are minisatellite (less than 
1000 kg), microsatellite (less than 100kg), nanosatellite (less than 10 kg), and 
picosatellite (less than 1 kg) (Ram S & Joseph N, 2014). The progressive development 
of Micro-Electro-Mechanical Sensors (MEMS) and Commercial Off-the-Shelf 
Components (COTS) contributed to the emerging of small satellites space mission in 
the recent years. 

The Attitude Determination and Control System (ADCS) is one of the satellite 
subsystems which is the primary field area covered in this research. Most of the 
satellite components can be miniaturised to reduce the cost and at the same time able 
to retain their high performance (Nicolai et al., 2014). Nevertheless, all must-have 
seven subsystems in any satellites are summarised in Table 1.1. 

Table 1.1: The function of each satellite subsystems (Larson & Wertz, 2005) 
Satellite Subsystems Functions 

Attitude Determination and 
Control System (ADCS)  

Determines and controls the satellite angular 
orientation throughout the mission. 

Telemetry, Tracking and 
Command (TTC) 

Provides satellite housekeeping data to the 
ground station. 

Command and Data Handling 
(CDH) 

Distributes commands received from the ground 
station to the satellite. 

Power Provides and manages power to the satellite. 
Structures and Mechanism Provides an interface for all subsystems 
Guidance and Navigation: 
 

Determines the satellite's state vector and its 
orbital elements. 

Thermal Provides acceptable temperature ranges for all 
the satellite’s component. 

The ADCS can be categorised into two separate subsystems, namely the Attitude 
Control System (ACS) (i.e. the control actuators) and the Attitude Determination 
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System (ADS) (i.e., the attitude and angular velocity sensors). The commonly used 
attitude sensors include Sun sensors, Earth sensors, magnetometers, star trackers, 
Global positioning systems (GPS), and gyroscopes, where the details are described in 
(Larson & Wertz, 2005). However, the primary focus of this thesis is only on ACS 
studies. ACS is a substantial subsystem of a satellite in controlling and maintaining the 
high accuracy autonomous attitude pointing and rapid slewing capabilities in the 
presence of environmental and systematic errors. 

Upon separating from the launch vehicle, the satellite will tumble to an undefined 
angular rate. As shown in Figure 1.1, this first phase is called as the detumbling mode 
where the satellite’s angular rate is reduced to a lower speed through the attitude 
acquisition process. Then, the satellite will be put into the safe mode (sun pointing) 
where the satellite slews such that its solar panels face the sun to allow the battery to 
be charged and this mode is also used in backup emergency in case normal operation 
mode fails. Next, in the idle mode, the satellite’s batteries will be charged efficiently 
and is standby for inertial pointing mode, nadir pointing mode and target pointing 
mode (Pong et al., 2010). 

 

 

Figure 1.1: Satellite’s phase (Klinkner, 2012) 

In the inertial pointing mode, the cameras can be pointed to a celestial object like stars, 
the sun, or the moon. In the nadir pointing mode, the payload cameras are pointed 

1: Detumbling mode 2: Safe mode 3: Idle mode 

3: Inertial Pointing mode 

4: Nadir Pointing mode 
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"directly down" towards the Earth and while in target pointing mode, the satellites are 
pointed towards a specific target. Besides the attitude pointing, the attitude tracking is 
also required to be performed for specific missions especially for the satellite with a 
limited supply of electrical power where it has to track a Sun-optimal trajectory. Other 
than that, the communication satellites have to track other satellites passing by either 
for transmitting or receiving data. Furthermore, some satellites need the attitude 
tracking if the satellites have the mission to collect measurement and to take pictures 
of objects from far away (Mohammad & Ehsan, 2008). Thus, to enable the attitude 
control for the entire duration of the mission with agile manoeuvring capabilities and 
high pointing accuracies, the robust attitude control system is highly desired.  

Besides, the satellite’s lifespan is in the range of 1 to 10 years, and throughout the 
mission, the satellite design, development, and operation can be affected by the natural 
space environment. In addition, the satellites in their orbits are also influenced by 
unwanted motions such as the libration, nutation, and precession if no countermeasures 
are performed by the satellite. The attitude stabilisation methods can be categorised 
into two main methods, which are the active control method and the passive control 
method. The brief description of both methods is summarised as illustrated in Figure 
1.2. 

 

Figure 1.2: Satellite attitude stabilization methods (Larson & Wertz, 2005) 

In the early days of the space era, passive controls were the favoured option for a space 
mission. A passive technique using gravity gradient stabilisation is sufficient enough 
for early satellite missions such as Explorer 1 and Intelsat 1. Less hardware used, fuel-
free, simple, and low cost are the factors contributing to the adoption of passive 
techniques (Sidi, 1997). In the middle of the space era, passive techniques were no 
longer relevant due to the transition from a small space mission to the more massive 
satellite with the sizes ranging in hundreds of kilograms.  

Meanwhile, three-axis stabilisation technique is preferable compared to spin 
stabilisation because the three-axis stabilisation could provide greater pointing 
accuracy in the order of very accurate milli-radians and could allow solar arrays to be 
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continuously oriented towards the sun (Ram S & Joseph N, 2014). Nevertheless, in an 
effective three-axis stabilisation technique, the satellite must have the actuators to 
produce angular torque. The selection of actuator is based on the mission of the 
satellite. For a short mission duration, a thruster is a good option for spacecraft like 
Shuttle and Soyuz which does not require high fuel consumption for attitude control. 
Furthermore, these spacecraft are not built for high pointing accuracy requirements. 
Besides the thrusters, the momentum exchange devices like reaction wheels (RWs) 
and control moment gyroscopes (CMGs) are also the common actuators adopted. Both 
RWs and CMGs are capable of spinning freely and are functioning based on the 
conservation of angular momentum (zero-momentum biased). When their angular 
momentum is changed, the angular momentum of the satellite must also change to 
conserve its net angular momentum. 

Either RWs or CMGs are the ultimate options that can provide higher attitude accuracy 
for satellite attitude control (Larson & Wertz, 2005). RWs spin along a fixed axis at a 
variable speed and the angular momentum is varied by increasing or lowering the 
speed. Meanwhile, CMGs spin along a rotating axis at a constant speed and the angular 
momentum is varied by rotating their spin axis. The reaction torque of RWs acts on 
the satellite as the wheel speed varied, while the wheel speed is fixed for CMGs 
resulting in the change of spin axis’s direction relative to the satellite. CMGs are 
suitable for the three-axis control but are often not considered to be used on small 
satellites due to the complexity of the mechanical and control system needed to 
implement an effective CMG, see Figure 1.3. 

 
(a) 

 
(b) 

Figure 1.3: Diagram of a) RW torque and b) CMG torque (Votel & Sinclair, 
2012)  

The magnetic control via the use of magnetic torquers (MTQs) is another favoured 
option for small satellites either for attitude control or momentum unloading tasks. 
MTQ are advantageous regarding their low cost and lightweight as they contain no 
moving parts, making them less vulnerable to failure. The major obstacle in the 
magnetic actuation is that a magnetic torque will only produce a maximum torque 
when aligned with the local magnetic field vector. The available torque, therefore, 
depends on the current local magnetic field vector, and independent torques on all three 
axis of a control system using three orthogonal magnetic torques are hard to achieve. 
Accordingly, the yaw axis of the satellite is not controllable over the magnetic poles 
of the Earth, and the roll axis will lose its torque over the equator. Since the magnetic 
field is continuously changing, magnetic control has become nonlinear and time-
varying. In this study, the RWs are used to control the satellite’s attitude while the 
MTQs are used to unload the wheel momentum. 
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1.2 Problem statements 

Technically, the satellite systems are complicated due to several issues such as time 
variant, delays, and nonlinearities. Moreover, other factors that contribute to the 
complexity of the dynamic satellite systems are the presence of uncertainty, actuator 
saturation, and the actuator faults itself. In general, the significant uncertainties are due 
to the changes of satellite’s inertia matrix as well as the external environmental 
disturbances. Frequently, the satellite’s inertia uncertainties are due to the 
measurement errors during the pre-launch testing, changes in the overall satellite 
system configuration, and fuel consumption during the mission (Tiwari et al., 2016). 
In most cases, the uncertainties and disturbances degrade the satellite attitude control 
performance and could cause mission failure. Besides, the attitude control system 
(ACS) needs to provide a high accuracy pointing and manoeuvring capabilities by the 
selected earth observation instruments and the space missions. Therefore, the attitude 
controller must be robust enough to cope either the uncertainties or external 
disturbances and the satellite’s attitude is supposed to be in controlled and have good 
attitude ponting performances for the entire mission. 

The RW is chosen as an actuator in this study since it can provide high precision torque 
and high accuracy. The effectiveness of reaction wheels as satellite actuators is already 
well known. The famous Hubble Space Telescope (HST) and Midcourse Space 
Experiment (MSX) spacecraft have proven the capability of reaction wheels in 
controlling the spacecraft attitude.  Despite their known advantages, these momentum 
exchange may suffers from the drawback of wheel momentum saturation (Yang, 
2017). Thus, attitude control system is impractical without the momentum unloading 
control. Commonly, the MTQs are chosen as the secondary actuators to unload the 
momentum, and the challenge is to ensure continuous controllability for all three axis. 
Therefore, the optimum momentum unloading control technique is significant and 
needs to be designed according to the mission requirements.  

Another issue deals with underactuated satellite attitude control which refers to 
satellite with less than three attitude control actuators. A set of four RWs in a pyramid 
configuration have been used in this study due to its controllability and redundancy 
reasons. If one of the RWs fails, the attitude control system can still generate any 
direction of torque by the remaining wheels. However, if two out of four RWs fail, 
external disturbances will cause the satellite to lose its ability to correct the attitude 
error. If the failure is irrecoverable, the satellite’s mission could be loss, as experienced 
by Hayabusa (Choi, 2005) and NASA Kepler spacecraft (Cowen, 2013). However, the 
three-axis attitude stabilisation is still can be achieved by using the two RWs left and 
with the assistance of specialised technique by which only a few have been 
investigated. Hence, this study proposed a control allocation technique to ensure 
controllability of the underactuated satellite specifically for the satellite with four RWs 
in a pyramid configuration. 
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1.3 Research Objectives 

The objectives of this research are: 

a. To develop robust satellite attitude controllers, namely the active force 
control (AFC) and the fractional order sliding mode control (FOSMC); 
and to design a Fuzzy-proportional integral (Fuzzy-PI) controller for 
the momentum unloading control of satellite reaction wheels.  

b. To design a novel attitude control scheme for an underactuated satellite 
with two reaction wheels through the control allocation technique. 

c. To validate the numerical testings and attitude control performances of 
all the developed satellite attitude architectures together with their 
governing equations both for nominal and underactuated satellite 
attitude controls. 

1.4 Scope and Limitation of Studies 

Several assumptions are set for this research. The satellite is assumed to be a rigid body 
actuated by four RWs in a pyramid configuration and employs three MTQs for wheel 
momentum unloading. The satellite is a small satellite that the mass is less than 100kg 
(microsatellite). The principal axes are aligned with the body axes. The satellite is built 
for Low Earth Orbit (LEO) and also for the attitude pointing mission. The controllers 
provided for the typical space missions during the Euler angles are relatively small. 
The attitude parameterisation via quaternion is employed in this work. The satellite’s 
moment of inertia matrix is known, and its value is constant for the entire duration of 
the mission. However, the inertia matrix and the external disturbance torques are 
considered to be uncertain, for instance, 10% of variation is set for the satellite’s inertia 
matrix (Tiwari et al., 2016). The satellite is assumed to be positioned at high inclination 
orbit because the Earth’s magnetic field strength at low inclinations is relatively weak. 
Thus, the use of MTQs in low orbit inclination is ineffective as only small magnetic 
control torques can be produced for wheel momentum unloading tasks. Since this 
study is considered for small satellites, it is essential to define the reasonable magnetic 
dipole moment saturation limits, especially in the simulation model.  For small 
satellites, the range of the dipole saturation is from 1 Am2 to 35 Am2 (J. Lee et al., 
2002).  

1.5 Thesis Outline 

In the first chapter, a brief description regarding small satellites and attitude control 
methods are introduced. Apart from that, the problem statement and the objectives of 
the research are also presented. Chapter 2 presents a summary of the literature that has 
been reviewed which includes the previous and current researches on the satellite 
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attitude control, in both the actuator and controller studies. It covers the 
implementation of different attitude control laws, the issues on the RW’s momentum 
unloading, the RWs configuration, and an underactuated satellite. 

Chapter 3 details all the fundamental satellite theories used in this study such as 
coordinate systems, attitude representations, and angular velocity. The satellite attitude 
dynamics and kinematics equation are formulated. The RW’s control strategies and 
the wheel momentum unloading scheme are also presented in this chapter. Chapter 4 
describes in details the enhanced control structure for the satellite attitude control with 
RWs.  

The numerical simulations based on the proposed control strategy are presented in 
Chapter 5. The satellite attitude control and wheel momentum unloading performances 
for all the cases tested are presented and discussed as well. The conclusion is drawn in 
Chapter 6, and some suggestions are given for future researches. 
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